

GOBIERNO DE CHILE MINISTERIO DE OBRAS DIRECCION GENERAL DE AGUAS

Modelo Digital de Elevación de Centro Montañosos y Glaciares de las zonas Glaciológicas Norte y Centro, Mediante Lidar Aerotransportado

REALIZADO POR:

DIGIMAPAS CHILE AEROFOTOGRAMETRÍA LTDA

S.I.T. N°366

Santiago, 05 de agosto 2015

MINISTERIO DE OBRAS PÚBLICAS

Ministro de Obras Públicas Ingeniero Comercial Alberto Undurraga Vicuña

> Director General de Aguas Abogado Sr. Carlos Estévez Valencia

Jefe Unidad Glaciología y Nieves Dr. Gonzalo Barcaza S.

Inspector Fiscal Geógrafo Sr. Alexis Segovia Rocha.

DIGIMAPAS CHILE AEROFOTOGRAMETRIA LTDA.

Jefe de Proyecto Técnico Superior en Aerofotogrametría Sr. Fulvio Cortes O.

Profesionales

Ingeniero de Ejecución en Geomensura Sr. Aníbal Stormezan S. Ingeniero de Ejecución en Geomensura Sr. Adam Toro M. Ingeniero de Ejecución en Geomensura Srta. Daniela Norambuena G. Técnico de Nivel Superior en Aerofotogrametría – Samuel León C. Ingeniero de Ejecución en Geomensura Sr. Gabriel Meza B. Geógrafo Srta. Greyenri Subero Ingeniero Técnico de Obras Públicas Sr. Pedro Yanes D. Geógrafa Srta. Paula González C. Cartógrafo Sra. Carolina Monsalves O. Cartografo Sra. Gabriela Hermosilla R. Geógrafo Sra. Verena Zulch J. Arquitecto Sra. Giovanna Giannone Ingeniero en Aviación Comercial – Srta. Paula Ballesteros C.

INDICE

1. GENERAL	6
1.1. INTRODUCCIÓN	6
1.2. ALCANCE	
1.3. Objetivo General	8
1.4. OBJETIVO ESPECÍFICOS	9
2. METODOLOGIA	9
3. DESARROLLO	10
3.1. Captura de Datos	10
3.1.1. Metodología de vuelo Sistema Harrier 68i	10
3.1.2. Operaciones de vuelo	15
3.1.3. Apoyo de Vuelo	15
3.1.4. Actividades de Control	16
3.1.5. Captura Imágenes Satelitales	31
3.2. PROCESAMIENTO DE DATOS	32
3.2.1. Georreferenciación y Red de Apoyo Geodésica	32
3.2.1.1. Validación de la Red Geodésica	33
3.2.1.2. Control de Cierre de Figuras y Repetitividad de Vectores	34
3.2.1.3. Coordenada de Referencia Horizontal	34
3.2.1.4. Coordenadas Ajustadas SIRGAS 2000 (WGS84)	35
3.2.1.5. El Geoide	35
3.2.1.6. Referencia Altimétrica, Modelo Geoidal EGM96	37
3.2.2. Procesamiento LIDAR	38
3.2.2.1. Generación Modelo Digital de Superficie - DSM	38
3.2.2.2. Generación Modelo Digital de Terreno - DTM	38
3.2.2.3. Imagen de Intensidad	39
3.2.3. Procesamiento Imágenes Digitales Aéreas	40
3.2.4. Procesamiento Imágenes Satelitales	42
3.2.4.1. Ajuste Geométrico	43
3.2.4.2. Modelo Digital de Elevación- DEM, Ortométrico	46
3.2.4.3. Ortorrectificación Imágenes Pancromáticas	48
3.2.4.4. Pansharpened	49
3.2.4.5. Modelo Digital de Elevación - DEM, Elipsoidal	50
3.2.4.6. Estadística de precisión de imágenes satelitales y DEM	50
3.2.4.6.1. Conjunto Glaciar Potro	50
3.2.4.6.2. Conjunto Glaciar Tapado	52
3.2.4.6.3. Conjunto Glaciar Olivares	54

3.2.4.7. Combinación de Bandas	56
3.2.5. Construcción de Curvas de Nivel	57
3.2.6. Control de Calidad	58
4. CONCLUSIÓN	63
5. PRODUCTOS ENTREGADOS	64
APENDICE I: REPORTE METEOROLÓGICO	65
ANEXO I: REGISTROS DE CALIBRACIÓN SENSOR HARRIER 681	_ 101
ANEXO II: MEMORANDUM MODIFICACIÓN CARTA GANTT	_ 101
ANEXO III: CERTIFICADOS VÉRTICES DE APOYO DE VUELO	_ 101
ANEXO IV: DISTRIBUCIÓN VÉRTICES DE APOYO DE VUELO, GLACIARES	
CENTRO SUR	_ 101
ANEXO V: TABLA DE CONTROL DE REPETITIVIDAD Y VECTORES	_ 101
ANEXO VI: MONOGRAFÍA DEL STC	_ 101
ANEXO VII: MONOGRAFÍA GCPS GLACIAR DEL RINCÓN	_ 101
ANEXO VIII: DIAGRAMA DE TILES	_ 101

INDICE DE FIGURAS

Figura 3	. 1: L	íneas de vuelo LIDAR - cámara / Conjunto Glaciar Del Potro_	_ 11
Figura 3	. 2: l	líneas de vuelo LIDAR - cámara / Conjunto Glaciar Tapado	_ 12
Figura 3	. 3: l	íneas de vuelo LIDAR - cámara / Conjunto Glaciar Olivares	_ 13
Figura 3	. 4: l	íneas de vuelo LIDAR - cámara / Conjunto Glaciar Yeso	_ 14
Figura 3	. 5: (Cobertura LIDAR – Conjunto Del Potro	_ 17
Figura 3	. 6: (Cobertura Cámara – Conjunto Del Potro	_ 18
Figura 3	. 7: (Cobertura LIDAR - Tapado	_ 19
Figura 3	. 8: (Cobertura Cámara – Tapado	_ 20
Figura 3	. 9: (Cobertura LIDAR – Conjunto Olivares	_ 21
Figura 3	. 10:	Cobertura Cámara – Conjunto Olivares	_ 22
Figura 3	. 11:	Cobertura LIDAR - Conjunto Yeso	_ 23
Figura 3	. 12:	Cobertura Cámara – Conjunto Yeso	_ 24
Figura 3	. 13:	Distribución polígonos 1ha ² – Conjunto Del Potro	_ 25
Figura 3	. 14:	Distribución polígonos 1ha ² - Tapado	_ 26
Figura 3	. 15:	Distribución polígonos 1ha ² – Conjunto Olivares	_ 26
Figura 3	. 16:	Distribución polígonos 1ha ² – Conjunto Yeso	_ 27
Figura 3	. 17:	Diagrama Red Geodésica del Proyecto	_ 32
Figura 3	. 18:	Observación GNSS CIP1 y punto de control en Glaciar Del Rine	cón
			_ 34
Figura 3	. 19:	Relación de Superficie Terrestre - Geoide - Elipsoide	_ 36
Figura 3	. 20:	Tendencia del modelo Geoidal EGM96 en las zonas del proyec	to
O	01		_ 37
Figura 3	. 21:	NDP - Glaciar Bello, tile 413_6288	_ 38
Figura 3	. 22:	DIM – Glaciar El Potro, Vista 3D	_ 39
Figura 3	. 23:	Imagen revelada - boot 1.858	_ 40
Figura 3	. 24:	Principios de la ortorrectificación	_ 41
Figura 3	. 25:	Untoimagen Glaciar Tapado – Distribución de laminas	_ 42
Figura 3	. 20:	Ingreso RPC	_ 43
Figura 3	~ 27	Coordenada X, Y; GCPTT - Ortoimagen	_ 44
Figura 3	~ 20	CODIDENIAUA Z; GCPTT - DSIVI	_ 44 4E
Figura 3	29:	Distribución do puntos — Conjunto Clasiar Olivaros	_ 45 _ 46
Figura 3	20.	Aiuste geometrice DMS	_ 40
Figura 2	. ວາ. ວາ.	Ajuste geometrico RMS	40
Figure 2	. J∠. 20.	Motadato DEM - Conjunto Glaciar Olivares	- + / / 7
Figura 2	21.	Imagen Pancromatica - Conjunto Glaciar Olivares	_ 47 / Q
Figura 2	25.	Metadato Imagen Pancromatica - Conjunto Glaciar Olivaros	0+ _ 10
Figura 2	26.	Imagen Pansharnened – Conjunto Glaciar Olivares	0+ _ 10
Figura 2	27.	Matadato Imagen Pansharpened - Conjunto Claciar Olivaros	_ 49 _/0
i iyula 3	. 37.	ivietadato innagen ransnarpened – conjunto Giaciar Olivares _	_ 49

Figura 3. 38: Curvas de Nivel – Esmeralda Cerro El Plomo,	
Coord. Este: 386.630,826, Norte: 6.321.333,662	_ 57
Figura 3. 39: Curvas de Nivel – Rio Blanco,	
Coord. Este: 392.258.611, Norte: 6.340.468.919	_ 58
Figura 3. 40: Completitud del producto – Ortoimagen aérea Tronquitos	_ 59
Figura 3. 41: Completitud del producto – DTM Tupungatito	_ 59
Figura 3. 42: Completitud del producto - Curvas de Nivel Olivares Alfa	_ 60

INDICE DE TABLAS

Tabla 3. 1: Coordenadas vértices de apoyo de vuelo	16
Tabla 3. 2: Cantidad de puntos por ha y densidad de puntos por m ²	30
Tabla 3. 3: Fecha captura imágenes satelitales	31
Tabla 3. 4: Relación de parámetros para la planificación de las obser	rvaciones
	33
Tabla 3. 5: Coordenadas geodésicas de referencia, SIRGAS 2000	34
Tabla 3. 6: Coordenadas Geodésicas Ajustadas, UTM SIRGAS 2000 v	vértices del
STC	35
Tabla 3. 7: Verificación de formatos de entrega	61
Tabla 3. 8: Comparación Altimétrica	62
Tabla 3. 9: Resultado comparación altimétrica	62

1. GENERAL

1.1. Introducción

El Ministerio de Obras Públicas de Chile (MOP), a través de la Dirección General de Aguas (DGA), solicitó a Digimapas Chile Ltda. **(DMCL) el estudio denominado** "Modelo Digital de Elevación de Centros Montañosos y Glaciares de las zonas Glaciológicas Norte y Centro, Mediante Lidar Aerotransportado", un levantamiento altimétrico aéreo láser (LIDAR) de 24 glaciares distribuidos desde La Región de Atacama (zona glaciológica norte) hasta La Región Metropolitana (zona glaciológica Sur).

La DGA, mediante su Unidad de Glaciología y Nieves (UGN), ha desarrollado una Estrategia Nacional de Glaciares, la cual entrega las directrices a seguir para un monitoreo a nivel nacional. Esta estrategia contempla un modelo escalonado o de observación jerarquizada basado en el World Glacier Monitoring Service (WGMS), el cual consiste en niveles de estudio que varían en complejidad y extensión espacial, pasando de estudios locales de gran detalle, hasta investigaciones generales que abarcan la totalidad de glaciares del país.

En la zona norte y centro del país, los glaciares constituyen reservas de agua en estado sólido, donde el recurso hídrico es liberado gradualmente en el período estival y/o durante épocas de sequia. Sin embargo producto de los aumentos de temperatura a nivel global se ha evidenciado un aumento del agua liberada por los glaciares en el corto plazo, derivando en el largo plazo a una disminución permanente del recurso hídrico. Frente a esta situación resulta imprescindible la generación de información sobre el estado actual de los glaciares, para así definir estrategias a seguir de adaptación y/o mitigación al cambio climático.

El objetivo principal de este estudio es la obtención de Modelos Digitales de Elevación de 24 glaciares a partir de imágenes satelitales, las que contarán con correcciones de topografía superficial de detalle obtenida con tecnología LIDAR. Mediante esta información se contará con una línea base precisa del estado actual de los glaciares en estudio, permitiendo establecer cambios de elevación en un período de 40 años al comparar la topografía actual con la primera cartografía regular de la zona (IGM 1974) La ejecución de este servicio se ha realizado en base a las áreas de interés establecidas en los requisitos técnicos del estudio más área adicional ofertada, donde la extensión de las transectas, correspondiente a datos LIDAR e imágenes aéreas se ha incrementado en 28,75% sobre la superficie requerida. Mientras que la superficie del DEM satelital se incrementó en un 5,57% respecto de lo solicitado.

En la siguiente tabla se presentan las áreas de interés, las cuales han sido agrupadas por conjunto de glaciares debido a su cercanía geográfica, permitiendo optimizar la planificación de la captura de datos y procesamiento:

Conjunto Glaciar	Nombre Glaciar	Imágenes Satelitales Superficie Ofertada (Km ²)	Transectas Superficie Ofertada (Km²)
Detre	Del Potro	F 20	8,68
POLIO	Tronquitos	529	4,55
Tapado	Tapado	190	3,83
	Juncal Norte		7,28
	Río Blanco		6,63
	Juncal Sur		9,77
	Monos de Agua		1,3
	Olivares Alfa		4,17
Olivares	Olivares Beta	1.280	5,53
	Olivares Gamma		7,03
	La Paloma		2,63
	Esmeralda		2,19
	Cerro El Plomo		1,73
	Del Rincón		2,35
	Yeso		3,81
	Bello		7,83
	Yeso 1		1,76
	Yeso 2		1,22
Voso	Pirámide	1 400	7,34
reso	Echaurren	1.400	1,96
	Tupungatito		2,91
	San Francisco		8,62
	Marmolejo		4,82
	Meson Alto		1,26
ТО	TAL	3.399	109,20

Para la realización de este proyecto DMCL utilizó el sistema "Trimble 68i" que incorpora un sensor con cámara digital modelo Trimble, TAC AICpro P65+. El sistema LIDAR, acrónimo de Light Detection And Ranging, es un sistema de teledetección activa que emite pulsos de luz láser en la banda del espectro electromagnético, para posteriormente capturar la señal reflejada (eco) por la superficie topográfica barrida obteniendo, de esta forma, las elevaciones del terreno lo más fiel a la realidad mediante el sistema Airborne Láser Scanning (en adelante ALS). En anexo I se encuentran los registros de calibración del sensor Harrier 68i y cámara Trimble, TAC AICpro P65+.

Las imágenes satelitales han sido capturadas por sensor óptico SPOT-6, formato de captura triéstereo de 1,5m de resolución espacial, con fecha de captura no inferior a 31 de diciembre de 2014 y no superior a 30 de marzo de 2015.

La ejecución del proyecto incluyó metodologías de trabajo por área productiva, las cuales se detallan en el desarrollo de este informe. Además involucró los respectivos procesos de control de calidad, los cuales se realizaron en base a los lineamientos de calidad referidos a la norma "NCH ISO 19113:2002 Información Geográfica - Principios de Calidad".

1.2. Alcance

El alcance del presente informe corresponde en primer lugar a documentar la captura de datos LIDAR, imágenes digitales y satelitales. Posteriormente, se desarrolla ítem de post-proceso de navegación y mediciones geodésicas, procesamiento de información con su consecuente resultado de productos cartográficos.

1.3. Objetivo General

 Exponer metodología de obtención y procesamiento de datos requeridos para la generación de productos que permitirán al cliente gestionar la información territorial levantada.

1.4. Objetivo Específicos

- Describir las etapas presentes en la captura de los datos, tanto en la etapa de vuelos como de terreno e imágenes satelitales, para la obtención de la cobertura del área de estudio.
- Describir el proceso tanto de la georreferenciación del sistema de transporte de coordenadas como referencia altimétrica utilizadas para el presente proyecto.
- Especificar los pasos metodológicos para el procesamiento de datos LIDAR y ortoimágenes digitales.
- Describir metodología de procesamiento de imágenes satelitales y generación del Modelo Digital de Elevación.
- Describir proceso de generación de curvas de nivel, junto con el respectivo control de calidad.

2. METODOLOGIA

La metodología de trabajo definida por DMCL, para mayor compresión, puede ser dividida en dos etapas correspondientes a captura de datos y procesamiento de los mismos. Ambas etapas son controladas forma transversal asegurando de esta forma tanto la calidad de los datos capturados como de los productos cartográficos generados.

De esta forma se establece que el desarrollo de este informe se dividirá de acuerdo a las etapas previamente establecidas, donde:

- Etapa I: Captura de Datos

En este ítem se expondrá la metodología aplicada para la obtención de los datos, detallando vuelos realizados, fecha y tiempos de captura para cada glaciar, líneas de vuelo, densidad de puntos y registro de condiciones adversas observadas durante sobrevuelo. Además se incorporará fechas y cobertura de captura de imágenes satelitales. Finalmente se presentará las características técnicas del equipamiento utilizado para esta primera etapa del estudio.

– Etapa II: Procesamiento de Datos

En este ítem se expondrá la metodología aplicada para el procesamiento de los datos, comenzando por proceso de georreferenciación de datos LIDAR e imágenes. Posteriormente se presenta proceso de generación de los productos cartográficos requeridos y su correspondiente control de calidad.

3. DESARROLLO

3.1. Captura de Datos

3.1.1. Metodología de vuelo Sistema Harrier 68i

Para la planificación de vuelos se utilizó el Sistema de Referencia WGS84, Proyección Cartográfica UTM Huso19 sur. Tomando como base el área delimitada por las transectas de cada glaciar se procedió a planificar el vuelo, de manera de asegurar:

- a. Cobertura del área total.
- b. Recubrimiento, para evitar que zonas del proyecto queden sin puntos o imagen.
- c. Densidad de puntos LIDAR: 4pto/m².
- d. Tamaño de píxel correspondiente a 15cm.
- e. Precisión para cumplir con estándar de ± 25 cm (1:1.000).

A continuación se presentan las líneas de vuelo y altura AGL planificadas para la obtención de datos LIDAR e imágenes aéreas:

Conjunto Glaciar: DEL POTRO Glaciares: Del Potro, Tapado	Altura de vuelo: 640m
0.0 km 2.5 km 5.0 km 7.5 km 10.0	km
Figura 3, 1: Líneas de vuelo LIDAP -	- cámara / Conjunto Glaciar Del Potro

Fuente: DMCL

Figura 3. 2: Líneas de vuelo LIDAR – cámara / Conjunto Glaciar Tapado Fuente: DMCL

Figura 3. 3: Líneas de vuelo LIDAR – cámara / Conjunto Glaciar Olivares Fuente: DMCL

Figura 3. 4: Líneas de vuelo LIDAR – cámara / Conjunto Glaciar Yeso Fuente: DMCL

3.1.2. Operaciones de vuelo

Desde los días previos a la ejecución del vuelo, se monitoreó la posibilidad de una ventana de buen tiempo, logrando determinar que la mejor opción de vuelo correspondió entre los días 17 de febrero y 23 de marzo de 2015; y entre 01 y 18 de abril de 2015. Cabe mencionar que durante los días 24 de marzo y 30 de marzo de 2015, los vuelos fueron detenidos debido a los eventos meteorológicos en la zona norte y centro del país, modificándose por consiguiente la carta Gantt propuesta para el desarrollo de la actividad. Esta modificación de plazo fue informado mediante Memorandum N°31, con fecha 25 de marzo de 2015 adjunto en Anexo II.

En apéndice I se presentan reporte meteorológico donde se han registrado las condiciones meteorológicas del periodo correspondiente a la ejecución de los sobrevuelos de los 24 glaciares de la zona centro y norte del territorio nacional.

3.1.3. Apoyo de Vuelo

Para apoyar los vuelos, se utilizaron los vértices indicados en la siguiente tabla. Sus ubicaciones cumplen con el radio de alcance recomendado por el fabricante de 60km al receptor remoto del sensor (vector receptor GNSS base - avión), procurando DMCL que todos los vértices de apoyos se encuentren dentro de los 30km en lo posible, de esta forme los producto que se obtuvieron resultan íntegros en el pos procesamiento de la navegación.

Conjunto Glaciar	Nombre	Vértice	Coordenada SIRGAS20	las Geodésicas 2000, aprox.	
	Giaciar		Latitud	Longitud	
Detre	Del Potro		00014		
Potro	Tronquitos	CONA	28 58 31.01 5	70° 9 1.01 0	
Tapado	Tapado	JUNT	29°59'2.01"S	70° 5'42.02"O	
	Juncal Norte	PNQE			
	Río Blanco				
	Juncal Sur				
	Monos de Aqua			70° 7'34.75"O	
Olivares	Olivares Alfa		32°53'37.46"S		
	Olivares Beta				
	Olivares Gamma				
	La Paloma				

Conjunto Glaciar	Nombre	Vértice	Coordenada: SIRGAS20	s Geodésicas 100, aprox.
	Glaciar		Latitud	Longitud
	Esmeralda			
	Cerro El Plomo			
	Del Rincón			
	Yeso			
	Bello			
	Yeso 1			
	Yeso 2			
Voco	Pirámide		22010157 01"5	70005140 70"0
1620	Echaurren	DIVIOR	33 49 57.01 3	70 05 42.79 0
	Tupungatito			
	Marmolejo			
	Mesón Alto			
	San Francisco			

Tabla 3. 1: Coordenadas vértices de apoyo de vuelo Fuente: DMCL

En anexo III se encuentra archivo con Certificados IGM correspondiente a "Certificado de Coordenadas Geográficas Planas y Altura" de los vértices de apoyo utilizados, mientras que en anexo IV se dispone un archivo con extensión *.kmz donde se presenta la distribución de vértices.

3.1.4. Actividades de Control

Una vez ejecutadas las líneas de vuelo totales planificadas por cada conjunto glaciar, se generó un archivo de cobertura o coverage. Mediante el cual se verifica el principio de calidad, referido a la norma NCH ISO 19113:2002 Información Geográfica - Principios de Calidad, correspondiente a la completitud de los datos.

En las siguientes figuras se presenta los resultados obtenidos, donde se indica fecha y hora de captura por vuelo y superficie total capturada por conjunto glaciar.

Figura 3. 5: Cobertura LIDAR – Conjunto Del Potro Fuente: DMCL

Conjunto Glaciar:	Código de vuelo: Boot 1.862	Fecha: 15/04/2015 Horas de vuelo: 0:38
Del Potro	Boot 1.863	Fecha: 17/04/2015 Horas de vuelo: 2:20
	2	
00 km 25 km 50 km	7.5 km 10.0 km 12.5 km	
0.0 km 2.3 km 5.0 km	7.5 km 10.0 km 12.5 km	
Figura 3. 6:	Cobertura Cámara – C	Conjunto Del Potro

Figura 3. 7: Cobertura LIDAR – Tapado Fuente: DMCL

Figura 3. 8: Cobertura Cámara – Tapado Fuente: DMCL

Figura 3. 9: Cobertura LIDAR – Conjunto Olivares Fuente: DMCL

	Código de vuelo:	Fecha: 02/04/2015
	Boot 1.853	Horas de vuelo: 2:12
	Boot 1.856	Fecha: 05/04/2015 Horas de vuelo: 1:21
	Deet 1 957	Fecha: 06/04/2015
	BOOT 1.857	Horas de vuelo: 2:23
Conjunto Glaciar:	Boot 1.858	Fecha: 08/04/2015
Olivares		Horas de vuelo: 1:19
	Boot 1.859	Fecha: 09/04/2015
		Horas de vuelo: 2:15
	Boot 1.860	Fecha: 10/04/2015
		Horas de vuelo: 2:02
	Boot 1.861	Fecha: 11/04/2015
		Horas de vuelo: 0:14

Figura 3. 10: Cobertura Cámara – Conjunto Olivares Fuente: DMCL

Figura 3. 11: Cobertura LIDAR – Conjunto Yeso Fuente: DMCL

Conjunto Glaciar: Yeso	Código de vuelo: Boot 1.821	Fecha: 17/02/2015 Horas de vuelo: 2:37
	Boot 1.825	Fecha: 23/02/2015 Horas de vuelo: 2:34
	Boot 1.826	Fecha: 25/02/2015 Horas de vuelo: 2:39
	Boot 1.827	Fecha: 26/02/2015 Horas de vuelo: 2:38
	Boot 1.828	Fecha: 27/02/2015 Horas de vuelo: 1:02
	Boot 1.845	Fecha: 23/03/2015 Horas de vuelo: 1:20

Figura 3. 12: Cobertura Cámara – Conjunto Yeso Fuente: DMCL

Al ser un proceso controlado, se verificó que la densidad de puntos cumpliera con 4 puntos por metro cuadrado. Para esto se realizaron muestreos en la zona del proyecto mediante polígonos de 1ha² y su distribución se presenta en las siguientes figuras:

Figura 3. 13: Distribución polígonos 1ha² – Conjunto Del Potro Fuente: DMCL

Figura 3. 14: Distribución polígonos 1ha² – Tapado Fuente: DMCL

Figura 3. 15: Distribución polígonos 1ha² – Conjunto Olivares Fuente: DMCL

Figura 3. 16: Distribución polígonos 1ha² – Conjunto Yeso Fuente: DMCL

Posteriormente se procedió a calcular la densidad de puntos por m² a partir de la cantidad total de puntos por hectárea. La cantidad de puntos captados por el sensor, en cada glaciar, se muestran en la siguiente tabla. Donde muestra corresponde a la identificación de los polígonos de 1ha², posteriormente se indica la cantidad de puntos registrados en la muestra y su densidad por metro cuadrado [pp/m²].

Finalmente se presenta el promedio de este muestreo por glaciar corroborándose el alcance de la densidad de puntos planificada.

Glaciar Muestr		Cantidad de punto por Ha ²	Densidad por metro cuadrado [pp/m ²]	Promedio [pp/m ²]
	1	318.733	31,87	
	2	219.733	21,97	
Del Potro	3	260.104	26,01	25.09
	4	91.946	9,19	20,07
	5	375.475	37,55	
	6	239.535	23,95	
	1	85.090	8,5	
Tronquitos	2	116.299	11,63	16.04
monquitos	3	330.762	33,08	10,04
	4	109.306	10,93	
	1	279.648	27,96	
	2	60.027	6	
Tapado	3	138.574	13,86	13,67
	4	87.762	8,78	
	5	117.631	11,76	
	1	214.373	21,44	
	2	88.502	8,85	
Juncal Norte	3	65.140	6,51	12,35
	4	55.775	5,58	
	5	193.630	19,36	
	1	143.261	14,33	
Bío Blanco	2	142.174	14,22	1452
	3	233.186	23,32	14,55
	4	62.431	6,24	
	1	72.188	7,22	
	2	13.113	1,31	
Juncol Sur	3	35.778	3,58	0.02
Juncal Sur	4	178.828	17,88	9,03
	5	25.808	2,58	
	6	215.975	21,6	
Monoc de Ague	1	103.050	10,31	5 04
	2	14.229	1,42	0,80
	1	59.255	5,93	
Olivares Alpha	2	150.867	15,09	8,65
	3	720.94	7,21	

Glaciar	Muestra	Cantidad de punto por Ha ²	Densidad por metro cuadrado [pp/m²]	Promedio [pp/m ²]
	4	63.843	6,38	
	1	59.728	5,97	
Olivares Beta	2	72.368	7,24	5,75
	3	40.259	4,03	
	1	100.442	10,04	
Olivares	2	76.450	7,65	7.04
Gamma	3	64.852	6,49	7,06
	4	40.733	4,07	
	1	308.181	30,82	
La Paloma	2	59.264	5,93	15,67
	3	102.760	10,28	
-	1	80.064	8,01	
Esmeralda Cerro El Plomo	2	109.289	10,93	9,23
	3	87.685	8,77	
	1	152.880	15,29	
Del Rincón	2	45.068	4,51	9,72
	3	93.766	9,38	
	1	54.377	5,44	
Yeso	2	51.735	5,17	6,79
	3	97.493	9,75	
	1	161.649	16,16	
	2	183.628	18,36	
Pollo	3	77.809	7,78	10.02
Bello	4	79.779	7,98	10,93
	5	84.620	8,46	
	6	68.458	6,85	
	1	109.066	10,91	
Yeso1	2	142.139	14,21	12 15
Yeso2	3	72.658	7,27	15,15
	4	201.949	20,19	
	1	95.327	9,53	
Echauren	2	88.100	8,81	8,95
	3	85.087	8,51	
	1	139.825	13,98	
San Francisco	2	80.221	8,02	0.75
	3	115.800	11,58	7,75
	4	135.848	13,58	

Glaciar	Muestra	Cantidad de punto por Ha ²	Densidad por metro cuadrado [pp/m²]	Promedio [pp/m²]
	5	28.323	2,83	
	6	82.073	8,21	
	7	100.576	10,06	
	1	103.050	10,31	
	2	14.229	1,42	
Tupungatito	3	214.373	21,44	9,71
	4	88.502	8,85	
	5	65.140	6,51	
	1	76.031	7,6	
	2	83.008	8,3	
Dirámida	3	66.424	6,64	0 17
Filannue	4	130.070	13,01	9,17
	5	100.021	10	
	6	94.429	9,44	
	1	116.106	11,61	
	2	104.484	10,45	
	3	65.572	6,56	
Marmolejo	4	106.161	10,62	8,64
	5	63.029	6,3	
	6	81.343	8,13	
	7	68.206	6,82	
	1	141.166	14,12	
Mesón Alto	2	97.398	9,74	10,09
	3	64.037	6,4	

Tabla 3. 2: Cantidad de puntos por ha y densidad de puntos por m²Fuente: DMCL

La densidad de puntos obtenida, la cual es mayor a lo requerido en todos los casos, asegura la generación de productos con mayor precisión y calidad.

3.1.5. Captura Imágenes Satelitales

Las imágenes satelitales pertenecen al sensor óptico Spot-6 en su formato de captura Triestéreo su fecha de captura se indica por conjunto glaciar en siguiente tabla:

Conjunto Glaciar	Nombre Glaciar	Fecha de Captura	
Potro	Del Potro	16-01-2015	
	Tronquitos	10 01 2010	
Tapado	Tapado	22-01-2015	
	Juncal Norte Río Blanco Juncal Sur Monos de Agua		
Olivares	Olivares Alfa Olivares Beta Olivares Gamma La Paloma Esmeralda Cerro El Plomo Del Rincón	16-01-2015	
Yeso	Yeso Bello Yeso 1 Yeso 2 Pirámide Echaurren San Francisco Tupungatito Marmolejo Mesón Alto	30-01-2015	

Tabla 3. 3: Fecha captura imágenes satelitales Fuente: DMCL

3.2. Procesamiento de Datos

3.2.1. Georreferenciación y Red de Apoyo Geodésica

De acuerdo a las metodologías de trabajo de DMCL, junto con lo estipulado en el Manual de Carreteras (Volumen 2, en su capítulo 2.300), se materializó una red geodésica de apoyo de vuelo vinculada a la Red Geodésica Nacional (RGN) y SIRGAS 2000.

A partir de los vértices de la RGN, más cercanos a cada área de interés del proyecto, se asignaron coordenadas geográficas WGS84, UTM huso 19 Sur, a cada uno de los vértices que componen la Red geodésica de apoyo, materializada en el Sistema de Transporte de Coordenadas (STC) del proyecto y se georreferenciaron los LIDAR e imágenes a partir de los cuales se obtuvieron los productos cartográficos requeridos.

Se establece que la referencia altimétrica para reducir las alturas elipsoidales a alturas ortométricas, corresponde a la superficie del modelo de ondulaciones geoidales mundial EGM96, de manera absoluta. Con la materialización de la red geodésica de Apoyo de Vuelo, mediante el STC se obtuvieron las coordenadas finales para 7 vértices nuevos.

Figura 3. 17: Diagrama Red Geodésica del Proyecto Fuente: DMCL & Topcon Tools

Las observaciones GNSS empleadas en el STC y observaciones de control (GCPs) tuvieron tiempos de medición en sus sesiones conforme a las distancias de los vectores que se realizaron, donde, se consideró el número de satélites por sobre el horizonte y la geometría (PDOP) que se presentó en la zona de trabajo en dicho momento.

Distancia del Vector (Km)	Tiempo Observación	Redundancia de Observación	Nº Satélites de la Observación	PDOP
0 - 10	20min	3	Mín. 5	Máx. 2
10 - 30	40min	3	Mín. 5	Máx. 2
30 - 60	1hr	3	Mín. 5	Máx. 2

Tabla 3. 4: Relación de parámetros para la planificación de las observacionesFuente: DMCL & Manual de Carreteras, Volumen 2. Capítulo 2.300

Las observaciones GNSS, realizadas con los georreceptores satelitales geodésicos, obtuvieron vectores independientes y redundantes. La frecuencia de grabación de todos los datos GNSS fue de 1 segundo.

3.2.1.1. Validación de la Red Geodésica

Las mediciones GNSS se realizaron mediante georreceptores satelitales geodésicos o doble frecuencia (L1/L2), con precisión nominal 5mm + 1 PPM. El procesamiento de las mediciones GNSS se realizó mediante el software Topcon Tools y corroborado con el software TBC (Trimble Business Center).

Una vez procesada la información se verificó la calidad de las soluciones, las cuales en su mayoría presentaron resultados satisfactorios conforme a los estadígrafos que cada programa de post proceso maneja para fijar los vectores y posteriormente para ajustarlos.

En la siguiente figura se presentan fotografías del momento de la observación GNSS CIP1 y punto de control en Glaciar Del Rincón.

Figura 3. 18: Observación GNSS CIP1 y punto de control en Glaciar Del Rincón Fuente: DMCL

3.2.1.2. Control de Cierre de Figuras y Repetitividad de Vectores

Respecto a la calidad de las observaciones en el Anexo V, se informan las soluciones para cada vector observado, siendo eliminados para el ajuste aquellos vectores que presentan una mayor variación en sus componentes vectoriales.

3.2.1.3. Coordenada de Referencia Horizontal

Las coordenadas definidas como amarre horizontal, en cada área de proyecto, se presentan en la siguiente tabla.

Área del Proyecto y Huso	Vártica	Coordenadas Geo	Altura Elipsoidal	Coorden SIRGA	adas UTM \S 2000	
	Vertice	Latitud (GMS)	Longitud (GMS)	SIRGAS 2000 (m)	Este (m)	Norte (m)
Yeso / H19S	BMOR	33°49'47.57011"S	70°05'42.79471"W	1752.115	398655.196	6256166.970
Olivares / H19S	PNQE	32°53'37.46114"S	70°07'34.75165"W	2357.141	394655.140	6359930.667
Tapado / H19S	JUNT	29°58'44.89016"S	70°05'38.03964"W	2164.216	394470.590	6683023.110
Potro / H19S	CONA	28°58'31.32672"S	70°09'00.74867"W	1639.878	387939.249	6794198.394

Tabla 3. 5: Coordenadas geodésicas de referencia, SIRGAS 2000 Fuente: DMCL

3.2.1.4. Coordenadas Ajustadas SIRGAS 2000 (WGS84)

A continuación se presentan las coordenadas geodésicas ajustadas SIRGAS 2000, de los vértices de los STC en cada área de proyecto. En Anexo VI se presente monografía de los vértices de la red geodésica.

Glaciar y Huso	Vértice	Latitud (GMS) SIRGAS 2000	Longitud (GMS) SIRGAS 2000	Altura Elipsoidal SIRGAS 2000 (m)	Este UTM SIRGAS 2000 (m)	Norte UTM SIRGAS 2000 (m)	Ondulación Geoidal EGM96 (m)	Cota Ortométric a EGM96 (m)
Yeso H19S	DGA	33°39'50.57861"S	70°04'55.80747"W	2617,005	399670,049	6274567,267	30,531	2586,474
	PR09	33°39'49.71875"S	70°04'56.24937"W	2613,854	399658,390	6274593,632	30,531	2583,323
	YES1	33°37'57.06259"S	69°55'37.98217"W	2949,920	414005,074	6278203,135	30,333	2919,587
Olivares H19S	BN13	33°26'35.74910"S	70°38'47.19269"W	616,814	346961,553	6298359,047	26,857	589,957
	LB01	33°17'09.85018"S	70°21'13.55945"W	1765,650	373941,758	6316181,224	29,348	1736,302
Tapado H19S	GPS1	29°58'43.80768"S	70°05'39.20960"W	2143,546	394438,918	6683056,132	37,058	2106,488
Potro H19S	PP1A	28°53'11.19307"S	70°02'30.60477"W	1908,411	398411,657	6804149,267	37,056	1871,355

Tabla 3. 6: Coordenadas Geodésicas Ajustadas, UTM SIRGAS 2000 vértices del STCFuente: DMCL

3.2.1.5. El Geoide

El geoide es la superficie equipotencial de gravedad que pasa por el NMM, de ese modo el geoide es basado en el principio físico de la vertical, a diferencia del posicionamiento GPS, en que la altura es un concepto estrictamente analítico (elipsoidal), de allí que ambos tipos de **alturas se relacionan por la "ondulación geoidal" (N), que representa la** altura del geoide respecto al elipsoide.

Figura 3. 19: Relación de Superficie Terrestre – Geoide – Elipsoide Fuente: Manual de Carreteras, Volumen 2. Capítulo 2.300

$$h_A = H_A + N_A$$
 \rightarrow $H_A = h_A - N_A$

Donde:

h_A: altura elipsoidal en A H_A: altura ortométrica en A N_A: ondulación geoidal en A

Lo anterior aplicado en forma relativa toma la forma de:

$$\Delta H_{AB} = \Delta h_{AB} - \Delta N_{AB}$$

Donde:

- h_{AB}: desnivel elipsoidal AB
- H_{AB}: desnivel ortométrico AB
- N_{AB}: diferencia de ondulación geoidal entre A y B (NB NA)

En Chile por norma del Ministerio de Obras Publicas (MOP), los levantamientos Topográficos deben ser referidos altimétricamente al NMM que es representado por la Red Altimétrica materializada por el IGM mediante las líneas de nivelación. Al no contar con dicha Red en todo el territorio nacional, el MOP autoriza en el numeral 2.312.7 del Manual de Carreteras, Volumen 2, la determinación de Cotas mediante la corrección de un modelo Geoidal a las alturas elipsoidales obtenidas de observaciones GNSS.

3.2.1.6. Referencia Altimétrica, Modelo Geoidal EGM96

Para referenciar altimétricamente el STC, se utilizó el modelo Geoidal EGM96 en términos absolutos para todos los productos.

Figura 3. 20: Tendencia del modelo Geoidal EGM96 en las zonas del proyecto Fuente: DMCL

3.2.2. Procesamiento LIDAR

Posteriormente, a la revisión de la calidad de la información proveniente de la captura de datos en campo se procedió al procesamiento de los datos LIDAR referenciado WGS84 UTM 19S, para lo cual se requirió integrar la solución de navegación de los vuelos y los datos capturados por el sensor, esto entregó como resultado la Nube de Puntos (NDP) con información x, y, z, de todos los retornos registrados y georeferenciados al sistema de referencia del proyecto.

Figura 3. 21: NDP – Glaciar Bello, tile 413_6288 Fuente: DMCL

3.2.2.1. Generación Modelo Digital de Superficie - DSM

A partir de la NDP se seleccionaron los primeros retornos o ecos emitidos por el sensor LIDAR obteniéndose el Modelo Digital de Superficie – DSM (del inglés Digital Surface Model), el cual corresponde a una estructura numérica de datos que representa la distribución espacial de las alturas de la superficie.

3.2.2.2. Generación Modelo Digital de Terreno - DTM

El Modelo Digital de Terreno – DTM (del inglés Digital Terrain Model), corresponde a la estructura numérica de datos generada a partir del último eco o retorno de cada pulso emitido por el láser que representa de la distribución espacial de las alturas del terreno.

Figura 3. 22: DTM - Glaciar El Potro, vista 3D Fuente: DMCL

3.2.2.3. Imagen de Intensidad

Corresponden a imágenes captadas por el sensor LiDAR en el espectro infrarrojo cercano entre 1.550 y 1.565 nanómetros a partir de ello se generan los valores de puntos de las intensidades, es decir fuerza de retorno del pulso láser captados por el sensor.

Todos los productos láser (LIDAR), exceptuando la Imagen de Intensidad o Intensity, se han generado con sistema de referencia WGS84, proyección cartográfica UTM Huso 19S con cota elipsoidal y ortométrica EGM96.

3.2.3. Procesamiento Imágenes Digitales Aéreas

Las imágenes capturadas de forma vertical con el sistema Harrier 68i, corresponden a imágenes en color verdadero con bandas en el espectro visible (rojo-verde-azul) entre los 400 y 900nm. Luego de revisar la calidad de la información proveniente de campo, en cuanto a presencia de nubes o sombras, se procedió al revelado de las imágenes, el cual permitió tomar los datos crudos (sin procesar) capturados por el sistema y llevarlos al formato requerido (TIF) para la ortorrectificación.

En paralelo al revelado, se aplican ajustes de tonalidad y luminosidad, principalmente a lo referido al efecto Lens Vignetting. Es importante mencionar que esta corrección no aplica de igual manera en el agua debido a los reflejos de luz, por lo tanto; estas siempre presentaran diferencias de color y tonalidades.

Figura 3. 23: Imagen revelada – boot 1.858 Fuente: DMCL

Luego del revelado se inicia al proceso de ortorrectificación, que consiste en corregir digitalmente un conjunto de imágenes llevándolas desde su proyección cónica a una proyección ortogonal respecto de una superficie de referencia, eliminando el desplazamiento provocado por el relieve del terreno. Este proceso se realizó mediante la incorporación de tres componentes: Modelo Digital de Superficie (DSM), datos de navegación e imágenes reveladas de acuerdo a los parámetros definidos por el proveedor (Trimble Aplanix) en las especificaciones técnicas de la cámara utilizada. Posteriormente se procedió a la generación de los mosaicos de cada uno de los polígonos solicitados por el cliente, con el propósito de estandarizar los colores entre cada uno de ellos, se utilizaron las mismas propiedades de color.

Fuente: Manual Inpho

Una vez generado el mosaico, se corrobora nuevamente colores, contrastes, cobertura y tamaño del píxel de 15cm, formato Geotiff. Posteriormente se realiza el corte de acuerdo al polígono de cada glaciar, así como también de las láminas con dimensiones de 1.000x1.000m.

Figura 3. 25: Ortoimagen Glaciar Tapado – Distribución de láminas Fuente: DMCL

Una vez finalizado el proceso de las ortoimágenes con sistema de referencia WGS84, proyección cartográfica UTM Huso19S, se procedió a la transformación de todas las imágenes a formato ECW.

3.2.4. Procesamiento Imágenes Satelitales

Se han adquirido 4 imágenes satelitales Spot-6, cada una correspondiente a los conjuntos glaciares ya definidos, es decir: Potro, Tapado, Olivares, Yeso.

Para la ortorrectificación de las imágenes satelitales se utilizaron los datos capturados a través del sistema Harrier 68i, tanto los datos láser como los de imágenes aéreas, los cuales sirvieron como puntos de control o GCP para la corrección geométrica de las imágenes satelitales.

3.2.4.1. Ajuste Geométrico

Para el ajuste geométrico se utilizaron las imágenes pancromáticas Spot capturadas en modalidad triestéreo y sus respectivos RPC (datos orbitales que contienen todas las correcciones angulares y una referencia coordenada con precisión inicial de 12m) de cada uno de los glaciares.

En primera instancia se creó un proyecto donde se ingresaron todos los parámetros utilizados, tales como: Sistema de Proyección, Datum, Huso, etc, establecidos para el proyecto Glaciares Norte, para luego ingresar los RPC y así realizar la Corrección Interna de las imágenes.

Sensor Chipping	
Image File Name:	img_spot7_p_201501161424540_ser_1383035101_r1c1.jp2
	Attach View Image
Block Model Type:	PLEIADES RPC
	rpc_spot7_p_201501161424540_sen_1383035101.xml 🗸 👔
RPC Coefficients:	
RPC Coefficients: Elevation (meters):	Min: 0.000 📑 Max. 1000.000

Figura 3. 26: Ingreso RPC Fuente: DMCL

Para la Corrección Externa de las imágenes el procedimiento consistió en la extracción de una serie de GCP desde las transectas, seleccionando puntos que fotoindentificables en ortoimagen (captura aérea) y que además estuviesen presentes en la imagen satelital para las coordenadas x e y, desde ese mismo punto se extrajo la coordenada z desde el Modelo Digital de Superficie – DSM (dato LIDAR), como lo muestra en las siguientes figuras:

Figura 3. 27: Coordenada x,y; GCP11 – Ortoimagen Fuente: DMCL

Figura 3. 28: Coordenada z; GCP11 – DSM Fuente: DMCL

Figura 3. 29: GCP11 en imagen SPOT- Coordenada ingresada Fuente: DMCL

Con todos los GCP identificados y colimados en imagen satelital, el sistema es capaz de generar una gran cantidad de puntos de amarre; que son creados a partir de la triangulación de los GCP y la correlación (búsqueda de puntos homólogos) que se produce entre las imágenes triestéreo y ayudado por los datos del RPC. La cantidad de estos puntos dependerá de cuan efectiva es la correlación permitida entre las imágenes, lo que incidirá directamente en la calidad del ajuste, entre más puntos mejor será el ajuste geométrico. Para estas imágenes Spot, la correlación ha sido alta creando más de 9.000 puntos de amarre.

En la siguiente figura se presenta la distribución de estos puntos en conjunto Glaciar Olivares:

Figura 3. 30: Distribución de puntos – Conjunto Glaciar Olivares Fuente: DMCL

Como resultado de este proceso se ha obtenido un RMS de la triangulación sea siempre inferior a 1.

💋 Refinemer	nt Summary			×
Tota	al Image RMSE:	0.1132636 p	ixels	
Control	Point RMSE:	Check Point RMSE:		Accept
Ground X:	0.0000000 (39)	Ground X:	1.0478839 (3))	Report
Ground Y:	0.0000000 (39)	Ground Y:	1.3855314 (3)	Review
Ground Z:	0.0000000 (39))	Ground Z:	3.0658560 (3)	
Image X:	0.6668299 (78)	Image X:	0.1843231 (6)	Help
Image Y:	0.7822424 (78)	Image Y:	0.0403634 (6)	

Figura 3. 31: Ajuste geometrico RMS Fuente: DMCL

3.2.4.2. Modelo Digital de Elevación- DEM, Ortométrico

Luego del ajuste, se construyó el Modelo Digital de Elevación -DEM de 4x4m de píxel. Donde se utilizaron todas las coordenadas de los puntos de control y los de amarre para su construcción.

La evaluación del modelo se efectuó a través de una tabla estadística, donde se registraron las coordenadas z del DSM y las coordenadas z del modelo satelital del mismo punto x,y, como se presenta en apartado 3.2.4.6.

Figura 3. 32: DEM – Conjunto Glaciar Olivares Fuente: DMCL

Layer Info:	Width: 10699 Block Width: 512 E Compression: Bun Lenath E	Height: 12134 Block Height: 512 neodina	Type: Continuous Data Type: Float Data Order: BIK
	Pyramid Layer Algorithm:	ErdasBino3 (3×3)	
	Min: 83.135	Max: 6073.9	Mean: 3722.622
Statistics Info:	Median: 3733.7	Mode: 3686.9	Std. Dev: 761.747
🔲 (File)	Skip F Last Modified: Tue Aug 04	actor X: 3 10:33:30 2015	Skip Factor Y: 3
Map Info (Pixel Center):	Upper Left X: 368344.4 Lower Right X: 411136.4	05601371720 Up 05601371720 Low	per Left Y: 6363184.09696163420 er Right Y: 6314652.09696163420
	Pixel Size X: 4.0 Unit: meters	Pi	xel Size Y: 4.0 eo. Model: Map Info
	Projection: UTM, Zone 19		
Projection Info:	Spheroid: WGS 84		
i iojection nito.	Datum: WGS 84		
	EPSG Code: 32719		

Figura 3. 33: Metadato DEM – Conjunto Glaciar Olivares Fuente: DMCL

3.2.4.3. Ortorrectificación Imágenes Pancromáticas

Con el modelo realizado se ortorrectificaron las imágenes pancromáticas del triestéreo a una resolución de 1,5m.

Figura 3. 34: Imagen Pancromatica – Conjunto Glaciar Olivares Fuente: DMCL

Figura 3. 35: Metadato Imagen Pancromatica – Conjunto Glaciar Olivares Fuente: DMCL

3.2.4.4. Pansharpened

Para crear el producto final Pansharpened se realizó un algoritmo (merge) donde fue posible unir la imagen pancromática de 1,5m con la imagen multiespectral de 4 bandas, creando una nueva imagen de 1,5m con una resolución espectral de 4 bandas (R, G, B, IR)

Figura 3. 36: Imagen Pansharpened – Conjunto Glaciar Olivares Fuente: DMCL

File Info:	Last Modified: Mon Aug (/3 20:34:59 2015 Numb	er of Layers: 4	
	Image/Auxiliary File(s)	All	File Size: 23	756.02 MB
	Width: 28684	Height 32438	Tupe: Continu	DUS
	Block Width: 512	Block Height: 512	Data Type: Float	ous
Layer Info:	Compression: None		Data Order: BIK	
	Pyramid Layer Algorithm:	ErdasBino3 (3×3)		
	Min: 7.8376e	009 Max: 1092.	5 Mean: 17	1.992
Statistics Info:	Median: 128.03	Mode: 110.9	6 Std. Dev: 15	2.960
Statistics Into.	Sk	ip Factor X: 9	Skip Factor Y: 9	
(File)	Last Modified: Mon Aug) 03 20:39:36 2015		
_ 、 /	Upper Left X: 36822	(4.0 U)	pper Left Y: 6363252.0	
	Lower Right X: 41124	8.50 Lov	ver Right Y: 6314596.5	0
Map Info (Pixel Center):	Pixel Size X: 1.50	Pixel Size Y: 1.50		
	Unit: meter:	: 0	ieo. Model: Map Info	
	Projection: UTM, ∠one	19		
Projection Info:	Spheroid: WGS 84			
r rojection mio.	Datum: WGS 84			
	EPSG Code: 32719			

Figura 3. 37: Metadato Imagen Pansharpened – Conjunto Glaciar Olivares Fuente: DMCL

3.2.4.5. Modelo Digital de Elevación – DEM, Elipsoidal

Para la creación de este modelo, se utilizaron las mismas coordenadas de control obtenidas desde las ortoimagen en (x, y), sólo se reingresó al sistema de procesamiento todas las nuevas coordenadas en z con la referencia altimétrica proveniente del DSM elipsoidal. Posteriormente se generaron los nuevos puntos de amarre con las nuevas coordenadas z del sistema elipsoidal y se siguió el mismo procedimiento antes señalado para su ajuste.

3.2.4.6. Estadística de precisión de imágenes satelitales y DEM

Para evaluar las precisiones de los ajustes realizados, se generó una estadística a partir de los GCP utilizados en cada uno de los Conjuntos Glaciares respecto de sus imágenes satelitales y DEM, tanto para las coordenadas planas x,y como para la altimetría.

3.2.4.6.1. Conjunto Glaciar Potro

(Observación GPS		Observación Imagen		Diferencias (m)		Diferencias ² (m ²)		∑dif ²
GCPs Campo	ESTE	NORTE	ESTE	NORTE	ESTE	NORTE	ESTE	NORTE	(m ²)
coord8	440591.928	6862929.850	440590.874	6862929.157	1.054	0.693	1.111	0.480	1.591
coord11	438636.116	6860809.012	438636.452	6860807.589	-0.336	1.423	0.113	2.025	2.138
coord12	439254.716	6861525.920	439254.998	6861525.344	-0.282	0.576	0.080	0.332	0.411
coord18	427904.262	6844261.513	427904.776	6844259.837	-0.514	1.676	0.264	2.809	3.073
coord19	427131.280	6841906.582	427131.787	6841907.478	-0.507	-0.896	0.257	0.803	1.060
coord20	428345.935	6841774.731	428345.856	6841773.792	0.079	0.939	0.006	0.882	0.888
coord21	427931.170	6843362.454	427931.105	6843361.510	0.065	0.944	0.004	0.891	0.895

• Precisión de Puntos de Control (x,y):

Resumen	
Promedio Diferencia Este (m)	-0.06
Desviación Estándar Diferencia Este (m)	0.55
Promedio Diferencia Norte (m)	0.77
Desviación Estándar Diferencia Norte (m)	0.83
Promedio Σ dif ² (m ²)	1.44
RMS (m)	1.20

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔH (m)	ΔH ² (m ²)
coord8	5452.404	5457.366	-4.962	24.621
coord11	5708.896	5708.421	0.475	0.226
coord12	5674.953	5673.278	1.675	2.806
coord18	5393.985	5397.309	-3.324	11.049
coord19	5049.102	5044.747	4.355	18.966
coord20	4965.402	4965.812	-0.410	0.168
coord21	5329.926	5329.167	0.759	0.576

• Precisión de Puntos de Control EGM96 (z):

RMSE (m)	2.889
Promedio ΔH (m)	-0.205
Desviación Estándar ΔH (m)	3.112

• Precisión de Puntos de Control Elipsoidal (z):

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔH (m)	ΔH² (m²)
coord8	5490.465	5493.438	-2.973	8.839
coord11	5746.937	5746.886	0.051	0.003
coord12	5713.000	5711.993	1.007	1.014
coord18	5431.827	5436.208	-4.381	19.193
coord19	5086.929	5082.887	4.042	16.338
coord20	5003.276	5004.357	-1.081	1.169
coord21	5367.774	5368.177	-0.403	0.162

RMSE (m)	2.583
Promedio ΔH (m)	-0.534
Desviación Estándar ∆H (m)	2.730

3.2.4.6.2. Conjunto Glaciar Tapado

Observación GPS		Observaci	ón Imagen	Diferen	icias (m)	Diferenc	ias² (m²)	∑dif ²	
GCPs Campo	ESTE	NORTE	ESTE	NORTE	ESTE	NORTE	ESTE	NORTE	(m ²)
coord14	412533.203	6664070.324	412534.814	6664070.951	-1.611	-0.627	2.595	0.393	2.988
coord15	412079.271	6663016.981	412080.163	6663016.720	-0.892	0.261	0.796	0.068	0.864
coord17	409700.883	6664452.647	409701.979	6664452.147	-1.096	0.500	1.201	0.250	1.451
coord19	409655.679	6665450.470	409656.869	6665449.665	-1.190	0.805	1.416	0.648	2.064
coord20	410610.980	6665559.504	410611.761	6665558.742	-0.781	0.762	0.610	0.581	1.191
coord31	411437.897	6664864.573	411437.862	6664864.217	0.035	0.356	0.001	0.127	0.128
coord34	411592.120	6664561.457	411590.476	6664562.718	1.644	-1.261	2.703	1.590	4.293
coord35	411191.058	6663371.245	411189.897	6663371.286	1.161	-0.041	1.348	0.002	1.350
coord36	411194.120	6663010.283	411194.112	6663010.350	0.008	-0.067	0.000	0.004	0.005
coord38	410710.384	6663065.760	410709.862	6663067.086	0.522	-1.326	0.272	1.758	2.031
coord39	411809.984	6662971.539	411809.781	6662972.170	0.203	-0.631	0.041	0.398	0.439
coord40	410692.791	6664326.090	410692.403	6664327.551	0.388	-1.461	0.151	2.135	2.285
coord41	409659.982	6664798.342	409659.324	6664798.359	0.658	-0.017	0.433	0.000	0.433
coord42	409944.754	6664969.949	409945.941	6664970.536	-1.187	-0.587	1.409	0.345	1.754
coord43	409936.221	6665212.495	409936.029	6665211.838	0.192	0.657	0.037	0.432	0.469
coord44	410279.989	6665609.492	410280.812	6665608.74	-0.823	0.752	0.677	0.566	1.243

• Precisión de Puntos de Control (x,y):

Resumen	
Promedio Diferencia Este (m)	-0.17
Desviación Estándar Diferencia Este (m)	0.94
Promedio Diferencia Norte (m)	-0.12
Desviación Estándar Diferencia Norte (m)	0.78
Promedio Σ dif ² (m)	1.44
RMS (m)	1.20

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔH (m)	ΔH² (m²)
coord14	4410.533	4407.475	3.058	9.351
coord15	4430.549	4431.034	-0.485	0.235
coord17	5284.835	5282.583	2.252	5.072
coord18	5063.547	5065.159	-1.612	2.599
coord19	5237.231	5240.228	-2.997	8.982
coord20	5317.447	5316.836	0.611	0.373
coord31	4891.651	4891.642	0.009	0.000
coord34	4673.721	4670.699	3.022	9.132
coord35	4569.445	4569.814	-0.369	0.136
coord36	4620.873	4621.117	-0.244	0.060
coord38	4821.118	4822.045	-0.927	0.859
coord39	4501.604	4500.441	1.163	1.353
coord40	4908.887	4910.926	-2.039	4.158
coord41	5254.416	5254.465	-0.049	0.002
coord42	5394.463	5396.526	-2.063	4.256
coord43	5383.858	5385.928	-2.070	4.285
coord44	5410.289	5407.31	2.979	8.874

• Precisión de Puntos de Control EGM96 (z):

RMSE(m)	1.874
Promedio ΔH (m)	0.014
Desviación Estándar ΔH (m)	1.932

• Precisión de Puntos de Control Elipsoidal (z):

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔΗ (m)	ΔH ² (m ²)
coord14	4446.280	4442.353	3.927	15.421
coord15	4466.279	4466.48	-0.201	0.040
coord17	5320.726	5318.222	2.504	6.270
coord18	5099.467	5100.504	-1.037	1.075
coord19	5273.159	5273.877	-0.718	0.516
coord20	5353.336	5352.551	0.785	0.616
coord31	4927.477	4925.332	2.145	4.601
coord34	4709.529	4705.877	3.652	13.337
coord35	4605.228	4605.19	0.038	0.001
coord36	4656.643	4656.291	0.352	0.124

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔH (m)	ΔH ² (m ²)
coord38	4856.912	4857.107	-0.195	0.038
coord39	4537.346	4536.212	1.134	1.286
coord40	4944.729	4944.001	0.728	0.530
coord41	5290.320	5290.043	0.277	0.077
coord42	5430.361	5431.592	-1.231	1.515
coord43	5419.766	5419.345	0.421	0.177
coord44	5446.194	5442.754	3.440	11.834

RMSE (m)	1.838
Promedio ΔH (m)	0.942
Desviación Estándar ΔH (m)	1.627

3.2.4.6.3. Conjunto Glaciar Olivares

• Precisión de Puntos de Control (x,y):

Observación GPS		Observación Imagen		Diferencias (m)		Diferencias ² (m ²)		Σdif ²	
GCPs Campo	ESTE	NORTE	ESTE	NORTE	ESTE	NORTE	ESTE	NORTE	(m²)
coord7	396787.075	6347953.920	396787.307	6347954.215	-0.232	-0.295	0.054	0.087	0.141
coord10	397538.567	6341227.653	397536.978	6341229.895	1.589	-2.242	2.525	5.027	7.551
coord11	395510.155	6345063.717	395510.549	6345064.784	-0.394	-1.067	0.155	1.138	1.294
coord14	393434.285	6342030.691	393434.148	6342030.061	0.137	0.630	0.019	0.397	0.416
coord22	386502.934	6328266.535	386503.257	6328267.872	-0.323	-1.337	0.104	1.788	1.892
coord23	385443.680	6325774.650	385444.634	6325775.732	-0.954	-1.082	0.910	1.171	2.081
coord24	385743.197	6324672.928	385744.751	6324672.812	-1.554	0.116	2.415	0.013	2.428
coord26	387902.955	6324896.607	387904.454	6324896.62	-1.499	-0.016	2.247	0.000	2.247
coord32	380695.710	6325491.819	380696.759	6325492.78	-1.049	-0.965	1.100	0.931	2.032
coord33	380587.843	6326707.238	380589.272	6326707.77	-1.429	-0.531	2.042	0.282	2.324
coord34	382771.202	6327543.955	382771.903	6327545.18	-0.701	-1.222	0.491	1.493	1.985
coord35	380731.434	6328383.731	380731.795	6328383.81	-0.361	-0.076	0.130	0.006	0.136

Resumen	
Promedio Diferencia Este (m)	-0.56
Desviación Estándar Diferencia Este (m)	0.87
Promedio Diferencia Norte (m)	-0.67
Desviación Estándar Diferencia Norte (m)	0.79
Promedio Σ dif ² (m ²)	2.04
RMS (m)	1.43

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔH (m)	ΔH² (m²)
coord7	3435.182	3430.794	4.388	19.255
coord10	4702.008	4705.055	-3.047	9.284
coord11	4151.009	4149.851	1.158	1.341
coord14	3818.978	3816.031	2.947	8.685
coord22	4221.324	4217.321	4.003	16.024
coord23	4670.679	4670.739	-0.060	0.004
coord24	4846.226	4847.278	-1.052	1.107
coord26	5150.967	5152.28	-1.315	1.729
coord32	3535.37	3535.863	-0.493	0.243
coord33	3873.691	3870.682	3.009	9.054
coord34	4864.038	4863.534	0.504	0.254
coord35	4575.578	4577.195	-1.617	2.615

• Precisión de Puntos de Control EGM96 (z):

RMSE (m)	2.408
Promedio ΔH (m)	0.702
Desviación Estándar ΔH (m)	2.406

• Precisión de Puntos de Control Elipsoidal (z):

GCPs Campo	H_GCP (m)	H_DTM (m)	ΔH (m)	ΔH² (m²)
coord7	3466.713	3462.381	4.332	18.766
coord10	4733.433	4736.061	-2.628	6.906
coord11	4182.429	4177.481	4.948	24.483
coord14	3850.237	3848.947	1.290	1.664
coord22	4251.868	4248.631	3.237	10.478
coord23	4701.094	4701.069	0.025	0.001
coord24	4876.634	4878.015	-1.381	1.907
coord26	5181.518	5182.80	-1.278	1.633
coord32	3565.45	3565.233	0.217	0.047
coord33	3904.329	3902.213	2.116	4.477
coord34	4894.314	4896.293	-1.979	3.916
coord35	4605.815	4608.972	-3.157	9.967

RMSE	2.650
Promedio ΔH (m)	0.479
Desviación Estándar Δ H (m)	2.722

3.2.4.7. Combinación de Bandas

De gran importancia es la combinación de bandas, en el caso de las Imágenes Spot-6 su combinación es distinta a los demás sensores, como por ejemplo del sensor Landsat. Por lo tanto; debe considerarse lo siguiente para su despliegue (extracto de Formato DIMAP, incluido dentro del metadato de la imagen):

<Band_Display_Order>

```
<RED_CHANNEL>B2</RED_CHANNEL>
<GREEN_CHANNEL>B1</GREEN_CHANNEL>
<BLUE_CHANNEL>B0</BLUE_CHANNEL>
<ALPHA_CHANNEL>B3</ALPHA_CHANNEL>
</Band_Display_Order
```

Quedando al momento de ser importada por los softwares comerciales con la posición correlativa de la siguiente manera:

Layer 1 = Banda Roja Layer 2 = Banda Verde Layer 3 = Banda Azul Layer 4 = IRC

Ejemplo: si desea realizar la combinación RGB, dentro de la mayoría de los software de manejo de imágenes deberá realizar lo siguiente:

- 1. Color Verdadero (RGB) : 1-2-3
- 2. Falso Color Convencional (RGB): 4-1-2

3.2.5. Construcción de Curvas de Nivel

Se construyeron las curvas de nivel a partir del DTM, obtenido mediante tecnología LIDAR, lo cual permitió un muestreo masivo de puntos xyz en cada uno de los sectores de las transectas de los glaciares, contando con una densidad de datos "continua" y suficiente para capturar las características morfológicas del mismo.

La representación "discreta" a la escala deseada, permitió un nivel de precisión acorde, con intervalo de curvas cada 1 metro y curva índice cada 5 metros. Para lo cual, se espacializaron las cotas más significativas, como una confirmación a la precisión alcanzada.

Figura 3. 38: Curvas de Nivel – Esmeralda Cerro El Plomo, Coord. Este:386.630,826, Norte: 6.321.333,662 Fuente: DMCL

Figura 3. 39: Curvas de Nivel – Rio Blanco, Coord. Este:392.258.611, Norte: 6.340.468.919 Fuente: DMCL

3.2.6. Control de Calidad

Las revisiones del proceso de control de calidad consistieron en verificar y medir los siguientes criterios de calidad: completitud del producto, consistencia de formato, consistencia topológica y exactitud posicional.

 Completitud del producto: Se verificó que todos los productos LIDAR e imágenes tuvieran el 100% de cobertura, con especial cuidado en los bordes del polígono y que a su vez la información interior no presentara zonas sin dato. Respecto de las curvas de nivel se verificó comprendieran el 100% de cada glaciar. En las siguientes figuras se grafica este principio.

Figura 3. 40: Completitud del producto – Ortoimagen aérea Tronquitos Fuente: DMCL

Figura 3. 41: Completitud del producto – DTM Tupungatito Fuente: DMCL

Figura 3. 42: Completitud del producto – Curvas de Nivel Olivares Alfa Fuente: DMCL

 Consistencia de formato: se verificaron las propiedades de los archivos, en conformidad con lo requerido, en relación al formato, resolución espacial, tamaño de píxel y/o lámina e intervalos de las curvas de nivel, según aplique.

Formatos requeridos					
DTM / DSM	Resolución espacial 1m Formato Geotiff / Ascii Grid Dimensiones 1.000x1.000m	100% de los glaciares			
NDP completa	1 pp/m ² Formato LAS, shp (dbf), xyz Dimensiones 1.000x1.000m	100% de los glaciares			
Intensity	Tamaño de Píxel 1m Formato Geotiff Dimensiones 1.000x1.000m	100% de los glaciares			
Ortoimágenes aéreas	Tamaño de Píxel 15cm Formato Geotiff / ECW Dimensiones 1.000x1.000m	100% de los glaciares			
Ortoimagen Pancromática	Tamaño de Píxel 1,5cm Formato Geotiff / IMG	100% conjunto glaciar			
Ortoimagen Multiespectral	Tamaño de Píxel 1,5cm Formato Geotiff / IMG	100% conjunto glaciar			
DEM calibrado	Resolución espacial 4x4x2 Formato Geotiff / IMG	100% conjunto glaciar			
Curvas de Nivel	Intervalo Curvas de Nivel 1m Formato DWG / Shp	100% de los glaciares			
Tabla 3. 7: Verificación de formatos de entrega					

Fuente: DMCL

 Exactitud posicional: Este criterio se refiere al control de altura de los productos, mediante la comparación de las mediciones que fueron efectuadas en terreno (GCP's) y los productos LIDAR procesados. Para realizar esta verificación se midieron GCPs en la morrena del Glaciar El Rincón, por presentar mejores condiciones de accesibilidad. En el anexo VII se presenta la monografía de estos puntos.

En la siguiente tabla se presentan las coordenadas geodésicas WGS84 y altura ortométrica EGM96, con las cuales fue posible realizar el control de exactitud posicional del DTM de dicho glaciar, verificando de esta forma la precisión de los productos generados.

La comparación altimétrica de los GCP's se presenta en la siguiente tabla, donde se informa las coordenadas geodésicas WGS84 y altura ortométrica EGM96 de cada punto. Mientras que las columnas se han identificado de la siguiente forma:

- H_GCP: altura ortométrica calculada de la medición en terreno
- H_DTM: altura extraída del modelo
- H_GCP al suelo: altura ortométrica del GCP, restando altura del objeto donde fue medido el punto.

GCPs Campo	Este UTM 19S (m)	Norte UTM 19S (m)	H_GCP 8m)	H_DTM (m)	H_GCP al suelo (m)	ΔH (m)	ΔH ² (m ²)
RIN1	381101.911	6326189.149	3690.111	3690.078	3690.111	-0.033	0.001
RIN2	381153.285	6325935.433	3574.289	3574.402	3574.289	0.113	0.013
RIN3	381087.723	6325760.453	3542.530	3542.084	3542.030	0.054	0.003
RIN4	381011.472	6325579.523	3504.035	3504.177	3504.035	0.142	0.020
RIN5	380908.209	6325249.670	3456.689	3456.684	3456.689	-0.005	0.000

– ΔH es la diferencia existente entre H_DTM y H_GCP(al suelo).

Tabla 3. 8: Comparación Altimétrica Fuente: DMCL

Los resultados de esta comparación estadística se presentan a continuación:

Las diferencias estimadas entre ambas mediciones expuestas, en relación al cálculo del Error Medio Cuadrático – RMSE, el cual se define como la distancia entre la posición real de punto y la posición estimada en el producto, permitió una mayor representatividad estadística del error en la precisión del DTM, con lo que se puede afirmar que con los vértices identificados en este cumplen con la exactitud posicional requerida para el proyecto $(\pm 0, 25m)$.

Mediante la verificación de este último criterio se valida la metodología expuesta en el desarrollo de este informe, comprobándose como correcta, la utilización de una única red geodésica de referencia, a la cual se vincularon los vértices de apoyo de vuelo, GCPs y se georreferenciaron todos los productos generados.

4. CONCLUSIÓN

De acuerdo a lo planteado en el presente informe se puede concluir que mediante los vuelos planificados por DMCL para los datos LIDAR e imágenes aéreas en el proyecto, se realizó la captura completa del área de interés solicitada por el mandante. Los sobrevuelos se ejecutaron en período entre febrero y abril de 2015, a una altura promedio de 640m, alcanzando una densidad 10,9 puntos por metro cuadrado en promedio respecto de los 24 glaciares mapeados.

Respecto de las operaciones geodésicas de apoyo al vuelo se establece la utilización de 4 vértices pertenecientes a la Red Geodésica Nacional (RGN) del Instituto Geográfico Militar (IGM) cumpliendo con radios de alcance recomendado por el fabricante del sensor Harrier 68i y los tiempos de observación conforme a las distancias de los vectores que se realizaron.

Finalmente se verifica la completitud de imágenes satelitales han sido capturadas por el sensor óptico Spot-6 para los 24 glaciares solicitados por DGA, las cuales han sido capturadas entre el 16 al 30 de enero de 2015.

Cada Conjunto de Glaciares fue asociado a 1 vértice de la RGN, dependiente del IGM. En vista de las futuras definiciones de coordenadas, tanto de época como ITRF, que desarrollará el IGM en la RGN, un posterior trabajo de georreferenciación de todos los productos asociados al proyecto, no presenta mayor dificultar, que el análisis del vector (X,Y,Z) de desplazamiento de la coordenada de apoyo de vuelo.

La metodología para obtención de productos se verificó, mediante los criterios de calidad de completitud del producto, consistencia de formato es decir, productos generado abarca el 100% del área de estudio y las propiedades de los archivos cumplen con el tamaño de píxel, tamaño de lámina y consistencia del formato de los archivos.

Por otro lado se comprobó exactitud posicional, en Glaciar Del Rincón, la cual cumplió con los 0,25m de precisión, alcanzando un error medio cuadrático de 0,086m, validando a su vez la metodología expuesta.

5. PRODUCTOS ENTREGADOS

Para la distribución productos se ha utilizado diagrama de tiles adjunto en anexo VIII, con dimensiones de tiles de 1.000x1.000m de forma tal asegurar un manejo exitoso de estos productos.

Productos Sistema de referencia WGS84, proyección cartográfica UTM Huso 19S					
DTM / DSM Cota elipsoidal / EGM96	Resolución Espacial 1m Formato Geotiff/ AsciiGrid Dimensiones 1.000x1.000m				
NDP Completa Cota elipsoidal / EGM96	1 pp/m ² Formato LAS, sho (dbf), xyz Dimensiones 1.000x1.000m				
Intensity	Tamaño de Píxel 1m Formato Geotiff Dimensiones 1.000x1.000m				
Ortoimágenes aéreas	Tamaño de Píxel 15cm Formato Geotiff / ECW Dimensiones 1.000x1.000m				
Ortoimagen	Tamaño de Píxel 1,5cm				
Pancromática	Formato Geotiff / IMG				
Ortoimagen	Tamaño de Píxel 1,5cm				
Multiespectral	Formato Geotiff / IMG				
DEM calibrado	Resolución espacial 4x4x2				
Cota elipsoidal / EGM96	Formato Geotiff / IMG				
Curvas de Nivel	Intervalo Curvas de Nivel 1m				
EGM96	Formato DWG / Shp				

APENDICE I: REPORTE METEOROLÓGICO

- Fecha: 17 de febrero de 2015
- Observaciones: 100% lineas voladas de Glaciar Tupungatito y Yeso.

- Fecha: 18 de febrero de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 19 de febrero de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 20 de febrero de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 21 de febrero de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 22 de febrero de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 23 de febrero de 2015
- Observaciones: 100% lineas voladas de Glaciar Yeso1, Yeso 2, Echaurren, y Mesón Alto. Y 15% de lineas voladas de Glaciar Bello.

- Fecha: 24 de febrero de 2015
- Observaciones: No es posible volar por nubosidad en la zona.

- Fecha: 25 de febrero de 2015
- Observaciones: 90% lineas voladas de Glaciar San Francisco.

- Fecha: 26 de febrero de 2015
- Observaciones: 100% lineas voladas de Glaciar San Francisco y Marmolejo. Y 40% lineas voladas de Glaciar Bello.

- Fecha: 27 de febrero de 2015
- Observaciones: 100% lineas voladas de Glaciar Bello.

- Fecha: 28 de febrero de 2015
- Observaciones: No es posible volar por fuertes vientos en la zona.

- Fecha: 01 de marzo de 2015
- Observaciones: No es posible volar por fuertes vientos en la zona.

- Fecha: 02 de marzo de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 20 de marzo de 2015
- Observaciones: Helicoptero en mantencion.

- Fecha: 21 de marzo de 2015
- Observaciones: No es posible volar por nubosidad en la zona.

- Fecha: 22 de marzo de 2015
- Observaciones: No es posible volar por nubosidad en la zona.

- Fecha: 23 de marzo de 2015
- Observaciones: 100% lineas voladas de Glaciar Piramide.

- Fecha: 01 de abril de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 02 de abril de 2015
- Observaciones: 100% lineas voladas de Olivares Alfa y Olivares Beta.

- Fecha: 03 de abril de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 04 de abril de 2015
- Observaciones: No es posible volar por condiciones meteorológicas en la zona.

- Fecha: 05 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar Olivares Gamma.

- Fecha: 06 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar La Paloma, Del Rincón y Esmeralda.

- Fecha: 07 de abril de 2015
- Observaciones: No es posible volar por nubosidad en la zona.

- Fecha: 08 de abril de 2015
- Observaciones: 80% lineas voladas de Glaciar Rio Blanco.

- Fecha: 09 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar Monos de Agua. 30% lineas voladas de Glaciar Juncal Norte. 75% lineas voladas de Glaciar Juncal Sur. 90% lineas voladas de Glaciar Rio Blanco.

- Fecha: 10 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar Rio Blanco y Juncal Sur. Y 80% lineas voladas de Glaciar Juncal Norte.

- Fecha: 11 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar Juncal Norte.

- Fecha: 12 de abril de 2015
- Observaciones: Traslado de personal de terreno a Vicuña. Y traslado de helicoptero y operador a La Serena.

- Fecha: 13 de abril de 2015
- Observaciones: No es posible volar por nubosidad y fuertes vientos en la zona.

- Fecha: 14 de abril de 2015
- Observaciones: Traslado de personal de terreno a Alto del Carmen. Y traslado de helicoptero y operador a Vallenar.

- Fecha: 15 de abril de 2015
- Observaciones: 70% lineas voladas de Glaciar Tronquitos.

- Fecha: 16 de abril de 2015
- Observaciones: No es posible volar por nubosidad y fuertes vientos en la zona.

- Fecha: 17 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar Tronquitos y Del Potro.

- Fecha: 18 de abril de 2015
- Observaciones: 100% lineas voladas de Glaciar Tapado.

ANEXO I: REGISTROS DE CALIBRACIÓN SENSOR HARRIER 68I

Archivos Digitales:

IT_LAS-03-R009 Calibración HARRIER 68i 21112014_r2.pdf

[CAMERA_2.7] SN 201111163_lens12069705.pdf

ANEXO II: MEMORANDUM MODIFICACIÓN CARTA GANTT

Archivo Digital: Memo_Modifica Carta Gantt.pdf

ANEXO III: CERTIFICADOS VÉRTICES DE APOYO DE VUELO

Archivo Digital: 1426_1411_Glaciares_Centro_Norte_Cert_IGM.pdf

ANEXO IV: DISTRIBUCIÓN VÉRTICES DE APOYO DE VUELO, GLACIARES CENTRO SUR

Archivo Digital: 1426_1411_Glaciares_Centro_Norte _VerticesApoyo.kmz

ANEXO V: TABLA DE CONTROL DE REPETITIVIDAD Y VECTORES

Archivo Digital: 1426_1411_GCN_Tabla de control de repetitividad y vectores.pdf

ANEXO VI: MONOGRAFÍA DEL STC

Archivo Digital: 1426_1411_GCN_Coordenadas_Monografia_STC.pdf

ANEXO VII: MONOGRAFÍA GCPS GLACIAR DEL RINCÓN

Archivo digital: 1426_1411_GCN_Coordenadas_Monografia_GCPs_DelRincon.pdf

ANEXO VIII: DIAGRAMA DE TILES

Archivo Digital: distribucion_1426_1411_Glaciares_Centro_Norte_utm19_v0.dxf