Mysore J. agric. Sci., 12: 404-408, 1978

Relative Irrigation Requirement of Dwarf Durum and Aestivum Wheats under Water Constraint in Black Soils of Tungabhadra Project

Pucero

K. R. KULKARNI, M. RAGHUMURTHY, SHAKUNTALA RAJU AND T. SADASHIVAIAH

Abstract

Experiments were conducted to study the relative irrigation requirement of 4 dwarf durum and one aestivum wheat varieties under the Coordinated Agronomic Research Project at Siruguppa for 2 years. The variety Kalyan Sona produced significantly higher yield over dwarf durum varieties at all levels of irrigation. Five irrigations at sowing, crown-root, late tillering, flowering and dough stages produced the higest yield with all varieties. Under conditions of water shortage, irrigations at sowing, crown-root and flowering were most critical. It is indicated that where only one irrigation is available after sowing, it should be applied at crownroot initiation stage. Irrigation at crown-root initiation stage was found to be more important with Kalyan Sona compared to durum varieties. Higher yields with 5 irrigations were mainly because of greater plant population and higher number of grains per panicle.

ONE of the important constraints for getting high yield of wheat is the availability of adequate irrigation water. Kulkarni et al. (1974) reported that the highest grain yields with high yielding varieties of wheat were obtained by giving 5 irrigations at sowing, crown-root initiation, late tillering, flowering and dough stages. Further, satisfactory yield could be obtained by giving 4 irrigations at sowing, crow-root initiation, late tillering and flowering with an average reduction yield to an extent of 7.24 per cent. In tank, well or farm pond irrigation water may be available for giving only a couple of supplementary irrigations. Under such conditions it is essential to decide the critical stages of crop growth to which irrigation water should be applied to obtain high yields. It is presumed that the durum wheat varieties have lesser water requirement and are more tolerant to drought as compared to the aestivum varieties because the durums are being grown on a large scale in dry farming areas.

In order to find out the irrigation requirement of selected durum wheat varieties in relation to Kalyan Sona wheat (aestivum) experiments were conducted under Coordinated Agronomic Research Project at Siruguppa (Bellary district) for 2 years during 1970-71 and 1971-72. The results of these experiments are discussed in this paper.

MATERIAL AND METHODS

Four durum wheat varieties namely, H.D.- 4500, H.D.- 4501, H.D.- 4502 and H. D.- 4503 with Kalyan Sona were tested in the experiment. There were 6 irrigationtreatments comprising of no irrigation and 1 to 5 irrigations at different critical stages as noted in the next page.

The experiment was conducted in split plot design with irrigation levels in the main plot and varieties in the subplot. The soil where this experiment was conducted had field capacity of 34.39 per cent, wilting.

RELATIVE IRRIGATION REQUIREMENT OF DWARF DURUM AND AESTIVUM 405

I I I No.	ż	Different critical stages						
Treatment No.	Crown root initiation	Late tillering	Flowering	Dough				
I ₀		_	-	-				
	. +	-	-	-				
I ₂	-	-	+	—				
I ₃	+	-	+	-				
I4	+	—	+	+				
I5	+	+	+	+				

(+) Denotes irrigation to be applied at that stage.
 (--) Denotes no irrigation.

point 18.85 per cent and bulk density 1.3. The soil had 7.8, E.C. 0.80 m mhos/ cm, organic carbon 0.81 per cent, available N. P. K. 596, 7.5 and 483 kg/ha respectively. The experiment was conducted in jowar-wheat rotation. A dose of 60 kg N, 60 kg P_2O_5 and 60 kg K_2O per ha was applied uniformly at sowing. Top-dressing of 60 kg nitrogen per ha was applied uniformly at four weeks after sowing.

One common irrigation was applied uniformly to bring the soil moisture to field capacity at sowing. Amount of water applied to each treatmant based on the soil moisture deficit in 0-90 cm to bring the moisture content to field capacity and the rainfall that occurred during growth period of the crop was taken as the estimated water use by the crop. As the rainfall was low (26.5 mm during 1971-72) and soil moisture sampling was done to 0-90 cm depth, the deep percolation and runoff losses were negligible. Average productivity of grain per cm of total water was

T		-
AB	TE	
*	1.1.	

Effect of irrigation on plant population, grains per panicle, grain weight and mean grain yield and straw yield (kg/ha) of durum and aestivum wheat varieties

		Jo	Average 1000-grain weight (g) 1971-72		Grain yield	1	Strav	v yield		
Treatment	Plant population count/m ² 1971-72	Plant population count/m ² 1971–72 Average number of 1971–72		1970-71	1971–72	Pooled	17-0-71	1971–72	Pooled	
Irrigation						1				
$ I_{0} I_{1} I_{2} I_{3} I_{4} I_{5} S. E. m. \pm C. D. at 5% C. V.% $	323 322 318 363 352 377 32.34 97.40 42.16	15.9 26.4 17.5 27.0 25.1 32.9 1.92 5.42 35.68	35.61 32.15 39.52 36.22 38.10 33.04 1.46 4.13 5.78	583 973 834 1602 1716 2333 113.70 320 37.92	1265 1763 1432 2652 2409 2943 176.24 496 37.92	925 1368 1133 2127 2062 2638 144.97 408 37.91	1447 2433 2287 3596 4340 4770 113.70 320 16.16	4013 4712 4568 5363 5158 6632 127.92 360 11.27	2730 3572 3427 4480 4749 5901 115.83 326 12.55	
Varieties Kalyan Sona HD-4500 HD-4501 HD-4503 S. E. m. <u>+</u> C. D. at 5% C. V.%	419 318 343 311 326 13.94 39.24 19.90	26.9 24.8 21.7 24.4 23.0 0.64 1.92 12.92	32.86 37.49 33.99 37.95 36.59 1.40 4.21 5.53	1784 1490 1189 1133 1105 84.32 254 30.79	2990 1905 1737 2018 1737 153.37 462 36.13	2387 1698 1463 1575 1421 118.84 358 34.03	3647 3301 3225 2488 3067 99.92 301 15.55	5306 5414 4615 5018 5018 103.57 312 9.99	4476 4441 3921 3753 4042 70.71 213 8.39	

calculated by dividing grain yield by water use in different treatments. The marginal efficiency of water applied at different stages over corresponding lower level of irrigation was calculated by dividing the additional yield by the quantity of water applied.

RESULTS AND DISCUSSION

Yield attributes: The data on plant population count (Table I) revealed that Kalyan Sona had the highest plant population, significantly superior to all the durum varieties. Five irrigations (I_5) produced the highest plant count but the differences were not significant.

Number of grains per panicle was the highest with Kalyan Sona and significantly superior to all HD varieties. HD-4500 was the next variety having significantly higher number of grains per panicle compared to HD-4501. The number of grains per panicle was the highest with 5 irrigations (I₅). There was no significant difference in the number of grains per panicle between one irrigation at crown root irrigation (I_1) and irrigation at crown root + flowering (I_3) . The number of grains per panicle was drastically reduced with irrigation at sowing (I_0) and irrigation at sowing + flowering (I_2) .

There was no significant difference in 1000 grain weight between the durum varieties. Kalyan Sona had significantly low grain weight as compared to HD-4500 and HD-4502. Irrigation at flowering (I_2) and at crown-root initiation + flowering + dough (I_4) stages produced higher 1000 grain weight and were significantly superior to irrigation at crown-root stage (I_2) and irrigation at all the stages (I_5) .

Grain yield: During both the years of experimentation (Table I) wheat variety Kalyan Sona produced significantly higher yield over the other durum varieties. Amongst the durums HD-4500 was found to be significantly superior to the rest during 1970-71 but there was no significant differ-

ence during 1971-72. In the combined analysis also, the variety Kalyan Sona produced significantly higher yield (2,387 kg/ha) over the durum wheats (1421 to 1698 kg/ha). Higher grain yield with Kalyan Sona was due to higher plant population and grains per panicle. There was no significant difference in grain yield between the durum varieties. During both the years, the treatment with 5 irrigation (I5) produced significantly higher yield over the other irrigation levels except I3 during 1971-72. There was no significant difference between 3 and 4 irrigation $(I_3 \text{ and } I_4)$ and two irrigations $(I_1 \text{ and } I_2)$ during both the years. For Kalvana Sona (Table II) irrigation at crown root initiation stage (I1) was found to be superior to irrigation at flowering stage (I2) but the difference fell slightly short of significance level. This was not so with the HD varieties. The data indicated that when only one irrigation is available after sowing, it should be applied at crown root initiation. When two irrigations are available they could be applied at crown root and flowering stages.

Straw vield : Kalyan Sona produced significantly higher straw yield (Table II) over the HD varieties during 1970-71, but during 1971-72 the straw yields were on par with HD varieties except HD-4501 which produced the lowest yield. In the combined analysis, Kalyan Sona produced the highest straw yield (4476 kg/ha) closely followed by HD-4500 (4441 kg/ha) which were significantly superior to other varieties (3753 to 4042 kg/ha). Highest straw yield was recorded with 5 irrigations (I5) during both the years. There was no significant difference in straw yield between 3 and 4 irrigations $(I_3 \text{ and } I_4)$ and two irrigations $(I_1 \text{ and } I_2)$ in the combined analysis. With Kalyan Sona wheat however (Table II) 4 irrigations (I₄) produced higher yield (5364 ka/ha) over 3 irrigations (I3) (4745 kg/ha) but the difference was not significant.

Efficacy of water use: It is observed that the grain production per unit of water (Table III) applied by irrigation was higher

RELATIVE IRRIGATION REQUIREMENT OF DWARF DURUM AND AESTIVUM

	**
ABLE	
INDLE	11

2		Straw yield (kg/ha)										
Irrigation (Main)	Kalyan Sona	HD 4500	HD 4501	HD 4502	HD 4503	Mean	Kalyan Sona	HD 4500	HD 4501	HD 4502	HD 4503	Mean
I0 I1 I2 I3 I4 I5	1387 2227 1535 2799 2930 3443	997 1339 1099 2119 2014 2618	657 934 978 1823 2017 2368	913 1232 1145 1996 1774 2392	669 1107 908 1896 1576 2370	925 1368 1133 2127 2062 2638	3076 4009 3703 4745 5364 5961	2616 4073 3754 4723 4657 6823	2324 3306 2988 4352 4707 5844	2662 3277 3109 4042 4270 5158	2470 3196 3703 4745 4748 5718	2630 3572 3427 4480 4749 5901
Mean	2387	1698	1463	1575	1421	1709	4476	4441	3921	3753	4042	4126
Irrigation S. E. m + C. D. C. V. % Varieties (S. E. m C. D. at 5 C. V. %	で <u> +</u>			144.97 408 37.91 118.84 358 34.03					115.83 326 12.55 70.71 213 8.3	•		
$I \times V$ C. D. at 5 (i) For sa (ii) For di	ime varie	ty	igations }	798			Ľ.		748			
C. D. at 5 (i) At the (ii) At diff	same lev	el of irr	igation	716			· .	2	432			

Effect of irrigation levels on the grain and straw yield (Average of 2 years) of durum and aestivum wheat varieties

TABLE III

Quantity of water applied and average productivity per millimeter of water with aestivum and durum wheat varieties

Treatment	Number of irrigation turns	Total water	given by irri- gation in mm	Water used (Rainfall+ Jrrigation) Mean a and b			Average pro-	peri	Marginal productivity kg grain/mm of water con- sumed		
		1970-71	1971-72	1971-72 (a)	1971-72 (b)	۰ <u>.</u> ۲	aestivum	durum	aestivum	durum	
Io	1	76.2	40.1	76.2	66.6	• 71.4	194	113	_		
I ₁	2	141.7	114.0	141.7	140.5	141.1	158	82	120	49	
I ₂	2	217.9	194.0	217.9	220.5	219.2	70	47	10	15 .	
I ₃	3	263.3	228.5	263.3	254.5	258.9	108	76	49	68	
	4	373.9	305.3	373.9	331.8	352.9	83	52	104	61	
I4 I5	5	439.5	373.5	439.5	400.0	419.7	. 82	58	77	89	
Rainfall du	ring	Nil	26.5			· ·	·				

407

with Kalyan Sona as compared to the HD varieties at all levels of irrigation. The highest average productivity of grain per mm of water applied was for irrigation at sowing (I_0) followed by irrigation at crown root initiation (I_1) , both in case of aestivum and durum wheat. The next efficient water use was at sowing, crown root initiation and flowering (I_3) .

Considering the marginal productivity of additional water applied over basal irrigation, the crown root initiation stage (I_1) followed by crown root + flowering +

dough stage (I_4) were found to be most beneficial in case of Kalyan Sona. In case of durum varieties, irrigation at stages other than crown root initiation and flowering were also useful. Irrigation at flowering was found to be least effective both in Kalyan Sona and HD varieties.

REFERENCE

KULKARNI, K. R., RAGHUMURTHY, M. AND SHAKUNTALA RAJU, 1974, With half recommended fertilizers and 4 irrigations wheat yields can be satisfactory in T. B. P. area. *Curr. Sci.*, 3 (11): 138-139.

Mysore J. agric. Sci., 12: 408-412, 1978

Effect of different Levels and Methods of Fertilizer Application on Rainfed Groundnut

P. MASTAN VALI, M. NAGESWARA REDDY AND G. H. SANKARA REDDY Department of Agronomy, Andhra Pradesh Agricultural University, Tirupati Campus

ABSTRACT

A field experiment was conducted on sandy loom soils to find out the effect of different levels and methods of fertilizer application on rainfed groundnut. The results indicated that 20 kg N+40 kg P_2O_5/ha was the profit maximization level. Application of entire quantity of fertilizer through soil or part of it through foliage had the same effect. Increased concentration of nitrogen and phosphorus in dry matter increased pod yield. The oil content of kernels was increased by fertilizer application.

GROUNDNUT is an important oil seed crop of India. It is grown over an area of 7.29 million ha with a production of 6.06 million tonnes of pods. Groundnut being a legume, responds well to the application of phosphorus. Nitrogen is also applied to meet the needs of the crop till the nodules are formed. Earlier works (Bhendia

and Mann, 1964; Mariakulandai and Morachan, 1965; Pande et al., 1971 and Sandhu et al., 1972) have confirmed the usefulness of nitrogen and phosphorus in increasing the pod yield of groundnut. Under the agroclimatic conditions of Rayalaseema region of Andhra Pradesh, information regarding the optimum dose of