

REPÚBLICA DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN GENERAL DE AGUAS UNIDAD DE GLACIOLOGÍA Y NIEVES

LEVANTAMIENTO AEROTRANSPORTADO Y TOPOGRAFÍA SUPERFICIAL EN CAMPO DE HIELO NORTE

INFORME FINAL

REALIZADO POR:

SERVICIO AEROFOTOGRAMÉTRICO

S.I.T. Nº 263

Santiago, Noviembre de 2011

REPÚBLICA DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN GENERAL DE AGUAS UNIDAD DE GLACIOLOGÍA Y NIEVES

LEVANTAMIENTO AEROTRANSPORTADO Y TOPOGRAFÍA SUPERFICIAL EN CAMPO DE HIELO NORTE

INFORME FINAL

REALIZADO POR:

SERVICIO AEROFOTOGRAMÉTRICO

S.I.T. Nº 263

Santiago, Noviembre de 2011

MINISTERIO DE OBRAS PÚBLICAS

Ministro de Obras Públicas Ingeniero Civil Industrial Sr. Laurence Golborne R.

> Director General de Aguas Abogado Sr. Matías Desmadryl L.

Jefe Unidad de Glaciología y Nieves Dr. Gonzalo Barcaza S.

Inspector Fiscal (S) Ingeniero Sr. Yerin Carvajal M.

SERVICIO AEROFOTOGRAMÉTRICO

Jefe de Proyecto

Capitán de Bandada (A) Cristian Cea M.

Profesionales:

Teniente (SG) Gabriel Olivares J.

Teniente (SG) Leonardo Ibarra S.

ÍNDICE DE CONTENIDO

Ι.	INTRODUCCIÓN	1
11.	OBJETIVO GENERAL	2
111.	OBJETIVOS ESPECÍFICOS	2
IV.	PROPUESTA METODOLÓGICA	3
	4.1. Descripción de un vuelo con Sensor LIDAR	3
	4.2. Uso del sistema LIDAR	3
V.	DESARROLLO	4
	5.1. Definición general del área de estudio	4
	5.2. Planificación de la captura LIDAR y DMC	4
	5.2.1. Planificación captura data LIDAR	4
	5.2.2. Planificación captura digital mapping camera DMC	6
	5.2.3. Coordenadas de inicio y término de cada línea de vuelo	7
	5.2.4. Altura promedio del terreno	7
	5.2.5. Altura de vuelo sobre el nivel medio del mar	7
	5.2.6. Definición del equipamiento	8
	5.2.6.1. Aeronave	8
	5.2.6.2. Sensores	8
	5.3. Levantamiento en Campo de Hielo Norte	10
	5.3.1. LIDAR	12
	5.3.2. DMC	15
	5.4. Apoyo Geodésico LIDAR y DMC	15
	5.5. Procesamiento de datos	15
	5.5.1. Calibración del sistema LIDAR	15
	5.5.2. Procesamiento de datos LIDAR	16
	5.5.3. Ortofotomosaico verdaderas visibles RGB DMC	17
	5.6. Resultado y producto	17
VI.	COMENTARIOS Y CONCLUSIONES	23
VII.	BIBLIOGRAFÍA	24

ÍNDICE DE FIGURAS

FIGURA 1. Simulación levantamiento LIDAR	3
FIGURA 2. Área de estudio y Planificación del vuelo LIDAR	5
FIGURA 3. Planificación del vuelo DMC	6
FIGURA 4. Sensor CAMS	9
FIGURA 5. Sensor DMC	9
FIGURA 6. Líneas de vuelo sensor LIDAR	12
FIGURA 7. Área sin información transecta SAN RAFAEL - COLONIA	14
FIGURA 8. Modelo de terreno de la transecta SAN RAFAEL - COLONIA	19
FIGURA 9. Curvas de nivel transecta SAN RAFAEL - COLONIA	20
FIGURA 10. Imagen de intensidad transecta SAN RAFAEL - COLONIA	21

ÍNDICE DE TABLAS

TABLA 1. Características del sensor DMC	10
TABLA 2. Zona de Captura por día	11
TABLA 3. Uso de las estaciones base	15
TABLA 4. Resultados de la calibración por Software	16
TABLA 5. Magnitud media de diferencias en altura entre líneas de	
vuelo ordenadas por día y bloque	18

I. INTRODUCCIÓN

La Dirección General de Aguas (DGA) realiza hace más de 30 años estudios tendientes a incrementar el conocimiento de los glaciares del país especialmente en lo que se refiere a su aporte como recurso hídrico. Entre los trabajos que realiza esta Dirección en el tema glaciológico se cuentan el inventario nacional de glaciares, la estimación del balance de masa de algunos cuerpos de hielo en las zonas central y sur del territorio nacional, estudios de desastres asociados a glaciares y el monitoreo hidrometeorológico de diversas cuencas glaciares y nivoglaciares.

Dichas tareas han cobrado mayor relevancia en el último tiempo debido a los notables efectos que ha tenido el aumento de la temperatura a nivel global. El adelgazamiento y retroceso generalizado de los glaciares ha traído aparejado efectos hidrológicos, geomorfológicos y paisajísticos que es necesario conocer y cuantificar para llevar a cabo políticas de desarrollo sustentable considerando la real disponibilidad del recurso hídrico en el futuro.

En este contexto, se hace perentorio realizar estudios que permitan evaluar algunas características particulares de los glaciares (como su área y topografía superficial) en zonas estratégicas del país, con el fin de detectar a través de estudios multitemporales, variaciones de volúmenes de hielo que generan cambios de elevación, de espesor y del área de los glaciares.

Una de las regiones de mayor valor glaciológico, corresponde a la Zona Austral del país. En ella se encuentran ubicados el Campo de Hielo Norte (CHN) y el Campo de Hielo Sur (CHS). En esta Zona, la Unidad de Glaciología y Nieves de la Dirección General de Aguas (DGA) ha desarrollado diversas actividades en el marco de la implementación de la red de monitoreo de glaciares que está estableciendo a nivel nacional.

Con el objetivo de complementar dicha red de monitoreo glaciológico en la zona de Campo de Hielo Norte y a petición de la Dirección General de Aguas del Ministerio de Obras Públicas, el Servicio Aerofotogramétrico del General Juan Soler Manfredini (SAF), realizó un estudio denominado "LEVANTAMIENTO AEROTRANSPORTADO Y TOPOGRAFÍA SUPERFICIAL EN CAMPO DE HIELO NORTE", que consistió en la ejecución de un levantamiento aerotransportado LIDAR a lo largo de una transecta que abarca desde el Glaciar San Rafael hasta el Glaciar Colonia.

CHN está ubicado en la región de Aysén. Tiene un área aproximada de 3.953 km² según imágenes de 2001 (Rivera et al, 2007), es el segundo mayor cuerpo de hielo del planeta después de CHS, sin considerar las masas polares. Su elevación máxima es la cumbre del San Valentín que alcanza a 4.200 m.s.n.m. Desde su meseta descienden 28 glaciares, los de la vertiente del lado este aportan sus deshielos al río Baker, que es el río más caudaloso del país, en cambio los de la vertiente oeste drenan directamente a los fiordos del océano pacífico.

Con el fin de obtener variaciones del volumen de hielo en Campo de Hielo Norte (CHN) y Campo de Hielo Sur (CHS), se realizaron comparaciones entre modelos digitales de terreno de diferentes años a los 63 glaciares más grandes de los campos de hielo mencionados. Los períodos de tiempo usados están comprendidos entre los años 1975 y 2000; y para un período más reciente, entre 1995 y 2000. Como información base se utilizaron imágenes SRTM de la NASA y topografías previas disponibles (Rignot, E., et al, 2003).

En la publicación citada anteriormente, se concluye que los glaciares de CHN y CHS en su conjunto estarían perdiendo alrededor de 41,9 kilómetros cúbicos de hielo cada año, lo que representa una cantidad de hielo suficiente para elevar el nivel del mar en todo el mundo en alrededor de 0,105 milímetros por año.

Rignot, asegura que el cambio climático, especialmente las temperaturas globales en alza, es el factor más importante en la disminución de los volúmenes de hielo; y agrega, refiriéndose a los glaciares de Campos de Hielo: "Estos tipos de glaciares son inestables y sensibles a cambios climáticos".

Desde mediados de la década de 1970 las temperaturas globales han subido lentamente, asimismo, algunos científicos (Toharia, 2006) postulan que es normal alguna variación en la temperatura anual. En los últimos 30 años ha habido incrementos en la temperatura, más altos que la variación normal observada antes de esas tres décadas. Consecuentemente, los glaciares son un síntoma de la enfermedad global.

Los glaciares de la Patagonia presentan algunas limitaciones para su estudio, debido a la dificultad de acceso y a las condiciones climáticas extremas. Por su parte, producto de la casi permanente cobertura de nubes, la obtención de imágenes satelitales con sensores pasivos es escasa. No obstante, los nuevos equipamientos incorporados a satélites, tecnología de radar, mayor capacidad de hardware para manejar archivos con imágenes digitalizadas de mayor resolución, así como la incorporación de equipos para mediciones terrestres, entre otros, proporcionan herramientas complementarias para el estudio glaciológico.

II. OBJETIVO GENERAL

Realizar un Levantamiento topográfico aerotransportado de precisión mediante un sistema LIDAR (Light Detection and Ranging, por sus siglas en inglés), a lo largo de una transecta que abarca desde el Glaciar San Rafael hasta el Glaciar Colonia, en Campo de Hielo Norte.

III. OBJETIVOS ESPECÍFICOS

Proveer a la Unidad de Glaciología y Nieves de la DGA, un Modelo Digital de Superficie (MDS), un Modelo Digital de Terreno (MDT) y una imagen de intensidad para la zona anteriormente indicada a través de la técnica de Altimetría Aérea Láser.

Colectar imágenes digitales con objeto de generar un mosaico de ortofotos de la transecta y proporcionar curvas de nivel del área estudiada.

IV. PROPUESTA METODOLÓGICA

4.1. Descripción de un vuelo con sensor LIDAR

Un sistema LIDAR, transmite pulsaciones de luz que reflejan el terreno y otros objetos de altura. La pulsación de regreso es convertida de fotones a impulsos eléctricos y colectada por un registrador de datos de alta velocidad (ver Figura 1). Los intervalos de tiempo de la transmisión a la colección son derivados y posteriormente convertidos en distancia, basados en información posicional obtenida de los receptores GPS del avión/terreno y de la Unidad de Medición Inercial abordo (IMU), la cual constantemente registra la actitud de la aeronave, esto es, la orientación de la aeronave respecto al sistema de referencia de navegación sobre los tres ejes. Estos son: eje transversal, longitudinal y vertical, sobre los cuales se producen los movimientos de cabeceo, alabeo y guiñada respectivamente.

El sistema LIDAR colecta datos de posición (x,y) y de elevación elipsoidal (z) en intervalos pre-definidos, proporcionando datos de primero, segundo, tercer y cuarto retorno; los cuales permiten determinar las alturas del terreno, zonas de vegetación y otros elementos.

Una ventaja significativa del sistema LIDAR es que los datos pueden ser adquiridos en condiciones en las cuales la fotografía aérea convencional no puede realizarlo. En consecuencia, las operaciones con sistema LIDAR pueden ser ejecutadas mediante vuelos nocturnos, en períodos nublados o de bruma.

Figura 1. Simulación levantamiento LIDAR.

4.2. Uso del sistema LIDAR

Los productos estándar cartográficos derivados de los datos LIDAR incluyen modelos de contorno y elevación para generación de curvas de nivel, superficies, ortofotos, etc. Un post procesamiento de los datos crudos es requerido para la generación de contornos precisos. Puesto que los datos LIDAR son colectados sobre los objetos elevados (DEM), como por ejemplo: edificios, cobertura arbórea, etc.; entonces se deben utilizar algoritmos determinados para eliminar puntos en estos objetos.

Debido a la densidad de puntos, se requiere una mínima edición con líneas de quiebre o Breaklines (datos obtenidos con los vuelos fotogramétricos) en caso de representación precisa del terreno. No obstante, mediante sistema LIDAR y el uso de software de post procesamiento, las técnicas de validación son incorporadas en el proceso para asegurarse de que los contornos finales sean representativos del terreno.

El post procesamiento y la verificación en 3-D también son recomendables cuando se hace uso de datos LIDAR para la generación de ortofotos digitales y edición cartográfica en zonas con cobertura boscosa espesa. Una de las ventajas que aporta la tecnología LIDAR radica en la rapidez de las medidas y el proceso previo de los datos, esto permite que los requerimientos de precisión vertical para la generación de una ortofoto sean menos estrictos que para la generación de contornos. Posteriormente se realizan las clasificaciones y el Modelo Digital del Terreno, considerando que una primera versión con un control de calidad de los errores más gruesos es suficiente para generar la ortofoto, de este modo se puede obtener de forma más rápida y precisa que en caso de hacer un MDT por correlación automática.

V. DESARROLLO

5.1. Definición general del área de estudio

La zona de estudio se ubica en CHN y corresponde a una transecta que cubre desde el frente del Glaciar San Rafael hasta el Glaciar Colonia, abarcando una superficie de 18.956 hectáreas aproximadamente.

5.2. Planificación de la captura LIDAR y DMC

El Departamento de Planificación de Vuelo del SAF fue el encargado de recopilar los antecedentes necesarios para definir los parámetros de la captura de la data. Para ello, se efectuó una proyección de las misiones de vuelo con sensores LIDAR y otra con cámara fotogramétrica Digital Mapping Camera (DMC), con objeto de cubrir una superficie de 18.956 hectáreas aproximadamente.

A continuación se presentan las tareas ejecutadas para el correcto cumplimiento del levantamiento señalado.

5.2.1. Planificación captura data LIDAR

En esta etapa se determinó la cantidad de líneas de vuelo necesarias para la correcta captura de DATA LIDAR, la cual contempló la realización de 34 líneas de vuelo. La Figura 2 muestra una franja roja con la un esquema del Área de estudio y planificación del vuelo de LIDAR.

Figura 2. Área de estudio y Planificación del vuelo LIDAR (fuente: imagen Landsat ETM+ año 2001 R[5]G[4]B[1]).

5.2.2. Planificación captura digital mapping camera DMC

En esta etapa se determinó la cantidad de líneas de vuelo necesarias para la correcta captura de DATA DMC. Para la zona de interés se consideraron las escalas de vuelo con un pixel de 48 x 48 cm. Los recubrimientos longitudinales (60% + 5%) y laterales (30% + 20%).

La Planificación del vuelo fotogramétrico contempló la realización de 6 líneas de vuelo con un total de 104 fotogramas aproximadamente. La Figura 3 muestra la planificación del vuelo con sensor DMC.

Figura 3. Planificación del vuelo DMC

5.2.3. Coordenadas de inicio y término de cada línea de vuelo

Las coordenadas de inicio y término de cada línea de vuelo quedaron estipuladas en la correspondiente carpeta de vuelo, las cuales permitieron alimentar el equipo de navegación del avión. Ver Anexo A: Coordenadas del vuelo LIDAR y Anexo B: Coordenadas líneas de vuelo DMC.

5.2.4. Altura promedio del terreno

La altura promedio del terreno se calculó sobre el eje de las líneas de vuelo, lo cual permitió obtener una escala de vuelo homogénea en todas las líneas de vuelo.

Para la captura de LIDAR se realizaron vuelos a las siguientes alturas AGL:

Frente glaciar San Rafael Promedio: 400 m Mínimo: 380 m Máximo[.] 440 m Plateau de Campo de Hielo Norte Promedio: 520 m Mínimo: 410 m Máximo[,] 590 m Frente glaciar Colonia Promedio: 400 m Mínimo: 310 m Máximo[.] 390 m

5.2.5. Altura de vuelo sobre el nivel medio del mar

La altura de vuelo sobre el nivel medio del mar es la que se vuela con respecto al altímetro del avión, para así mantener la relación de altura de la aeronave sobre el terreno y obtener la escala de la DATA requerida.

En el caso específico de los vuelos LIDAR con el sensor CAMS (CECs Airborne Mapping System), la altura de vuelo sobre el nivel medio del mar varió dependiendo de la topografía del terreno y de la intensidad recibida del láser capturado, originando incrementos o descensos en la altitud AGL del avión en una misma línea.

Para la captura de LIDAR se realizaron vuelos con las siguientes alturas promedio sobre el nivel del mar:

<u>Frente Glaciar San Rafael</u>: altura de vuelo promedio 1.450 metros ó 4.760 pies. Las operaciones de vuelo realizadas en esta zona se efectuaron los días 3, 4, 7 y 8 de agosto de 2011.

<u>Plateau de Campo de Hielo Norte</u>: altura de vuelo promedio 1.740 metros ó 5.710 pies. Las operaciones de vuelo realizadas en esta zona se efectuaron los días 3, 4, 6, 7, 8 y 18 de agosto de 2011.

<u>Frente Glaciar Colonia</u>: altura de vuelo promedio 1.485 metros ó 4.870 pies. El vuelo realizado en esta zona se efectuó el día 3 de agosto de 2011.

5.2.6. Definición del equipamiento

En esta sección se describe principalmente el tipo de aeronave utilizada, así como las características del sensor LIDAR.

5.2.6.1. Aeronave

En la ejecución de los vuelos LIDAR y DMC se utilizó la aeronave DHC-6 Twin Otter, avión de gran versatilidad, lo que permitió ejecutar el levantamiento aerotransportado sin inconvenientes.

5.2.6.2. Sensores

En la captura de DATA LIDAR se utilizó el sensor CAMS (CECs Airborne Mapping System). La Figura 6 muestra el Sensor CAMS instalado en el foso del avión Twin Otter.

Los componentes principales del sistema CAMS son:

- Barredor láser de espejos RIEGL LMS-Q240 (tasa real de repetición de pulsos de 10 kHz, longitud de onda 904 nm (infrarrojo cercano), altura de vuelo hasta 500 m sobre el terreno.
- Sistema de Mediciones Inerciales iNAV-FMS-Airsurv (tasa de muestreo de ángulos de actitud y aceleraciones de 400 Hz).
- Receptor GPS de doble frecuencia JAVAD Lexon LGGD.
- Cámara digital Canon EOS 5D. Sensor:

Тіро	:	36 x 24 mm CMOS
Píxeles efectivos	:	Aprox. 21,1 MP
Total de píxeles	:	Aprox. 22 MP
Relación de aspecto):	3:2

En la fosa del avión Twin Otter se instaló el sensor de la cámara infraroja FLIR. La Figura 4 muestra el Sensor CAMS.

Figura 4. Sensor CAMS.

En la captura de las imágenes se utilizó el sensor DMC (Digital Mapping Camera). La Figura 5 muestra el Sensor DMC.

Figura 5. Sensor DMC.

COMPONENTES SENSOR DMC						
Sensor	pancromático		color			
Número de canales de sensores	4		4			
Sensor de tamaño [pixel, filas x columnas]	4084 x 7128		2048 x 3072			
Lente focal [mm]	120		25			
Tamaño de pixel [µm]	12		12			
Resolución Radiométrica del sensor [bit]	Resolución Radiométrica del 12					
Resolución Radiométrica rango dinámico [bit]	12		12			
Campo de visión - cross pista [°]	74		-			
Campo de visión - a lo largo de la pista [°]	44	4 -				
LONGITUD DE ONDAS	DE BANDAS ESPEC	TRA	LES (nm)			
Pancromático			350 - 1050			
Rojo			590 - 675			
Verde			500 - 650			
Azul			400 - 580			
Infrarojo cercano			675 - 850			
PARÁMETROS DE FU	NCIONAMIENTO SI	ENSC	DR DMC			
Tamaño efectivo del sensor [pixel,	7.680 x 13.824					
Resolución de Terreno [GSD, cm]	10 / 1.000					
Altura de Vuelo [m]	500 - 8000					
Mínima velocidad de obturación	1 / 300					
Mínima tasa de repetición entre la	s imágenes		2,1 segundos			
Capacidad de almacenamiento de		2.200				

Las características principales del sensor DMC (ver Tabla 1) son:

Tabla 1. Características del sensor DMC (fuente: Brochure, Digital Mapping Camera System).

5.3. Levantamiento en Campo de Hielo Norte

El trabajo se inició el día 25 de julio de 2011 con el traslado de una aeronave logística. El día 29 de julio de 2011 se trasladó una aeronave que cumplió la misión de plataforma aérea para el sensor LIDAR en la zona de trabajo y el 30 de octubre de 2011 se realizó el vuelo fotogramétrico con el sensor DMC. La Tabla 2 indica la Zona de captura por día.

Día	Zona	Observaciones
03/08/2011	Frente Glaciar San Rafael, Plateau Campo de Hielo Norte, Frente Glaciar Colonia.	-
04/08/2011	Frente Glaciar San Rafael, Plateau Campo de Hielo Norte.	-
06/08/2011	Plateau Campo de Hielo Norte.	-
07/08/2011	Frente Glaciar San Rafael, Plateau Campo de Hielo Norte.	_
08/08/2011	Frente Glaciar San Rafael, Plateau Campo de Hielo Norte.	Turbulencias, en el sector Refugio para Monitoreo Glaciológico de la DGA (DOMO), ubicado en la Cuenca del Glaciar San Rafael, Campo de Hielo Norte. Se apagó equipo base GPS 20 minutos antes del fin de la alineación en San Rafael.
18/08/2011	Plateau Campo de Hielo Norte.	Sin DOMO (vuelo efectuado después del término de la campaña de terreno).
30/10/2011	Frente Glaciar San Rafael, Plateau Campo de Hielo Norte, Frente Glaciar Colonia.	Captura con sensor DMC

Tabla 2. Zona de Captura por día.

5.3.1. LIDAR

Para cubrir el área de la transecta se efectuaron seis levantamientos aéreos (ver Figura 6) en un total de 13:35 horas de vuelo directas y una trayectoria de 1.058,9 km.

Figura 6. Líneas de vuelo sensor LIDAR.

Cabe señalar que si bien se realizó una captura exitosa de data LIDAR, mediante los seis levantamientos aéreos señalados anteriormente, por otra parte debido a condiciones meteorológicas y aeronáuticas adversas, principalmente en la zona de ablación de los glaciares San Rafael y Colonia, existen sectores con falta de información.

Los levantamientos aéreos cubrieron un área aproximada de 17.346,57 ha, equivalentes a un 91,51% del total estimado. El área sin información se observa en la figura 7.

Figura 7. Área sin información transecta SAN RAFAEL - COLONIA.

5.3.2. DMC

Para cubrir el área de la transecta (San Rafael, Plateau y Colonia), se efectuó un levantamiento aéreo de 3,0 horas de vuelo el 30 de octubre de 2011, con una trayectoria de 182 km. Ver Anexo B.

5.4. Apoyo geodésico LIDAR Y DMC

Para la georeferenciación precisa de los datos se establecieron cinco estaciones de base GPS. La Tabla 3 muestra el uso de las estaciones bases.

Pasa	Operador	Marca	Día / mes de agosto de 2011						
Dase	Operador	iviai ca	03	04	06	07	08	18	
BALM	CECs	Javad	Х	Х	Х	Х	Х	Х	
BCOL	SAF	Trimble	Х				Х		
COCH	SAF	Trimble		Х	Х	Х	Х	Х	
CCRN	SAF	Trimble			Х				
DOMO	SAF	Leica	Х	Х	Х	Х	Х		

Tabla 3. Uso de las estaciones base.

Los datos de las estaciones fueron procesados en el Sistema de Referencia Geocéntrico para Las Américas (SIRGAS-CHILE).

5.5. Procesamiento de datos

5.5.1. Calibración del sistema LIDAR

La calibración de los datos para determinar los ángulos residuales entre los ejes de los instrumentos Inercial Measurements Unit (IMU) y el escáner láser se realizó en la ciudad de Valdivia, con datos de sobrevuelo en el recinto de la Universidad Austral de Chile del día 29 de Julio de 2011.

Se realizaron 8 líneas de vuelo formando un cruce en una altura de 300 m y otro a 400 m sobre el terreno, el área cubierta es de 0,98 km². En la calibración se usaron aproximadamente 675.000 puntos láser y 1.900 puntos de control, adquiridos mediante GPS cinemático los días 7 y 13 de Septiembre de 2011.

Los puntos separados por líneas, después de excluir los erráticos, fueron automáticamente clasificados en puntos de terreno y manualmente en puntos de edificios. Estos datos clasificados juntos con los puntos de control se usan para resolver los parámetros de desalineación de ejes entre la IMU y el escáner láser con el programa TerraMatch. Mediante este proceso el error RMS (del inglés root mean square) altimétrico antes de la calibración, baja de 0,217 m a 0,145 m, luego de realizada la calibración.

Los resultados de la calibración entregados por el software TerraMatch se presentan en la Tabla 4. Los valores indican las correcciones y sus respectivas desviaciones estándares de los ángulos de actitud.

Ángulo	Corrección (°)	Desviación estándar (°)		
Heading (Guiñada)	+0.1955	0.0051		
Roll (Alabeo)	+0.0860	0.0008		
Pitch (Cabeceo)	-0.0050	0.0013		

Tabla 4. Resultados de la calibración por Software.

Estos valores fueron validados para ser utilizados durante toda la campaña y se aplicaron al conjunto de datos.

5.5.2. Procesamiento de datos LIDAR

El procesamiento de los datos obtenidos durante los vuelos de medición se realizó en 3 pasos.

- Paso 1: Con el software Inertial Explorer de la empresa canadiense Novatel se analizaron y procesaron los datos GPS cinemáticos junto con los datos inerciales. Los datos GPS fueron procesados con el módulo GrafNav, el que permitió realizar este procedimiento mediante una técnica cinemática en forma diferencial con una o más estaciones de referencia ponderando las bases según su distancia a la antena móvil. Se usó la combinación lineal ionospheric free de las dos frecuencias permitiendo corregir el efecto de la refracción ionosférica. Como efemérides se utilizaron las órbitas precisas del International GNSS Service (http://igscb.jpl.nasa.gov/). Los datos inerciales fueron procesados con el módulo GPS-IMU disponible en el mismo software, empleando la técnica del filtro KALMAN. Para la alineación de la IMU, con el fin de inicializar los ángulos de actitud (Guiñada, Alabeo, Cabeceo) se requirió de un período mínimo de 2 minutos durante el cual el avión estuvo completamente detenido. Este procedimiento no fue posible el día 8 de Agosto, dado que la base GPS de DOMO se apagó antes del término del vuelo, razón por la cual se realizó una alineación cinemática con los datos del acercamiento del avión hacia el aeródromo San Rafael.
- <u>Paso 2</u>: La trayectoria final del vuelo obtenido en base a los datos GPS y los datos inerciales, se utilizó para georeferenciar las mediciones del barredor láser. El producto resultante fue una nube de puntos enlazadas al sistema de referencia terrestre SIRGAS (WGS-84) mediante un software denominado "LMS_GEOREF".
- <u>Paso 3</u>: Post proceso de la nube de puntos. Se aplicó el software TerraSuite (TerraScan, TerraModel, Terrafoto y TerraMatch) de la empresa finlandesa Terrasolid, que permitió la clasificación y calibración de los datos láser, y la generación de Modelos Digitales de Terreno (MDT) y de Modelos Digitales de Superficie (MDS), los cuales en el caso de glaciares son idénticos ya que no se encuentran otros objetos como edificios o vegetación encima del hielo. El objetivo principal de la clasificación es detectar y eliminar puntos erráticos que no superan 0,1 por mil en el conjunto total de datos. A los datos filtrados de esta manera se aplicó la data obtenida en el vuelo de calibración.

Dicha nube de puntos filtrados y calibrados sirvió como base para la triangulación de los datos mediante una red de triángulos irregulares (Triangulated irregular network TIN), la cual fue exportada como un archivo tipo raster. Las curvas de nivel se derivaron en base a la nube de puntos filtrada para obtener curvas suavizadas. Se omitieron depresiones y elevaciones de menos de 100 m² de área. Para facilitar el manejo de la cantidad de datos se seccionó la transecta en un total de 21 bloques de entre 5 a 7 km de largo.

5.5.3. Ortofotomosaico verdaderas visibles RGB DMC

Con las imágenes tomadas con la cámara DMC, se procedió a generar los mosaicos de ortoimágenes de resolución espacial 0,5 x 0,5 m de pixel, cortadas en función de la distribución de láminas requeridas para el proyecto.

Los procedimientos utilizados para la generación de las ortoimágenes son los siguientes:

- Rectificación diferencial geométrica con interpolación bicúbica, cuya metodología considera los 16 píxeles más cercanos, haciendo que el volumen de cálculo sea mucho más elevado, mejorando la imagen mediante la reducción del efecto del ruido.
- Control de la ortoimagen haciendo una comparación con su respectiva imagen de intensidad para la verificación de ausencias de deformaciones en ésta.
- La homogeneidad en el contraste entre imágenes para el mejoramiento de su legibilidad, se realizó a través de un análisis de los histogramas de cada imagen y aplicando algoritmos correspondientes, propios del software Ortho Visata de INPHO, para corregir y balancear las zonas de alto contraste.

5.6. Resultado y producto

El software TerraScan en conjunto con TerraMatch incluye algunas herramientas de control de calidad de los datos. El parámetro que entrega para evaluar la precisión de los datos es la magnitud media de las diferencias de altura (MAG) entre líneas de vuelo traslapadas, según Ecuación 1.

MAG =
$$\frac{\sum_{i=1}^{n} ||x_{1,i} - x_{2,i}||}{n}$$
 (Ecuación 1)

En la mayoría de los casos este parámetro entrega valores similares al parámetro RMS (Ecuación 2) más comúnmente utilizado en la estadística, pero tiende a ser hasta un 20 por ciento menor.

RMS =
$$\sqrt{\frac{\sum_{i=1}^{n} (x_{1,i} - x_{2,i})^2}{n}}$$
 (Ecuación 2)

Día	Magnitud	Bloque	Magnitud	Bloque	Magnitud	Bloque	Magnitud
03/08/11	0.57	SR1	3.84	P8	0.24	C15	0.33
04/08/11	0.80	SR2	2.35	P9	0.26	C16	0.73
06/08/11	0.34	SR3	1.44	P10	0.38	C17	0.79
07/08/11	0.14	SR4	1.00	P11	0.32	C18	0.69
08/08/11	0.52	SR5	0.44	P12	0.44	C19	0.42
18/08/11	0.42	SR6	0.26	P13	0.46	C20	0.39
		P7	0.29	C14	0.35	C21	0.73

Tabla 5. Magnitud media de diferencias (m) en altura entre líneas de vuelo ordenadas por día (las 2 primeras columnas) y bloque (las restantes).

La magnitud promedio de todos los días (segunda columna en Tabla 5), entrega un valor de 0,46 m. No tomando en cuenta los bloques de San Rafael SR1 a SR4 que se ven afectados por cambios temporales durante la campaña, el promedio de magnitud de todos los bloques restantes resulta 0,44 m (suma de todos los valores, divididos por el número total de éstos) Basándose entonces en esta herramienta de control, los métodos y técnicas ya descritos permiten obtener transectas de topografía superficial para los glaciares en estudio con una precisión decimétrica.

A continuación se presentan valores de los parámetros obtenidos en los vuelos efectuados en la transecta de Campo de Hielo Norte:

Modelo digital de superficie y modelo digital de terreno Resolución: 5 m. Precisión: >0,5 m. Distribuido en 21 láminas, en formato ASCII y *.geotiff.

Las 21 láminas que componen el modelo de terreno de la transecta SAN RAFAEL – COLONIA, pueden ser visualizadas de manera general en la Figura 8. Las imágenes en formato ASCII y *.geotiff, integran del presente informe en medio magnético.

Figura 8. Modelo de terreno de la transecta SAN RAFAEL - COLONIA.

<u>Curvas de nivel</u> Equidistancia: 5 m. Curvas de nivel en formato *.dwg y *.shp.

Las curvas de nivel generadas en la transecta SAN RAFAEL – COLONIA, pueden ser visualizadas de manera general en la Figura 9. Las imágenes digitales en formato *.dwg y *.shp, integran del presente informe en medio magnético.

Figura 9. Curvas de nivel transecta SAN RAFAEL - COLONIA.

Imagen de intensidad LIDAR Resolución: 5 m. Imagen de intensidad en formato *.geotiff.

La imagen de intensidad de la transecta SAN RAFAEL – COLONIA, puede ser visualizada de manera general en la Figura 10. Las imágenes digitales en formato *.geotiff, integran el presente informe en medio magnético.

Figura 10. Imagen de intensidad transecta SAN RAFAEL - COLONIA

Ortoimágenes verdaderas visibles RGB

Ortofotos de resolución espacial 0,5 x 0,5 m de tamaño de pixel, georeferenciadas en formato *.geotiff, proyección UTM, elipsoide de WGS-84. La serie de imágenes digitales que componen las ortofotos, integran el presente informe en medio magnético.

VI. COMENTARIOS Y CONCLUSIONES

En relación a la data capturada y considerando que los vuelos se efectuaron a lo largo de 15 días, se produjeron dificultades para determinar un modelo de terreno único. Los factores que afectaron el resultado fueron la acumulación de nieve durante la campaña y el flujo de hielo en la sección terminal de los glaciares. El efecto de la acumulación se advierte básicamente en el área del plateau entre los vuelos iniciales de la campaña y el último vuelo el día 18 de Agosto, visualmente se observaban más grietas que en el vuelo anterior y el plateau se apreciaba más descubierto que en el vuelo de la transecta completa efectuado el 3 de Agosto.

Aunque las fotos tomadas por el sistema no corroboran la impresión cualitativa por falta de imágenes repetitivas en la zona agrietada, los datos láser del día 3 de Agosto obtenidos a lo largo de toda la transecta permiten estimar el impacto de los cambios temporales en la elevación de la superficie en comparación a las mediciones de los días siguientes. Por lo tanto, comparando los datos de la zona central del plateau del día 7 de Agosto con el perfil longitudinal de día 3, la diferencia promedio analizando 172.000 puntos es de 0,04 m con una desviación estándar de 0,27 m. El día 18 de Agosto la superficie monitoreada en 189.000 puntos de la zona plateau sur de la transecta estaba 0,23 m más elevada con una desviación estándar de 0,34 m. Este aumento de la altura se atribuye a la acumulación que ocurrió durante el período de malas condiciones climáticas que provocó la interrupción de la campaña durante 9 días.

El Glaciar San Rafael se mueve con una velocidad máxima de 16 md⁻¹ en su frente y con velocidades del orden de 5 a 6 md⁻¹ a unos 800 m del frente (Maas, 2010). Este movimiento no es despreciable ya que significa una alteración de la superficie del glaciar incluso en cuestión de días. Mientras el flujo de hielo no debería cambiar la elevación general del glaciar a corto plazo, sí cambia el patrón de grietas en su superficie; lo cual se comprueba en las medidas de precisión comparando los datos adquiridos en diferentes días.

VII. BIBLIOGRAFÍA

MAAS, H.-G.; CASASSA, G.; SCHNEIDER, D.; SCHWALBE, E. & WENDT, A. 2010. Photogrammetric determination of spatio-temporal velocity fields at Glaciar San Rafael in the Northern Patagonian Icefield, The Cryosphere Discuss., 4, 2415–2432, i:10.5194/tcd- 4-2415-2010.

RIGNOT, E.; RIVERA, A. & CASASSA, G. 2003. Contribution of the Patagonia Icefields of South America to Global Sea Level Rise, Science , 302, 434-437.

RIVERA, A.; BENHAM, T.; CASASSA, G.; BAMBER, J. & DOWDESWELL, J. 2007. Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global and Planetary Change, 59, 126-137.

TOHARIA, M. El clima, el calentamiento global y el futuro del planeta. 2006. Ensayo, Editorial Debate.

ANEXO A Coordenadas del vuelo LIDAR

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803_0244.TIF	310592,032	-46,7302782	-73,4594687	1857,056	-1,0996	2,279	264,4796
20110803_0245.TIF	310596,904	-46,7307349	-73,4633638	1850,358	0,6899	1,9525	264,3524
20110803_0246.TIF	310601,927	-46,7312018	-73,4674271	1846,088	1,47	2,6665	266,14
20110803_0247.TIF	310606,951	-46,731616	-73,4714951	1844,966	1,3281	2,6136	266,5428
20110803_0248.TIF	310611,973	-46,7319922	-73,4755563	1844,43	2,0412	2,4403	268,3563
20110803_0249.TIF	310616,999	-46,7322179	-73,4796005	1850,548	10,6811	4,8216	274,6892
20110803_0250.TIF	310621,912	-46,7320764	-73,4834208	1858,693	0,2984	1,2917	281,4602
20110803_0251.TIF	310626,934	-46,7317853	-73,4873116	1853,315	-2,1942	1,4384	281,0313
20110803_0252.TIF	310631,958	-46,7315708	-73,4912718	1853,452	-3,918	2,066	275,9598
20110803_0253.TIF	310636,981	-46,7315091	-73,4952752	1855,854	-1,5552	2,7581	275,0642
20110803_0254.TIF	310642,004	-46,7315093	-73,4992719	1860,92	-0,4193	3,1005	274,5426
20110803_0255.TIF	310646,918	-46,7315434	-73,5031669	1863,084	-0,512	2,3413	273,4356
20110803_0256.TIF	310651,942	-46,7316087	-73,5071647	1861,45	-7,8363	2,0532	274,1348
20110803_0257.TIF	310656,966	-46,7318519	-73,5111969	1858,934	-4,767	2,6374	268,1615
20110803_0258.TIF	310661,989	-46,7322812	-73,5152249	1859,317	-0,5328	3,263	266,3286
20110803_0259.TIF	310666,904	-46,7327439	-73,5191351	1862,45	1,0079	3,4148	264,8214
20110803_0260.TIF	310671,926	-46,7332123	-73,5231161	1856,026	2,3032	1,1718	266,3354
20110803_0261.TIF	310676,949	-46,7336015	-73,5271698	1841,187	0,5107	0,1659	268,7104
20110803_0262.TIF	310681,972	-46,733928	-73,5313253	1825,794	2,706	0,1567	269,7711
20110803_0263.TIF	310686,996	-46,7341613	-73,5355582	1814,239	2,6662	1,286	271,7678
20110803_0264.TIF	310691,91	-46,7342818	-73,5397199	1807,692	1,773	1,0702	273,8357
20110803_0265.TIF	310696,934	-46,7343458	-73,5439865	1796,771	1,1221	-0,3127	274,8273
20110803_0266.TIF	310701,957	-46,7343644	-73,5483148	1780,478	0,544	-0,9657	275,8546
20110803_0267.TIF	310706,98	-46,7343239	-73,5527246	1759,693	0,3168	-0,59	276,524
20110803_0268.TIF	310712,005	-46,7342491	-73,5571989	1746,03	-0,6092	-0,3763	276,2518
20110803_0269.TIF	310716,92	-46,7341567	-73,5615931	1728,622	3,0764	-0,7662	276,983
20110803_0270.TIF	310721,942	-46,733962	-73,5661134	1709,407	4,7742	-1,2236	279,2396
20110803_0271.TIF	310726,964	-46,7336052	-73,570661	1691,451	2,8285	-0,7833	283,1137
20110803_0272.TIF	310731,993	-46,7331301	-73,575217	1677,031	-0,3268	-1,9311	282,4591
20110803_0273.TIF	310736,903	-46,732715	-73,5797246	1655,248	-8,5496	-2,0246	279,8997
20110803_0274.TIF	310741,926	-46,7325479	-73,5844478	1639,986	-3,7089	-0,4992	274,6524
20110803_0275.TIF	310746,954	-46,7325707	-73,5891822	1633,288	-3,2621	0,735	273,325
20110803_0276.TIF	310751,977	-46,7327068	-73,5938523	1628,627	-5,0583	0,6241	271,2826
20110803_0277.TIF	310757	-46,7330125	-73,5984732	1621,59	-5,4597	0,7836	267,0435
20110803_0278.TIF	310761,914	-46,733532	-73,6029629	1612,14	-1,8998	-0,8215	263,6582

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803_0279.TIF	310766,936	-46,734174	-73,6075748	1599,942	-2,3353	-0,4247	262,6363
20110803_0280.TIF	310771,96	-46,7349852	-73,6121819	1588,277	-14,9051	-0,443	7 255.7339
20110803_0281.TIF	310776,984	-46,7362537	-73,6166545	1575,484	-3,0064	0,2961	249,5861
20110803_0282.TIF	310782,009	-46,737693	-73,621043	1569,979	-1,9965	1,1715	248,2213
20110803_0283.TIF	310786,923	-46,7391219	-73,6252697	1567,104	14,2033	2,5009	252,378
20110803_0284.TIF	310791,946	-46,7400435	-73,6296926	1574,248	25,5255	4,4942	268,2746
20110803_0285.TIF	310796,967	-46,7399615	-73,6340286	1584,671	18,5597	1,0251	284,5277
20110803_0286.TIF	310801,991	-46,7391659	-73,6381151	1577,375	0,5377	1,0631	292,7832
20110803_0287.TIF	310807,016	-46,73823	-73,6421635	1571,672	-2,3334	-0,4955	291,0705
20110803_0288.TIF	310811,929	-46,7374009	-73,646224	1558,071	-0,2424	0,0767	289,6679
20110803_0289.TIF	310816,951	-46,7365777	-73,650447	1549,727	-0,6307	1,2309	289,1253
20110803_0290.TIF	310821,974	-46,7357674	-73,654674	1544,864	-0,7637	0,7834	288,0135
20110803_0291.TIF	310826,999	-46,7349458	-73,6589112	1534,241	4,5336	-0,0819	290,4032
20110803_0292.TIF	310831,911	-46,7339929	-73,6630414	1522,323	-0,2533	0,4325	292,5584
20110803_0293.TIF	310836,936	-46,7329788	-73,6672943	1509,057	-2,4839	-0,9359	291,1494
20110803_0294.TIF	310841,954	-46,7320137	-73,6716666	1491,566	-1,3253	-0,7233	289,1482
20110803_0295.TIF	310846,978	-46,7311189	-73,6761432	1479,112	-0,5753	0,7742	288,0325
20110803_0296.TIF	310852,003	-46,7302606	-73,6806114	1474,297	1,47	1,059	289,7584
20110803_0297.TIF	310856,921	-46,7293811	-73,6849078	1471,528	-0,0779	1,1347	290,4157
20110803_0298.TIF	310861,944	-46,7284769	-73,6892424	1467,963	-0,9314	0,9294	290,4018
20110803_0299.TIF	310866,967	-46,7275983	-73,6935567	1462,101	0,3557	0,7298	290,0347
20110803_0300.TIF	310871,988	-46,7267081	-73,6978545	1455,263	1,6588	0,4594	291,3837
20110803_0301.TIF	310877,014	-46,725761	-73,7021234	1447,398	1,2162	-0,0486	291,9001
20110803_0302.TIF	310881,928	-46,7248101	-73,706306	1436,719	0,1851	-0,4314	290,7978
20110803_0303.TIF	310886,955	-46,723856	-73,7106421	1420,069	0,015	-2,668	290,7735
20110803_0304.TIF	310891,969	-46,7229134	-73,7150976	1392,459	-1,2759	-2,8526	288,9301
20110803_0305.TIF	310896,996	-46,721992	-73,7197228	1369,948	0,114	-2,9137	290,4495
20110803_0306.TIF	310901,914	-46,7210743	-73,7242193	1346,783	-1,5904	-2,661	289,9795
20110803_0307.TIF	310906,924	-46,720189	-73,7286462	1320,508	-2,2516	-3,5041	288,6184
20110803_0308.TIF	310911,958	-46,7193895	-73,7329274	1286,352	0,4966	-4,5192	289,4447
20110803_0309.TIF	310916,982	-46,7185921	-73,7370752	1244,458	1,6662	-5,2925	292,1403
20110803_0310.TIF	310922,005	-46,7176516	-73,7410722	1200,8	2,3664	-5,1602	296,8006
20110803_0311.TIF	310926,92	-46,7165671	-73,7448285	1161,846	-1,1964	-0,7237	296,5099
20110803_0312.TIF	310931,943	-46,7154983	-73,7485404	1134,211	-0,3344	-3,0457	296,5879
20110803_0313.TIF	310936,966	-46,7144109	-73,7521949	1097,275	-2,1479	-5,3414	294,1859
20110803_0314.TIF	310941,989	-46,7133379	-73,7560481	1049,642	-1,5619	-4,7399	293,8525
20110803_0315.TIF	310947,013	-46,7122672	-73,7600864	1016,495	-2,3721	-1,3277	291,8073
20110803_0316.TIF	310951,927	-46,7112541	-73,7640284	1000,456	-2,4554	0,2155	291,0993

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803_0317.TIF	310956,952	-46,7102874	-73,7680143	982,816	0.5312 -0	.9156 29	0,6329
20110803_0318.TIF	310961,973	-46,7093118	-73,7719643	964,259	0.9079 -1	.0284 29	2,1225
20110803_0319.TIF	310966,997	-46,7082803	-73,7758372	950,795	-0.5807 0.	8139 29	2,1042
20110803_0320.TIF	310971,911	-46,7072908	-73,7795257	941,472	-1.6080 3.	0671 29	0,9023
20110803_0321.TIF	310976,937	-46,7063608	-73,7831974	934,882	-0.1123 0.	0785 29	0,8892
20110803_0322.TIF	310981,958	-46,7054493	-73,7868094	920,477	1.0377 1.	4512 29	0,0797
20110803_0323.TIF	310986,981	-46,7045169	-73,7903755	909,343	0.9263 0.	6187 29	1,9192
20110803_0324.TIF	310992,005	-46,7035223	-73,7939047	896,526	2.1247 0.	2515 29	4,1849
20110803_0325.TIF	310996,919	-46,7024771	-73,797334	881,776	-0,73	.4233 29	3,7002
20110803_0326.TIF	311001,942	-46,7014393	-73,8009069	862,2	-1.1613 0.	0196 29	0,4945
20110803_0327.TIF	311006,965	-46,7004474	-73,8045324	846,873	-3,2195	.0682 28	9,5509
20110803_0328.TIF	311011,988	-46,6994766	-73,8082331	820,935	2.3074 -2	.2789 29	0,6769
20110803_0329.TIF	311017,012	-46,6984467	-73,8120115	794,242	-2,0065	.2491 29	1,2458
20110803_0330.TIF	311021,926	-46,6974062	-73,8157393	779,124	-0.6888 0.	2988 29	1,5207
20110803_0331.TIF	311026,95	-46,6963402	-73,8194904	773,263	0.4363 0.	1472 29	2,5244
20110803_0332.TIF	311031,973	-46,6952519	-73,8231837	758,827	-0,6652	.3922 29	2,5528
20110803_0333.TIF	311036,996	-46,694163	-73,8268809	742,394	-3,5061	.0747 29	3,0698
20110803_0334.TIF	311042,021	-46,6930716	-73,8306387	708,548	1.1956 -4	.3766 29	3,7753
20110803_0335.TIF	311046,935	-46,6919149	-73,8344159	672,982	1.3987 -4	.5764 29	2,9357
20110803_0336.TIF	311051,957	-46,6907002	-73,8384191	634,322	-7,6617	.4230 29	3,3882
20110803_0337.TIF	311056,97	-46,6894935	-73,8425718	590,49	-3,1209	.9172 29	4,1241
20110803_0338.TIF	311062,004	-46,6882331	-73,8467896	552,821	-3,9157	.8325 29	2,3573
20110803_0339.TIF	311066,918	-46,6869984	-73,8509491	522,895	-2,7472	.9707 29	6,2311
20110803_0340.TIF	311071,946	-46,6857255	-73,855178	500,266	-1,4262	.7664 29	6,1562
20110803_0341.TIF	311076,968	-46,684476	-73,8593348	493,952	-4,7418	.0060 29	7,3379
20110803_0342.TIF	311081,989	-46,683285	-73,863406	479,087	-4,2502	.3829 29	6,6896
20110803_0343.TIF	311087,012	-46,6820968	-73,8674407	458,11	1.8066 -1	.5377 29	9,4771
20110803_0344.TIF	311091,935	-46,6808831	-73,8713409	437,814	-4,0783	.4906 29	9,4964
20110803_0345.TIF	311096,952	-46,67969	-73,87535	412,2	-4,6498	.8104 30	0,3334
20110803_0346.TIF	311101,987	-46,678567	-73,8794058	391,602	1.6653 -1	.4549 29	8,978
20110803_0347.TIF	311107,004	-46,6773805	-73,8833272	372,339	13.0368 -1	.0873 30	5,506
20110803_0348.TIF	311112,018	-46,6758446	-73,88682	354,426	9.4534 -2	.0772 31	5,217
20110803_0349.TIF	311116,934	-46,6740791	-73,8898672	337,655	0.7385 -0	.9855 32	0,1723
20110803_0350.TIF	311121,96	-46,6722178	-73,8928407	327,553	0.3583 -0	.1106 32	0,745
20110803_0351.TIF	311126,967	-46,67037	-73,8957029	319,203	3.1684 0.	2653 32	2,7743
20110803_0352.TIF	311132,003	-46,6685008	-73,8984423	308,981	-1.1670 0.	1120 32	3,5933
20110803_0353.TIF	311136,936	-46,6667346	-73,901132	300,653	-6.9070 1.	1942 32	0,711

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803_0354.TIF	311141,944	-46,6651237	-73,9040376	292,576	-13,3363	2,2706	315,3138
20110803_0355.TIF	311146,964	-46,6638921	-73,9073308	284,512	-19,5103	3,0332	299,2183
20110803_0356.TIF	311151,992	-46,663278	-73,9111167	279,18	-6.8534 1.	7925 28	6,5803
20110803_0357.TIF	311157,011	-46,6629619	-73,9150582	273,342	-0.3800 2.	7240 28	6,2123
20110803_0358.TIF	311161,937	-46,6626701	-73,918926	269,783	1.6593 1.	4755 28	6,5096
20110803_0359.TIF	311166,947	-46,6623012	-73,922842	265,193	7.5531 1.	5475 29	0,7768
20110803_0360.TIF	311172,007	-46,6616902	-73,926687	258,339	5.5723 1.	3271 29	6,9546
20110803_0361.TIF	311177,015	-46,6608878	-73,9304023	249,982	0.1995 1.	4143 29	9,5519
20110803_0362.TIF	311182,005	-46,6600936	-73,9341532	241,736	-21,1654	2,4527	291,91
20110803_0363.TIF	311186,932	-46,660017	-73,9381808	242,42	-32,5807	4,3185	267,8465
20110803_0364.TIF	311191,956	-46,6611872	-73,9421395	244,849	-33,6675	3,3999	238,1124
20110803_0365.TIF	311196,998	-46,6635111	-73,9450474	243,711	-34,7983	4,8271	204,5854
20110803_0366.TIF	311202,024	-46,666444	-73,9460333	242,958	-39,0179	4,8961	169,3928
20110803_0367.TIF	311206,903	-46,6690435	-73,9447412	240,641	-40,6349	2,4664	127,9907
20110803_0368.TIF	311211,963	-46,6706621	-73,9417766	233,269	-18,7423	3,8938	101,0166
20110803_0369.TIF	311216,977	-46,6713346	-73,9384726	235,449	-10,7795	4,4704	84,6997
20110803_0370.TIF	311222,008	-46,6715113	-73,9351373	237,944	1.5064 4.	2875 80	0,8033
20110803_0371.TIF	311227,03	-46,6716942	-73,9317826	248,821	5.2112 8.	2323 85	0,3789
20110803_0372.TIF	311231,932	-46,6720372	-73,9286083	266,145	0.7405 7.	0422 87	0,7414
20110803_0373.TIF	311236,952	-46,6724145	-73,9254173	276,055	-0.7995 5.	7230 86	0,7518
20110803_0374.TIF	311241,971	-46,6727583	-73,9222206	283,823	2.9710 6.	1061 87	0,3746
20110803_0375.TIF	311247,015	-46,6731442	-73,9190037	291,836	-0.2074 5.	8093 88	0,1344
20110803_0376.TIF	311252,071	-46,6735126	-73,9158009	304,552	1.2634 7.	0264 87	0,7871
20110803_0377.TIF	311256,919	-46,673873	-73,9127361	306,199	0.7603 3.	2603 88	0,4616
20110803_0378.TIF	311261,971	-46,6742586	-73,9094231	309,57	3.1098 5.	2335 89	0,7759
20110803_0379.TIF	311266,998	-46,6747391	-73,9061007	316,666	2.5532 4.	4037 93	0,1499
20110803_0380.TIF	311272,015	-46,6753525	-73,9027545	321,432	0.1986 4.	2067 96	0,3309
20110803_0381.TIF	311277,024	-46,6760013	-73,8993657	326,972	-3.1196 3.	3274 92	0,4907
20110803_0382.TIF	311281,952	-46,6765333	-73,8959612	333,847	0.3231 4.	8473 91	0,7854
20110803_0383.TIF	311286,962	-46,6770609	-73,892497	347,974	11.3263 4.	9291 97	0,1219
20110803_0384.TIF	311291,984	-46,6779249	-73,8890908	359,311	-1.5551 3.	7418 10	3,0781
20110803_0385.TIF	311297,014	-46,678889	-73,8856821	370,341	-3.9290 6.	5956 10	0,655
20110803_0386.TIF	311301,923	-46,6797107	-73,8823773	386,331	0.3031 4.	4990 99	0,8465
20110803_0387.TIF	311306,947	-46,6805354	-73,8789669	391,185	6.6533 3.	3213 10	4,0889
20110803_0388.TIF	311311,981	-46,6815531	-73,8754567	384,506	-0.1758 1.	5300 10	7,7904
20110803_0389.TIF	311317,038	-46,6826456	-73,8717576	387,572	-4.8117 4.	4166 10	6,9058
20110803_0390.TIF	311322,016	-46,6835944	-73,8680182	397,715	3.2032 4.	1838 10	7,7868
20110803_0391.TIF	311326,928	-46,6845696	-73,8643114	405,034	-4.0269 3.	5350 10	5,1187

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803_0392.TIF	311331,963	-46,6855076	-73,8604069	412,339	0.5486 3.	6201 10	8,9814
20110803_0393.TIF	311336,977	-46,6864452	-73,8564537	425,057	3.5394 3.	7298 10	8,4119
20110803_0394.TIF	311342,006	-46,6875008	-73,8524817	439,532	4.2091 4.	1853 11	2,0393
20110803_0395.TIF	311347,023	-46,6886321	-73,8485375	450,55	1.7753 2.	5483 11	2,0331
20110803_0396.TIF	311351,937	-46,6897604	-73,8446132	457,363	-0.4799 3.	2758 11	3,2434
20110803_0397.TIF	311356,96	-46,6908617	-73,8405882	470,459	-0.9211 5.	9977 11	4,4692
20110803_0398.TIF	311361,983	-46,6919279	-73,8366866	492,411	1.4284 6.	7476 11	4,799
20110803_0399.TIF	311367,006	-46,692986	-73,8329841	521,29	0.4638 9.	4721 11	4,6055
20110803_0400.TIF	311371,921	-46,6939953	-73,8295997	553,77	0.7809 8.	5476 11	4,4756
20110803_0401.TIF	311376,933	-46,6950087	-73,8262649	578,239	1.2293 8.	0101 11	3,4844
20110803_0402.TIF	311381,967	-46,6960205	-73,8229321	597,652	0.6402 7.	9610 11	4,6893
20110803_0403.TIF	311386,99	-46,6970027	-73,8196282	625,673	-0.1506 11	.8242 11	2,4541
20110803_0404.TIF	311392,014	-46,6978656	-73,8164213	661,217	-3.7960 11	.3040 11	1,3198
20110803_0405.TIF	311396,928	-46,698611	-73,8132654	684,013	4.3209 9.	9760 11	0,2967
20110803_0406.TIF	311401,952	-46,6994501	-73,8100886	714,389	0.8344 10	.9612 11	3,3123
20110803_0407.TIF	311406,975	-46,7002939	-73,806971	745,999	0.7652 10	.8103 11	4,1362
20110803_0408.TIF	311412,004	-46,7011332	-73,8038614	774,527	-3.9542 12	.3272 11	2,9765
20110803_0409.TIF	311417,021	-46,7018934	-73,8007455	802,961	-2.6843 11	.4125 10	9,7551
20110803_0410.TIF	311421,935	-46,7025507	-73,7976329	826,132	4.9661 10	.6430 10	8,5846
20110803_0411.TIF	311426,959	-46,7033197	-73,7944515	846,159	3.7737 9.	5521 11	4,4577
20110803_0412.TIF	311431,982	-46,7042397	-73,7912576	862,313	1.9937 8.	7547 11	5,7285
20110803_0413.TIF	311437,005	-46,7052381	-73,7880105	882,136	-0.7636 9.	2322 11	3,3822
20110803_0414.TIF	311441,919	-46,7061643	-73,7847504	903,721	0.1592 8.	6345 11	1,6929
20110803_0415.TIF	311446,943	-46,7070804	-73,781333	921,803	0.6915 5.	9959 11	0,3005
20110803_0416.TIF	311451,966	-46,7080098	-73,7777816	932,821	1.1861 5.	4803 10	9,7126
20110803_0417.TIF	311456,978	-46,7089859	-73,7741461	946,603	1.5877 5.	5116 11	0,9259
20110803_0418.TIF	311462,012	-46,7100158	-73,7704264	961,802	0.9101 6.	2238 11	1,9026
20110803_0419.TIF	311466,928	-46,7110572	-73,7667654	976,81	0.9471 3.	8547 11	1,2731
20110803_0420.TIF	311471,951	-46,7121688	-73,7629479	981,556	-1.8303 3.	0072 11	1,564
20110803_0421.TIF	311476,973	-46,7131148	-73,7589328	991,732	-27,6711	6,1029	98,6685
20110803_0422.TIF	311481,997	-46,7130546	-73,7547956	1018,382	-24,519	6,368	74,4369
20110803_0423.TIF	311487,02	-46,7120548	-73,7509847	1031,963	-19,0038	3,3588	58,2705
20110803_0424.TIF	311491,935	-46,7103836	-73,747745	1039,365	-18,7144	2,1457	44,4273
20110803_0425.TIF	311496,957	-46,7081329	-73,7450467	1043,735	-8,9935	3,9366	32,6236
20110803_0426.TIF	311501,98	-46,7056146	-73,7427898	1048,122	-2,1871	1,7942	28,438
20110803_0427.TIF	311507,005	-46,7030145	-73,7406748	1054,885	-0,8054	3,5043	27,1066
20110803_0428.TIF	311512,027	-46,7004509	-73,738668	1063,4	-11,4875	3,1309	24,8796
20110803_0429.TIF	311516,942	-46,6979316	-73,7368917	1064,248	13,5415	3,5952	28,9952

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803_0430.TIF	311521,964	-46,6956282	-73,7344937	1069,272	16,1945	3,004	40,4066
20110803_0431.TIF	311526,988	-46,6936782	-73,7313987	1070,925	11,6259	2,4181	50,3294
20110803_0432.TIF	311532,011	-46,6920664	-73,7278192	1075,118	9,1596	3,4232	56,6113
20110803_0433.TIF	311536,927	-46,690785	-73,7240783	1080,52	3,4831	3,2014	63,3645
20110803_0434.TIF	311541,951	-46,6896249	-73,7201932	1086,837	-1,0988	3,3692	63,0538
20110803_0435.TIF	311546,972	-46,6884453	-73,7163758	1092,994	1,9511	3,6062	64,0376
20110803_0436.TIF	311551,995	-46,6873174	-73,7125757	1101,462	-0,6301	3,7201	64,6759
20110803_0437.TIF	311557,019	-46,6861923	-73,7088411	1111,286	-0,6444	4,0062	64,3676
20110803_0438.TIF	311561,921	-46,6850665	-73,705281	1121,328	-0,6506	3,8938	64,1377
20110803_0439.TIF	311566,956	-46,6839016	-73,7016889	1131,543	0,8271	3,8078	64,0458
20110803_0440.TIF	311571,969	-46,6827508	-73,698144	1137,124	-0,2728	2,5651	62,9983
20110803_0441.TIF	311577,003	-46,6815849	-73,6945708	1139,876	0,9356	2,3292	63,8762
20110803_0442.TIF	311582,026	-46,6804013	-73,6909809	1138,926	2,5693	2,6085	58,6784
20110803_0443.TIF	311586,94	-46,6792902	-73,68744	1140,962	10,1122	5,3551	61,637
20110803_0444.TIF	311591,964	-46,6784255	-73,6837133	1146,885	7,1727	3,0077	67,0369
20110803_0445.TIF	311596,987	-46,677806	-73,679844	1148,108	5,5825	2,5387	70,9942
20110803_0446.TIF	311602,011	-46,677359	-73,6758392	1146,422	2,7908	3,7737	74,437
20110803_0447.TIF	311606,924	-46,6770585	-73,6718779	1147,669	2,9204	3,5213	76,4525
20110803_0448.TIF	311611,948	-46,6768461	-73,6677776	1143,369	1,4382	2,3992	78,0615
20110803_0449.TIF	311616,965	-46,6766599	-73,6635887	1141,025	-1,1238	2,9318	82,2757
20110803_0450.TIF	311621,99	-46,6764313	-73,6594129	1146,315	1,4636	4,4233	84,2011
20110803_0451.TIF	311627,013	-46,6762348	-73,6553332	1156,55	-1,8364	3,5163	84,713
20110803_0452.TIF	311631,926	-46,676076	-73,6513667	1159,516	1,4285	3,3622	85,7471
20110803_0453.TIF	311637,003	-46,6759641	-73,6472698	1164,007	4,0087	5,4157	85,7357
20110803_0454.TIF	311641,974	-46,6759098	-73,6433288	1173,23	2,1874	2,3879	88,1388
20110803_0455.TIF	311646,997	-46,6758585	-73,639301	1170,944	-1,5207	0,8822	85,7986
20110803_0456.TIF	311652,072	-46,6757395	-73,6351643	1173,693	-4,1589	4,5499	84,7007
20110803_0457.TIF	311656,934	-46,6755256	-73,63128	1187,969	2,7684	5,6621	79,0021
20110803_0458.TIF	311661,957	-46,6753728	-73,6273827	1211,166	2,9334	5,7086	80,4233
20110803_0459.TIF	311666,981	-46,6753388	-73,6235743	1231,518	2,7659	5,2724	81,1731
20110803_0460.TIF	311672,004	-46,6753496	-73,6197836	1247,717	4,1789	5,1457	81,7896
20110803_0461.TIF	311676,924	-46,6754227	-73,6160458	1261,27	6,5815	5,2301	84,224
20110803_0462.TIF	311681,941	-46,6757087	-73,6122132	1276,035	8,7929	6,4033	95,2259
20110803_0463.TIF	311686,965	-46,6763824	-73,6084385	1292,856	14,8683	6,8674	103,6005
20110803_0464.TIF	311691,991	-46,6775421	-73,6048479	1305,728	12,2367	4,2426	116,6314
20110803_0465.TIF	311697,012	-46,6791472	-73,6015104	1317,598	8,619	6,1126	123,5828
20110803_0466.TIF	311701,925	-46,6810201	-73,5985432	1335,029	8,6523	4,8871	130,2193
20110803_0467.TIF	311706,955	-46,6832561	-73,5958767	1352,086	15,2892	5,7845	141,1637

FOTOS LIDAR	GPS Time (sec)	Latitud (Deg)	Longitud (Deg)	H-Ell (m)	Roll (Deg)	Pitch (Deg)	Heading (Deg)
20110803 0468.TIF	311711.965	-46.6858228	-73,5938661	1368,694	6,6074	10.5072	152,9462
20110803 0469.TIF	311716,996	-46,6884372	-73,5923434	1397,489	1,7159	9,2222	155,1479
20110803 0470.TIF	311722,019	-46,6910129	-73,5909473	1410,673	2,8583	7,0993	156,6933
20110803_0471.TIF	311726,933	-46,693589	-73,5896358	1417,545	1,78	6,1632	158,868
20110803_0472.TIF	311731,958	-46,6962911	-73,5883635	1426,011	11,5387	7,1976	161,0792
20110803_0473.TIF	311736,983	-46,6990982	-73,5875787	1439,947	20,9847	7,8415	176,7754
20110803_0474.TIF	311742,004	-46,7019339	-73,5879389	1456,177	24,6735	7,416	196,6664
20110803_0475.TIF	311747,027	-46,7045121	-73,5895935	1466,793	26,8965	6,3071	219,9063
20110803_0476.TIF	311751,944	-46,7064611	-73,5923731	1469,95	21,7848	3,882	240,0146
20110803_0477.TIF	311756,97	-46,7076522	-73,5960036	1479,509	26,2612	5,2537	264,1063
20110803_0478.TIF	311761,988	-46,7078004	-73,5998914	1485,63	9,8965	2,6507	282,2417
20110803_0479.TIF	311767,016	-46,7075309	-73,6038816	1475,88	-5,8533	-0,8283	275,5261
20110803_0480.TIF	311771,929	-46,7074842	-73,6080854	1460,971	-0,0781	-0,1866	272,6015
20110803_0481.TIF	311776,953	-46,7074986	-73,612522	1457,555	0,0144	3,7042	273,369
20110803_0482.TIF	311781,978	-46,7075084	-73,6168691	1451,257	-0,8297	-0,19	273,3246
20110803_0483.TIF	311787	-46,7075431	-73,6212573	1441,752	1,9923	1,3807	274,3637
20110803_0484.TIF	311792,022	-46,7075363	-73,6256062	1441,415	-0,4803	1,4861	274,5951
20110803_0485.TIF	311796,938	-46,7075379	-73,6298172	1429,598	-2,3747	0,4934	272,5411
20110803_0486.TIF	311801,961	-46,7075958	-73,6341443	1415,097	2,5749	-1,4124	273,8668
20110803_0487.TIF	311806,987	-46,7076081	-73,6385309	1393,822	0,1711	-1,4969	274,7979
20110803_0488.TIF	311812,009	-46,7075593	-73,6429457	1375,094	1,0205	-0,5201	275,7742
20110803_0489.TIF	311817,032	-46,7074366	-73,6473542	1360,621	-1,0869	-0,3799	276,5786
20110803_0490.TIF	311821,945	-46,7072876	-73,6516429	1347,629	0,8009	0,4038	277,0478
20110803_0491.TIF	311826,97	-46,7071305	-73,6559481	1345,871	-3,5987	1,8159	276,101
20110803_0492.TIF	311831,992	-46,7070698	-73,6601381	1340,606	-1,2124	0,684	274,4913
20110803_0493.TIF	311837,005	-46,7070416	-73,6642595	1332,09	0,8328	2,2393	275,0075
20110803_0494.TIF	311841,93	-46,7069869	-73,6682419	1327,094	-0,8032	0,3109	275,3039
20110803_0495.TIF	311846,953	-46,7069334	-73,672291	1320,571	-0,4211	0,4319	275,466
20110803_0496.TIF	311851,977	-46,7068787	-73,6763252	1314,084	-1,2834	1,1219	275,5528
20110803_0497.TIF	311856,999	-46,7068284	-73,6803363	1299,088	1,5894	-0,2676	274,1006
20110803_0498.TIF	311862,021	-46,7067348	-73,6843687	1285,296	1,0604	1,786	275,1887
20110803_0499.TIF	311866,937	-46,7066228	-73,688277	1276,477	-1,0697	0,9462	276,0985
20110803_0500.TIF	311871,96	-46,7065474	-73,6922854	1267,194	-0,5875	0,5328	272,5614
20110803_0501.TIF	311876,984	-46,7065065	-73,6963264	1250,919	-0,9648	0,9837	272,8872
20110803_0502.TIF	311882,006	-46,706495	-73,7004037	1235,227	-0,0073	0,8352	272,2577
20110803_0503.TIF	311887,031	-46,7065012	-73,7045042	1224,533	-0,3493	3,3338	272,895
20110803_0504.TIF	311891,945	-46,7064934	-73,7084595	1220,264	2,5361	1,8048	274,3252

Línea	Este	Norte	Altura_N.M.M.	Altura_AGL	LATITUD	LONGITUD
1	603743,17	4826552,88	5738,46	5015,46	-46,70653	-73,642823
1	605100,16	4826420,9	5736,1	5013,1	-46,707505	-73,625046
1	606427,5	4826280,35	5738,63	5015,63	-46,70856	-73,607654
1	607737,24	4826172,23	5737,41	5014,41	-46,709323	-73,590499
2	600771,77	4828490,19	6197,9	5045,9	-46,689555	-73,682109
2	601924,13	4827557,22	6188,83	5036,83	-46,697774	-73,666836
2	603058,72	4826566,63	6189,46	5037,46	-46,706512	-73,651777
2	604221,14	4825700,6	6204,94	5052,94	-46,714123	-73,636379
2	605343,75	4824771,12	6210,72	5058,72	-46,722309	-73,621482
2	606452,58	4823803,43	6209,43	5057,43	-46,73084	-73,606752
2	607593,9	4822932,66	6197,13	5045,13	-46,738491	-73,591615
2	608716,31	4822015,69	6190,49	5038,49	-46,746558	-73,57671
2	609839,82	4821121,57	6181,14	5029,14	-46,754418	-73,561792
2	610930,75	4820164,65	6184,26	5032,26	-46,762847	-73,547281
2	612040,65	4819268,79	6203,26	5051,26	-46,77072	-73,532532
2	613149,8	4818406,86	6213,05	5061,05	-46,778287	-73,517797
2	614246,8	4817547,17	6183,46	5031,46	-46,785834	-73,503218
3	610258,55	4824015,77	6262,4	5002,4	-46,728312	-73,557006
3	610240,5	4822552,03	6256,63	4996,63	-46,741483	-73,556891
3	610303,67	4821093,18	6252,74	4992,74	-46,754597	-73,555714
3	610320,15	4819630,38	6264,33	5004,33	-46,767754	-73,555147
3	610334,94	4818175,88	6270,56	5010,56	-46,780837	-73,554603
3	610375,07	4816726,59	6278,74	5018,74	-46,793868	-73,553728
3	610392,26	4815275,84	6265,85	5005,85	-46,806917	-73,553153
3	610379,18	4813819,83	6267,89	5007,89	-46,820017	-73,552973
3	610448,93	4812364,28	6265,05	5005,05	-46,8331	-73,551707
3	610433,81	4810894,65	6259,79	4999,79	-46,846324	-73,55155
3	610473,95	4809430,99	6259,91	4999,91	-46,859484	-73,550669
3	610453,08	4807973	6257,02	4997,02	-46,872604	-73,55059
3	610481,72	4806517,91	6253,71	4993,71	-46,885689	-73,549862
3	610514,65	4805063,27	6261,19	5001,19	-46,89877	-73,549077
3	610550,02	4803613,48	6263,61	5003,61	-46,911806	-73,54826
3	610560,51	4802170,07	6275,47	5015,47	-46,924789	-73,547772
4	611871,09	4779443,67	6596,89	5062,89	-47,129011	-73,52494
4	611888,23	4780680,99	6631,55	5097,55	-47,117877	-73,525022
4	611890,05	4781960,24	6630,82	5096,82	-47,10637	-73,525316
4	611903,25	4783257,57	6611,77	5077,77	-47,094697	-73,525465

ANEXO B Coordenadas de líneas de vuelo DMC

4	611898,12	4784564,59	6599,75	5065,75	-47,08294	-73,525857
4	611945,73	4785888,36	6597,35	5063,35	-47,071024	-73,525558
4	611886,71	4787153,02	6576,55	5042,55	-47,059658	-73,526649
4	611875,04	4788415,68	6559,13	5025,13	-47,048301	-73,527115
4	611891,3	4789764,34	6559,71	5025,71	-47,036166	-73,527235
4	611879,04	4791102,54	6562,94	5028,94	-47,02413	-73,527728
4	611848,03	4792439,23	6576,44	5042,44	-47,012111	-73,528466
4	611823,52	4793808,44	6582,87	5048,87	-46,999798	-73,529127
4	611853,12	4795148,75	6580,73	5046,73	-46,987736	-73,529069
4	611932,81	4796490,08	6602,3	5068,3	-46,975656	-73,528352
4	611864,87	4797938,07	6602,84	5068,84	-46,962642	-73,529602
4	611888,5	4799387,48	6607,46	5073,46	-46,949599	-73,529649
4	611878,42	4800851,06	6610,65	5076,65	-46,936434	-73,530142
4	611872,93	4802357,89	6596,89	5062,89	-46,92288	-73,530585
4	611882,39	4803877,97	6581,37	5047,37	-46,909204	-73,530835
4	611889,69	4805398,43	6568,8	5034,8	-46,895525	-73,531112
4	611892,03	4806922,79	6564,24	5030,24	-46,881811	-73,531456
5	609448,22	4786076,04	6306,67	5094,67	-47,069755	-73,558488
5	610290,7	4785294,97	6299,55	5087,55	-47,076641	-73,547204
5	611163,06	4784511,11	6307,75	5095,75	-47,083546	-73,535524
5	612116,83	4783718,18	6317,68	5105,68	-47,090517	-73,522766
5	613119,26	4782889,98	6308,72	5096,72	-47,097796	-73,509355
5	614125,54	4781975,99	6292,5	5080,5	-47,105845	-73,495867
5	615159,8	4781131,96	6276,34	5064,34	-47,113257	-73,482025
5	616180,46	4780278,71	6255,47	5043,47	-47,120754	-73,468356
5	617129,19	4779419,7	6262,39	5050,39	-47,128313	-73,45563
5	618064,66	4778590,01	6271,5	5059,5	-47,135609	-73,443082
5	618952,42	4777894,22	6265,59	5053,59	-47,141708	-73,431196
5	619882,51	4777085,04	6248,98	5036,98	-47,148818	-73,418718
5	620813,26	4776231,49	6252,14	5040,14	-47,156326	-73,406216
5	621859,5	4775336,95	6261,33	5049,33	-47,164179	-73,392177
5	622894,03	4774453,72	6245,1	5033,1	-47,171932	-73,378291
5	623920,54	4773542,25	6247,81	5035,81	-47,179938	-73,364499
5	625022,19	4772601,64	6260,96	5048,96	-47,18819	-73,349704
5	626102,55	4771692,47	6252,7	5040,7	-47,196161	-73,335193
5	627158,04	4770760,99	6247,29	5035,29	-47,204336	-73,321
5	628212,35	4769820,42	6259,28	5047,28	-47,212591	-73,306816
6	626363,11	4776693,96	5567,37	5000,37	-47,151124	-73,333163
6	626928,33	4775667,84	5573,72	5006,72	-47,160245	-73,325421
6	627564,92	4774670,62	5588,71	5021,71	-47,169092	-73,316743
6	628230,62	4773587,75	5569,14	5002,14	-47,178702	-73,307653

-						
6	628917,63	4772478,95	5578,56	5011,56	-47,188541	-73,298271
6	629583,63	4771414,31	5562,83	4995,83	-47,197986	-73,289176
6	630253,32	4770376,91	5564,67	4997,67	-47,207184	-73,280037
6	630888,63	4769304,5	5549,05	4982,05	-47,216704	-73,271338
6	631554,1	4768180,46	5567,07	5000,07	-47,226681	-73,262223
6	632340,36	4767058,52	5572,18	5005,18	-47,236614	-73,25151
6	633026,38	4765890,27	5569,21	5002,21	-47,246983	-73,242103
6	633704,36	4764769,04	5568,4	5001,4	-47,256929	-73,232813
6	634375,7	4763638,29	5570,07	5003,07	-47,266962	-73,223603
6	635067,56	4762497,89	5580,07	5013,07	-47,277077	-73,214117
6	635710,69	4761443,12	5581,16	5014,16	-47,28643	-73,205297
6	636315,75	4760485,47	5591,98	5024,98	-47,294918	-73,197006