science for a changing world

Techniques of Water-Resources Investigations of the United States Geological Survey

Chapter Cl

FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION IN TWO DIMENSIONS WITH RESULTS OF NUMERICAL EXPERIMENTS

By P. C. Trescott, G. F. Pinder, and S. P. Larson

Book 7

AUTOMATED DATA PROCESSING AND COMPUTATIONS

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY
H. William Menard, Director

First printing 1976
Second printing 1980

Requests, at cost, for the Card Deck listed in Attachment VII should be directed to: Ralph N. Eicher, Chief, Office of Teleprocessing, M.S. 805, National Center, U.S. Geological Survey, Reston, Virginia 22092.

UNITED STATES GOVERNMENT PRINTING DFFICE, WASHINGTON : 1976

PREFACE

The series of manuals on techniques describes procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major headings called books and further subdivided into sections and chapters; section C of Book 7 is on computer programs.
"Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments" supersedes the report published in 1970 entitled, "A digital model for aquifer evaluation" by G. F. Pinder as Chapter C1 of Book 7. The new Chapter C1 represents a significant improvement in the computational capability to solve the flow equations and has greater flexibility in the hydrologic situations that can be simulated.

CONTENTS

Abstract
Page 1
Introduction 1
Theoretical development 2
Ground-water flow equation 2
Finite-difference approximations 2
Source term 4
Leakage 4
Evapotranspiration
Computation of head at the radius of apumping well8
Combined artesian-water-table simulation_ 10
Transmissivity 11
Storage 11
Leakage 11
Test problems 12
Numerical solution 14
Line successive overrelaxation 15
Two-dimensional correction to LSOR 17
LSOR acceleration parameter 18
Alternating-direction implicit pro- cedure 19
Strongly implicit procedure 21
Comparison of numerical results 27
Considerations in designing an aquifer model 29
Boundary conditions 29
Initial conditions 30
Designing the finite-difference grid 30
Selected references 32
Attachment I, notation 37
Attachment II, computer program 38
Main program 38Attachment II, computer program-ContinuedPage
Subroutine DATAI 38
Time parameters 38
Initialization 40
Subroutine STEP 40
Maximum head change for each iteration 40
Subroutine SOLVE 40
SIP iteration parameters 41
Exceeding permitted iterations 41
Subroutine COEF 41
Transient leakage coefficients 41
Transmissivity as a function of head 41
TR and TC coefficients 41
Subroutine CHECKI 42
Subroutine PRNTAI 42
BLOCK DATA routine 43
Technical Information 43
Storage requirements 43
Computation time 43
Use of disk facilities for storage of array data and interim results 44
Graphical display package 45
Modification of program logic 46
Fortran IV 46
Limitations of program 48
Attachment III, data deck instructions 49
Attachment IV, sample aquifer simulation and job control language 55
Attachment V, generalized flow chart for aquifer simulation model 68
Attachment VI, definition of program variables 74
Attachment VII, program listing 78

FIGURES

Page

1. Index scheme for finite-difference grid and coefficients of finite-difference equation written for node (i, j) 2
2. In the first pumping period, (a) illustrates the head distribution in the confining bed at one time when transient leakage effects are significant; (b) illustrates a time after transient effects have dissipated; in the second pumping period, (c) is analogous to (a) and (d) is analogous to (b) 5
3. The total drawdown at the elapsed time, t, in the pumping period (a) is applied at $t / 3$ in equa- tions 9 and 10 to approximate $q^{*}{ }^{\boldsymbol{c}, g, k}$, the transient part of $q^{\prime}{ }_{4, j, k}(\mathrm{~b})$ 6
4. Comparison of analytic solution and numerical results using factors of 2 and 3 in the transientleakage approximation7
5. Percent difference between the volume of leakage computed with the model approximation and Hantush's analytical results 8
6. Evapotranspiration decreases linearly from $Q_{\text {et }}$ where the water table is at land surface to zero where the water table is less than or equal to $G_{1,-1}-E T_{z}$ 9
7. Flow from cell $(i-1, j)$ to cell (i, j) (a) and equivalent radial flow to well (i, j) with radius $r_{s}(b)$ _ 9
8. Storage adjustment is applied to distance A in conversion from artesian to water-table conditions (a) and to distance B in conversion from water-table to artesian conditions (b) 11
9. Two of the possible situations in which leakage is restricted in artesian-water-table simulations 12
10. Characteristics of test problem 1 13
11. Transmissivity and observed water-table configuration for test problem 2 (fieldwork and model design by Konikow, 1975) 14
12. Characteristics of test problem 3 15
13. Hypothetical problem with 9 interior nodes 16
14. Number of iterations required for solution by LSOR and LSOR + 2DC using different accelera- tion parameters 19
15. Reduction in the maximum residual for problems 1 to 3 for selected $\omega_{m i n}$ used to compute the ADI parameters 22
16. Number of iterations required for solution of the test problerns with ADI using different num- bers of parameters 23
17. Coefficients of unknowns in equation 27 24
18. Reverse numbering scheme for 3×3 problem 25
19. Iterations required for solution of the test problem by SIF' using different numbers and sequences of parameters 26
20. Computational work required by different iterative techniques for problem 1 27
21. Computational work required by different iterative techniques for problem 2 28
22. Computational work required by different iterative techniques for problem 3 28
23. Computational work required by different iterative techniques for problem 4 28
24. Number of iterations required for solution of problem 4 by SIP using different values of β^{\prime} 28
25. Variable, block-centered grid with mixed boundary conditions 31
26. Orientation of map on computer page 43
27. Additional FORTRAN code required to produce output for graphical display 47
28. Water level versus time at various nodes of the sample aquifer problem produced by the graphi- cal display package 48
29. Contour map of water level for sample aquifer problem produced by graphical display package 49
30. Cross section illustrates several options included in the sample problem and identifies the meaning of several program parameters 55
31. JCL and data deck to copy some of the data sets on disk, compute for 5 iterations, and store the re- sults on disk 56
32. JCL and data deck to continue the previous run (fig. 31) to a solution 57
33. JCL and data deck' to simulate the sample problem without using disk files 58
TABLES
34. Comparison of drawdowns computed with equation 15 and the analytic values
Page
35. Number of arrays required for the options
38
36. Arrays passed to the subroutines and their relative location in the vector \mathbf{Y} 39

FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION IN TWO DIMENSIONS WITH RESULTS OF NUMERICAL EXPERIMENTS

By P. C. Trescott, G. F. Pinder, and S. P. Larson

Abstract

The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water.

The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence).

The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

Introduction

The finite-difference aquifer model documented in this report is designed to simulate in two dimensions the response of an aquifer to an imposed stress. The aquifer may be
artesian, water table, or a combination of artesian and water table; it may be heterogeneous and anisotropic and have irregular boundaries. The model permits leakage from confining beds in which the effects of storage are considered, constant recharge, evapotranspiration as a linear function of depth to water, and well discharge. Although it was not designed for cross-sectional problems, the model has been used with some success for this type of simulation.

The aquifer simulator has evolved from Pinder's (1970) original model and modifications by Pinder (1969) and Trescott (1973). The model documented by Trescott (1973) incorporates several features described by Prickett and Lonnquist (1971) and has been applied to a variety of aquifer simulation problems by various users. The model described in this report is basically the same as the 1973 version but includes minor modifications to the logic and data input. In addition, the user may choose an equation solving scheme from among the alternating direction implicit procedure, line successive overrelaxation, and the strongly implicit procedure. The program is arranged so that other techniques for solving simultaneous equations can be coded and substituted for the iterative techniques included with the model.

The documentation is intended to be reasonably self contained, but it assumes that the user has an elementary knowledge of the physics of ground-water flow, finite-difference methods of solving partial differential
equations, matrix algebra, and the FORTRAN IV language.

Theoretical Development
 Ground-water flow equation

The partial differential equation of groundwater flow in a confined aquifer in two dimensions may be written as

$$
\begin{array}{r}
\frac{\partial}{\partial x}\left(T_{x x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial x}\left(T_{x y} \frac{\partial h}{\partial y}\right)+\frac{\partial}{\partial y}\left(T_{y x} \frac{\partial h}{\partial x}\right) \\
+\frac{\partial}{\partial y}\left(T_{y y} \frac{\partial h}{\partial y}\right)=S \frac{\partial h}{\partial t}+W(x, y, t) \tag{1}
\end{array}
$$

in which
$T_{x x}, T_{x y}, T_{y x}, T_{y y}$ are the components of the transmissivity tensor ($L^{2} t^{-1}$);
$h \quad$ is hydraulic head (L);
$S \quad$ is the storage coefficient (dimensionless) ;
$W(x, y, t)$ is the volumetric flux of recharge or withdrawal per unit surface area of the aquifer ($L t^{-1}$).
The reader is referred to Pinder and Bredehoeft (1968) for development and discussion of equation 1 . In the simulation model, equation 1 is simplified by assuming that the Cartesian coordinate axes x and y are alined with the principal components of the transmissivity tensor, $T_{x x} \mid$ and $T_{y y}$, giving

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(T_{x x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(T_{w} \frac{\partial h}{\partial y}\right)=S \frac{\partial h}{\partial t}+W(x, y, t) . \tag{2}
\end{equation*}
$$

In water-table aquifers, transmissivity is a function of head. Assuming that the coordinate axes are co-linear with the principal components of the hydraulic conductivity tensor, the flow equation may be expressed as (Bredehoeft and Pinder, 1970)
$\frac{\partial}{\partial x}\left(K_{x x} b \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y v} b \frac{\partial h}{\partial y}\right)=S_{y} \frac{\partial h}{\partial t}+W(x, y, t)$
in which
$K_{x x}, K_{y y}$ are the principal components of the hydraulic conductivity tensor ($L t^{-1}$);
$S_{y} \quad$ is the specific yield of the aquifer (dimensionless) ;
$b \quad$ is the saturated thickness of the aquifer (L).

Finite-difference approximations

In order to solve equation 2 or 3 for a heterogeneous aquifer with irregular boundaries, one approach is to subdivide the region into rectangular blocks in which the aquifer properties are assumed to be uniform. The continuous derivatives in equations 2 and 3 are replaced by finite-difference approximations for the derivatives at a point (the node at the center of the block). The result is N equations in N unknowns (head values at the nodes) where N is the number of blocks representing the aquifer.

Utilizing a block-centered, finite-difference grid in which variable grid spacing is permitted (fig. 1), equation 2 may be approximated as

FIGURE 1.--Index scheme for finite-difference grid and coefficients of finite-difference equation written for node (i, i).

$$
\begin{align*}
& \frac{1}{\Delta x_{j}}\left[\left(T_{x x} \frac{\partial h}{\partial x}\right)_{i, j+1 / 2}-\left(T_{x x} \frac{\partial h}{\partial x}\right)_{i, j-1 / 2}\right] \\
+ & \frac{1}{\Delta y}\left[\left(T_{y y} \frac{\partial h}{\partial y}\right)_{i+1 / 2, j}-\left(T_{y y} \frac{\partial h}{\partial y}\right)_{\imath-1 / 2, j}\right] \\
= & \frac{S_{i, j}}{\Delta t}\left(h_{i, j, k}-h_{i, j, k-1}\right)+W_{i, j, k} \tag{4}
\end{align*}
$$

in which
Δx_{j} is the space increment in the x direc-
tion for column j as shown in figure 1 (L);
Δy_{i} is in the space increment in the y direction for row i as shown in figure 1 (L_{i});
Δt is the time increment (t);
i is the index in the y dimension;
j is the index in the x dimension;
k is the time index.
Equation 4 may be approximated again as

$$
\begin{align*}
& \frac{1}{\Delta x_{j}}\left\{\left[T_{x x(i, j+1 / 2)} \frac{\left(h_{i, j+1, k}-h_{i, j, k}\right)}{\Delta x_{j+1 / 2}}\right]-\left[T_{x x(i, j-1 / 2)} \frac{\left(h_{i, j, k}-h_{i, j-1, k}\right)}{\Delta x_{j--1 / 2}}\right]\right\} \\
+ & \frac{1}{\Delta y_{i}}\left\{\left[T_{y y(i+1 / 2, j)} \frac{\left(h_{i+1, j, k}-h_{i . j, k}\right)}{\Delta y_{i+1 / 2}}\right]-\left[T_{y y(i-1 / 2, j)} \frac{\left(h_{i, k}-h_{i-1, j . k}\right)}{\Delta y_{i-1 / 2}}\right]\right\}=\frac{S_{i, j}}{\Delta t}\left(h_{i, j, k, k}-h_{i, j, k-1}\right)+W_{i, j, k} \tag{5}
\end{align*}
$$

in which

$$
\begin{array}{r}
T_{x x(i, j+1 / 2)} \text { is the transmissivity between } \\
\text { node }(i, j) \text { and node }(i, j+1) ; \\
\Delta x_{j+1 / 2} \quad \text { is the distance between node } \\
(i, j) \text { and node }(i, j+1) .
\end{array}
$$

Equation 5 is written implicitly, that is, the head values on the left-hand side are at the new (k) time level. Following a convention similar to that introduced by Stone (1968), the notation in equation 5 may be simplified by writing

$$
\begin{array}{r}
F_{i, j}\left(h_{i, j+1, k}-h_{i, j, k}\right)-D_{i, j}\left(h_{i, j, k}-h_{i, j-1, k}\right) \\
+H_{i, j}\left(h_{i+1, j, k}-h_{i, j, k}\right)-B_{i, j}\left(h_{i, j, k}-h_{i-1, j, k}\right) \\
=\frac{S_{i, j}}{\Delta t}\left(h_{i, j, k}-h_{i, j, k-1}\right)+W_{i, j, k} \tag{6}
\end{array}
$$

in which

$$
\begin{equation*}
B_{i, j}=\frac{\left[\frac{2 T_{y \nu[i, j]} T_{y \nu[i-1, j]}}{T_{y \nu}[1, j] \Delta y_{i-1}+T_{y \nu[i-1, j]} \Delta y_{i}}\right]}{\Delta y_{i}} . \tag{7a}
\end{equation*}
$$

The term in brackets is the harmonic mean of

$$
\frac{T_{y \nu[i, j]}}{\Delta y_{i}}, \frac{T_{y v[i-1, j]}}{\Delta y_{i-1}}
$$

It represents the ratio $T_{y y_{(i-1 / 2)}} / \Delta y_{i-1 / 2}$ in equation 5.
Similarly,

$$
\begin{align*}
& D_{i, i}=\frac{\left[\frac{2 T_{x x[i, j]} T_{x x[i, j-1]}}{T_{x x[i, j]} \Delta x_{j-1}+T_{x x[i, j-1]} \Delta x_{j}}\right]}{\Delta x_{j}} ; \tag{7b}\\
& F_{i, j}=\frac{\left[\frac{2 T_{x x[i, j]} T_{x x[i, j+1]}}{T_{x x[i, j]} \Delta x_{j+1}+T_{x x[i, j+1]} \Delta x_{j}}\right]}{\Delta x_{j}} ; \tag{7c}\\
& H_{i, j}=\frac{\left[\frac{2 T_{y y[i+1, j]} T_{y y[i, j]}}{T_{y y[i, j]} \Delta y_{i+1}+T_{y y[i+1, j]} \Delta y_{i}}\right]}{\Delta y_{i}} . \tag{7d}
\end{align*}
$$

Use of the harmonic mean (1) insures continuity across cell boundaries at steady state if a variable grid is used, and (2) makes the appropriate coefficients zero at no-flow boundaries.

Equation 6 is also used to approximate equation 3 by replacing S with $S y$ and defining the transmissivities in equations 7a through 7d as a function of the head from the preceding iteration. As an example,

$$
T_{x x(i, j)}^{n}=K_{x x(i, j)} b_{i, j, k}^{n-1}
$$

in which n is the iteration index.
The notation may be simplified further by omitting subscripts not including a " +1 " or " -1 " (except where necessary for clarity) and by following the convention that unknown terms are placed on the left-hand side
of the equations. Equation 6 may be rearranged and expressed as

$$
\begin{equation*}
B h_{i-1}+D h_{j-1}+E h+F h_{j+1}+H h_{i+1}=Q \tag{8}
\end{equation*}
$$

in which

$$
\begin{aligned}
& E=-\left(B+D+F+H+\frac{S}{\Delta t}\right) ; \\
& Q=-\frac{S}{\Delta t} h_{k-1}+W .
\end{aligned}
$$

Source term

The source term $W(x, y, t)$ can include well discharge, transient leakage from a confining bed, recharge from precipitation and evapotranspiration. In the model the source term is computed as
$W_{j, j, k}=\frac{Q_{w[i, j, k]}}{\Delta x_{j} \Delta y_{i}}-q_{r o[i, j, k]}-q_{i, j, k}^{\prime}+q_{e t[i, j, k]}$
in which
$Q_{w[i, j, k]}$ is the well discharge ($L^{3} t^{-1}$);
$q_{r c[i, j, k]}$ is the recharge flux per unit area ($L t^{-1}$);
$q^{\prime}{ }_{i, j, k}$ is the flux per unit area from a confining layer ($L t^{-1}$);
$q_{e t[i, j, k]}$ is the evapotranspiration flux per unit area ($L t^{-1}$).

Leakage

Leakage from a confining layer or streambed in which storage is considered may be approximated by
$q_{i, j, k}^{\prime} \cong\left(h_{i, j, 0}-h_{i, j, k}\right) \frac{K_{i, j}^{\prime}}{\left(\frac{\pi K_{i, j}^{\prime} t}{3 m_{i, j}^{2} S_{s[i, j]}}\right)^{1 / 2} m_{i, j}} \cdot\left\{1+2 \sum_{n=1}^{\infty} \exp \left[\frac{-n^{2}}{\left(\frac{K_{i, j}^{\prime} t}{3 m_{i, j}^{i} S_{s i, j]}}\right)}\right]\right\}+\frac{K_{i, j}^{\prime}}{m_{i, j}}\left(\hat{h}_{i, j, 0}-h_{i, j, 0}\right)$
Equation 9 is modified from Bredehoeft and Pinder (1970, p. 887) ; note that it is the sum of two terms; the first term on the righthand side of equation 9 considers transient effects; the second term is steady leakage due to the initial gradient across the confining bed. (See fig. 2.) Figure 2 illustrates the head distribution in the confining layer at any given point in the aquifer system at two different times in each of two successive pumping periods. (The succession of head values in the aquifer is shown by $h_{i, j, 1}$, . . $h_{i, j, 4}$.) The solid line represents the head distribution at the beginning of the pumping period; the gradient $\left(\left(\hat{h}_{i, j, 0}-h_{i, j, 0}\right) / m_{i, j}\right)$ appears in the second term of equation 9 . The hatchured line represents the head distribution in the confining bed after stressing the pumped aquifer and is a summation of the initial head distribution and the change in head distribution due to the stresses on the aquifer. The factor T_{L} in figure 2 represents the part of the first term in equation 9 independent of head (that is, the transient leakage coefficient).

In figure 2a the confining bed is assumed to have significant storage, pumping has low-
ered the head to $h_{i, j, 1}$ and the net (or total) gradient is for some dimensionless time <0.5. After transient effects have dissipated, a uniform gradient across the confining bed is es-
tablished. (See fig. 2b.) Then if the stress on the aquifer is changed by turning off pumping wells and starting recharge wells, the initial head distribution in the confining bed

a.
b.

Aquifer
c.
d.

$$
q_{1, j, k}^{\prime}=T_{L}\left(h_{1, j, 0}-h_{i, l, k}\right)+\frac{K_{i, j}^{\prime}}{m_{1, j}}\left(\hat{h}_{i, j, 0}-h_{i, j, 0}\right)
$$

EXPLANATION

Initial head in confining bed
шшшшшшшш Head in confining bed after stressing the aquifer

FIGURE 2.-In the first pumping period, (a) illustrates the head distribution in the confining bed at one time when transient leakage effects are significant; (b) illustrates a time after transient effects have dissipated; in the second pumping period, (c) is analogous to (a) and (d) is analogous to (b).
for the new conditions is shown in figure 2c and is equal to the final distribution for the first pumping period. The net head distribution in figure 2c is affected by storage in the confining bed and is for some dimensionless time <0.5 (in the second pumping period). After storage effects have dissipated, the net gradient is shown in figure 2d.

For a simulation of several pumping periods, the program assumes that transient leakage effects from previous pumping periods have dissipated. This is accomplished at the start of each pumping period by initializing $h_{i, j, 0}$ to the head at the end of the previous pumping period and setting t (and thereby dimensionless time) to zero (note that the parameter storing the cumulative simulation time is not affected) The assumption is reasonable if dimensionless time for previous pumping periods is at least 0.5 (Bredehoeft and Pinder, 1970, fig. 4) and can be checked by noting the value of dimensionless time printed in the output for the end of the previous pumping period. If the assumption is not valid, the code will need to be modified to include transient effects for one or more previous pumping periods.

In the model, equation 9 is used until dimensionless time reaches 3×10^{-3}; otherwise, the equation

$$
\begin{array}{r}
q_{i, j, k}^{\prime} \cong\left(h_{i, j, 0}-h_{i, j, k}\right) \frac{K_{i, j}^{\prime}}{m_{i, j}}\left\{1+2 \sum_{n=1}^{\infty} \exp \left[-n^{2} \pi^{2}\right.\right. \\
\left.\left.\left(\frac{K_{i, j}^{\prime} t}{3 m_{i, j}^{2} S_{\varepsilon[i, j]}}\right)\right]\right\}+\frac{K_{i, j}^{\prime}}{m_{i, j}}\left(\hat{h}_{i, j, 0}-h_{i, j, 0}\right) \quad(10) \tag{10}
\end{array}
$$

is used. Equation 10 is computationally more efficient for dimensionless times greater than about 3×10^{-3}.

The transient parts of equations 9 and 10 are based on the analytic solutions for the flux from a confining layer resulting from an instantaneous stepwise change in head in the aquifer. The factor of $1 / 3$ appearing in dimensionless time is included in order to approximate the transient flux resulting from the actual drawdown in the aquifer. In effect the transient flux is approximated by applying a step change in head equal to the drawdown from the start of the pumping period at $1 / 3$ of the elapsed time in the pumping period. (See fig. 3.)

The results of several numerical experiments indicate that it would be better to use

FIGURE 3.-The total drawdown at the elapsed time, t, in the pumping period (a) is applied at $t / 3$ in equations 9 and 10 to approximate $q^{{ }^{\circ}, f, k,}$, the transient part of $q^{\prime}{ }_{6, j, k}$ (b).

FIGURE 4.-Comparison of analytic solution and numerical results using factors of 2 and 3 in the transient leakage approximation.
a factor of $1 / 3$ rather than the factor of $1 / 2$ used in the approximation by Bredehoeft and Pinder (1970). In figure 4 are plotted numerical results and Hantush's (1960) analytic solution for $\beta=0.021$ ($\beta=0.25 r\left[K^{\prime} S_{s} /\right.$ $T S]^{1 / 2}$ and r is the radial distance from the center of the pumping well). The drawdown values using a factor of $1 / 3$ are below but very close to the analytic curve after the first few time steps. The results using a factor of $1 / 2$ are close to the analytic solution but are about twice as far above the analytic curve as the factor of $1 / 3$ results are below the curve. In figure 5 are plotted the percent difference between the volume of leakage
computed numerically and the volume determined analytically. Two sets of data are shown: a 14 -step simulation between dimensionless times of 10^{-5} and 5.8×10^{-2} and an 11-step simulation between dimensionless times of 5.8×10^{-3} and 4.4×10^{-1}. Based on those experiments, if 4 or 5 time steps are simulated before the period of interest, the volume of leakage and the drawdown computed numerically using a factor $1 / 3$ in equations 9 and 10 are close to the analytic solution.

Evapotranspiration

Evapotranspiration as a linear function of depth below the land surface is computed as

$$
q_{e t[i, j, k]}= \begin{cases}Q_{e t} & {\left[h_{i, j, k} \geqq G_{i, j}\right]} \tag{11}\\ Q_{e t}-\frac{Q_{e t}}{E T_{z}}\left(G_{i, j}-h_{i, j, k}\right) & {\left[E T_{z}>\left(G_{i, j}-h_{i, j, k}\right) ; h_{i, j, k}<G_{i, j}\right]} \\ 0 & {\left[E T_{z} \leqq\left(G_{i, j}-h_{i, j, k}\right)\right]}\end{cases}
$$

FIGURE 5.-Percent difference between the volume of leakage computed with the model approximation and Hantush's analytical results.
in which
$Q_{e t}$ is the maximum evapotranspiration rate ($L t^{-1}$);
$E T_{z}$ is the depth below land surface at which evapotranspiration ceases (L) ;
$G_{i, j}$ is the elevation of the land surface (L).

This relationship (illustrated in fig. 6) is treated implicitly by separating the equation into two terms ${ }^{1}$: one term is included with the E coefficient on the left-hand side of equation 8; the other is a known term included in Q on the right-hand side of equation 8.

Other functions for evapotranspiration can be defined (for example, decreasing ex-

[^0]ponentially with depth), but it may be more difficult to treat these relationships numerically. The easiest approach is to make evapotranspiration an explicit function of the head at the previous iteration, but this may cause oscillations and difficulties with convergence. Normally, the oscillations may be dampened by making evapotranspiration a function of the head for the two previous iterations. A more sophisticated approach is to use the Newton-Raphson method, which is a rapidly converging iterative technique for treating systems of non-linear equations. (See, for example, Carnahan, Luther, and Wilkes, 1969, p. 319-329.)

Computation of head at the radius of a pumping well

The hydraulic head computed for a well node represents an average hydraulic head

FIGURE 6.-Evapotranspiration decreases linearly from Qet where the water table is at land surface to zero where the water table is less than or equal to $\mathrm{G}_{1,-1}-E T_{\mathrm{s}}$.
computed for the block and is not the head in a well. An option to compute the head and drawdown at a well is included in the model. This computation uses the radius, r_{θ}, of a hypothetical well for which the average value of head for the cell applies. An approximating equation is then used to make the extrapolation from r_{e} to the radius of a real well.

The radius r_{e} can be computed as (Prickett, 1967)

$$
\begin{equation*}
r_{e}=r_{1} / 4.81 \tag{12}
\end{equation*}
$$

in which $r_{1}=\Delta x_{j}=\Delta y_{i}$ (fig. 7). Equation 12 assumes steady flow, no source term other than well discharge in the well block, and that the area around the well is isotropic and homogeneous. The derivation of equation 12 can be seen with reference to figure 7 in which the four nodes adjacent to node i, j are assumed to have head values equal to the value at node $i-1, j$. In figure 7 a one-quarter of the discharge to the well node i, j is computed by the model as

b

FIGURE 7.—Flow from cell $(i-1, j)$ to cell ($i, j)(a)$ and equivalent radial flow to well (i,i) with radius $r_{\text {o }}(b)$.

$$
\begin{equation*}
\frac{Q_{w[i, j, k]}}{4}=\Delta x_{j} \mathrm{~T}_{i, j} \frac{\Delta h}{\Delta y} \tag{13}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \Delta h=h_{i-1, j, k}-h_{i, j, k} ; \\
& T_{i, j}=T_{x x[i, j]}=T_{y y[i, j]} .
\end{aligned}
$$

The equivalent discharge for radial flow to the well is given by the Thiem (1906) equation expressed as (see fig. 7b)

$$
\begin{equation*}
\frac{Q_{w[i, j, k]}}{4}=\frac{\pi T_{i, j}}{2} \frac{\Delta h}{\ln \left(r_{1} / r_{e}\right)} \tag{14}
\end{equation*}
$$

Equating the discharges in equations 13 and 14 gives equation 12.

The Thiem equation is commonly used to extrapolate from the average hydraulic head for the cell at radius r_{e} to the head, h_{w}, at the desired well radius, r_{w} (Prickett and Lonnquist, 1971; Akbar, Arnold, and Harvey, 1974) and is written in the form

$$
\begin{equation*}
h_{w}=h_{i, j, k}-\frac{Q_{v[i j, k]}}{2 \pi T_{i, j}} \operatorname{1n}\left(r_{e} / r_{w}\right) . \tag{15}
\end{equation*}
$$

Equation 15 assumes that: (1) flow is within a square well block and can be described by a steady-state equation with no source term except for the well discharge, (2) the aquifer is isotropic and homogeneous in the well block, (3) only one well is in the block and it fully penetrates the aquifer, (4) flow is laminar, and (5) well loss is negligible.

In an unconfined aquifer, the analogous equation is

$$
\begin{equation*}
H_{w}=\sqrt{H_{i, j, k}^{2}-\frac{Q_{w[i, j, k]}}{\pi K_{i, j}} \ln \left(r_{c} / r_{w}\right)} \tag{16}
\end{equation*}
$$

in which
$H_{i, j, k}=h_{i, j, k}$ - BOTTOM (I,J) is the saturated thickness of the aquifer at radius r_{e} (L) ;
$H_{w} \quad$ is the saturated thickness of the aquifer at the well (L);
$K_{i, j}=K_{x x[i, j]}=K_{y y[i, j]}$;
BOTTOM (I, J) =elevation of the bottom of the aquifer (The uppercase let-
ters indicate that this parameter is identical to that used in the model.)
When the saturated thickness computed with equation 16 is negative, the message, ' X, Y WELL IS DRY' is generated. This situation has no effect on the computations, but should stimulate careful consideration of the value of results for subsequent time steps in the simulation.

The conditions when the Thiem equation or equation 16 will be accurate can be computed. Table 1 was prepared to give a few examples of the head values computed by the model with the Thiem equation for a well with a radius of 1.25 feet in an infinite leaky artesian aquifer and in an infinite nonleaky artesian aquifer. The analytic solutions for these conditions are included for comparison. A variable grid was used in the model but the dimensions of the well block were $\Delta x=\Delta y$ $=1,000$ feet. For conditions which depart significantly from the assumptions given above (for example, a well in a rectangular block with anisotropic transmissivity or a well in a large block that has a significant amount of leakage) the results using equations 15 and 16 should be checked with a more rigorous analysis. Additional drawdown due to the effects of partial penetration and well loss can be computed separately or added to the code as needed.

Table 1.-Comparison of drawdowns computed with equation 15 and the analytic values

Aquifer	Time step	Dimen-sionless time	Drawdown	
			Approximation	Analytic
Nonleaky		$T t / r^{2} S$		
artesian	3	3.0×10^{5}	41.1	42.7
	14	3.7×10^{7}	58.3	58.1
Leaky		$K \cdot t / m^{2} S^{\prime}$		
artesian	3	0.028	51.8	52.1
	9	. 44	57.1	57.3

Combined artesian-water-table simulation

Simulation of an aquifer that is partly confined and elsewhere has a free surface requires special computations for the transmissivity, storage coefficient, and leakage
term. The following paragraphs describe the computations required. Some of the methods of coding these procedures have been adapted from Prickett and Lonnquist (1971).

Transmissivity

The transmissivity is computed as the saturated thickness of the aquifer times the hydraulic conductivity. This computation requires that the elevations of the top and bottom of the aquifer be specified. Where the aquifer crops out, the top of the aquifer is assigned a fictitious value greater than or equal to the elevation of the land surface.

Storage

The storage term requires special treatment at nodes where a conversion from artesian to water-table conditions, or vice versa, occurs during a time step. The program first checks for a change at a node during the last iteration. If there has been a change from artesian to water-table conditions, the storage term is

$$
\frac{S_{y[i, j]}}{\Delta t}\left(h_{i,,, k}^{n}-h_{i, j, k-1}\right)-\text { SUBS }
$$

in which

$$
\begin{aligned}
& \mathrm{SUBS}=\left(h_{i, j, k-1}-\operatorname{TOP}(\mathrm{I}, \mathrm{~J})\right) \\
& \\
& \left(S_{i, j}-S_{y[i, j]}\right) / \Delta t ;
\end{aligned}
$$

$\operatorname{TOP}(\mathrm{I}, \mathrm{J})=$ elevation of the top of the aquifer.
The purpose of SUBS is to correctly apportion the storage coefficient and specific yield according to the relationship in figure 8a.

For a change from water-table to artesian conditions, the storage term is

$$
\frac{S_{i, j}}{\Delta t}\left(h_{i, j, k}^{n}-h_{\imath, j, k-1}\right)-\text { SUBS }
$$

in which

$$
\begin{array}{ll}
\text { SUBS }=\left(h_{i, j, k-1}-\operatorname{TOP}(\mathrm{I}, \mathrm{~J})\right) & \left(S_{y[i, j]}\right. \\
& \left.-S_{i, j}\right) / \Delta t .
\end{array}
$$

SUBS subtracts the storage coefficient and adds the specific yield for the distance B illustrated in figure 8b.

Leakage

To treat leakage more realistically if parts of an artesian aquifer change to water-table conditions, the maximum head difference across the confining bed is limited to $\hat{h}_{i, j, 0}$ $-\operatorname{TOP}(\mathrm{I}, \mathrm{J})$.

Two examples illustrate the calculation of leakage in conversion simulations. In figure 9a the head at the start of the pumping period, $h_{i, j, 0}$ is below the water-table head, $\hat{h}_{i, j, 0}$, but above the top of the aquifer; the current pumping level is below the top of the aquifer. The applicable equation is

FIGURE 8.-Storage adjustment is applied to distance A in conversion from artesian to water-table conditions (a) and to distance B in conversion from water-table to artesian conditions (b).

FIGURE 9.-Two of the possible situations in which leakage is restricted in artesian-water-table simulations.

$$
q_{i, j, k}^{\prime}=\frac{K_{i, j}^{\prime}}{\dot{m}_{i, j}}\left(\hat{h}_{i, j, 0}-h_{i, j, 0}\right)
$$

$$
+T_{L}\left(h_{i, j, 0}-\operatorname{TOP}(\mathrm{I}, \mathrm{~J})\right)
$$

For this situation $q_{i, j, k}$ appears on the righthand side of the difference equation and is treated explicitly. Only if both $h_{i, j, 0}$ and $h_{i, j, k}^{n}$ are above the top of the aquifer is the leakage term treated implicitly by including T_{L} in the E coefficient. This is accomplished in the code by setting $U=1$.

In the second example (fig. 9b), both $h_{i, j, 0}$ and $h_{\imath, j, k}^{n}$ are below the top of the aquifer and the equation for leakage reduces to

$$
q_{i, j, k}^{\prime}=\frac{K_{i, j}^{\prime}}{m_{i, j}}\left(\hat{h}_{i, j, 0}-\operatorname{TOP}(\mathrm{I}, \mathrm{~J})\right) .
$$

If leakage across a subjacent confining bed is significant, it will be necessary to add a second leakage term. The flux described by this term will not be restricted where watertable conditions occur.

Test Problems

In a subsequent section the computational work required for solution of four test problems by the numerical techniques available in the model is analyzed. It is appropriate, however, to introduce the test problems here because they are used in the discussion of iteration parameters in the section on numerical
techniques. The problems are for steady-state conditions since the resulting set of simultaneous equations are more difficult to solve than are the set of equations for transient problems which generally involve smaller head changes.

For each of these problems a closure criterion was chosen to decide when a solution is obtained to the set of finite-difference equations. (See Remson, Hornberger, and Molz, 1971, p. 185-186.) Normally, in this model, a solution is assumed if:

$$
\operatorname{Max}\left|h^{n}-h^{n-1}\right| \leqq \varepsilon
$$

where ε is an arbitrary closure criterion (L). For the purpose of the numerical comparisons given later in this documentation, the absolute value of the maximum residual (defined by equation 28) is used to compare methods.

The first problem is a square aquifer with uniform properties and grid spacing (fig. 10). The finite-different grid is 20×20, but only 18 rows and columns are inside the aquifer because the model requires that the first and last rows and columns be outside the aquifer boundaries. Two discharging wells and one recharge well are the stress on the system; boundaries are no flux except for part of one side which is a constant-head

PROBLEM CHARACTERISTICS

Transmissivity: $T_{x x}=T_{y y}=0.1 \mathrm{ft}^{2} / \mathrm{s}\left(0.009 \mathrm{~m}^{2} / \mathrm{s}\right)$
Grıd spacing: $\Delta x=\Delta y=5000 \mathrm{ft}(1500 \mathrm{~m})$
Dimensions of grid. 18×18

EXPLANATION OF SYMBOLS

∇	Constant head boundary, elevation $0 \mathrm{ft}(0 \mathrm{~m})$
/7/7]7]	No-flow boundary
W	Discharging well at $2 \mathrm{ft} 3 / \mathrm{s}\left(0.06 \mathrm{~m}^{3} / \mathrm{s}\right)$
R	Recharging well at $2 \mathrm{ft}^{3} / \mathrm{s}\left(0.06 \mathrm{~m}^{3 / \mathrm{s}}\right)$
-5-	Line of equal drawdown Interval 5 ft . (15 m)

FIGURE 10.-Characteristics of test problem 1.
boundary. A closure criterion of 0.001 foot (0.0003 metre) was used.

Konikow (1974) designed the second problem in his analysis of ground-water pollution at the Rocky Mountain Arsenal northeast of Denver, Colo. It is included as one of the test problems because it is typical of many field problems and because there is some difficulty in obtaining a steady-state solution with the alternating-direction implicit procedure. The transmissivity distribution is shown in figure 11; note the extensive areas where the transmissivity is zero because the surficial deposits are unsaturated. The finite-difference grid representing this aquifer is 25×38 with square blocks 1,000 feet (300 metres) on a side. The model has constant-head boundaries at the South Platte River and where the aquifer extends beyond the limits of the model; elsewhere no-flux boundaries are employed. Although this is a water-table aquifer, it is assumed for problem 2 that
transmissivity is independent of head. The model includes 49 irrigation wells and recharge from canals and irrigation. In figure 11 the observed water-table configuration is shown, and it is used as the initial surface for the simulation; the computed water table is generally within a few feet of the observed. For this problem the closure criterion is 0.001 foot (0.0003 metre).

The third problem is a cross-section with three horizontal layers and other characteristics shown in figure 12. Transmissivity equals hydraulic conductivity for this problem because it is conceived as a slice one unit wide. The values for transmissivity are arbitrary. Note in particular that the horizontal conductivity is 100 times the vertical conductivity in all layers and that the middle layer acts as a confining layer between the upper and lower layers. The coefficients $B_{i, j}$ and $H_{i, 3}$, however, are 100 times greater than the horizontal coefficients $D_{i, j}$ and $F_{i, j}$ because of

FIGURE 11.-Transmissivity and observed water-table configuration for test problem 2 (fieldwork and model design by Konikow, 1975).
the grid spacing used. For this problem, the closure criterion is 0.0001 feet $(0.00003$ metre).

In the third problem the upper boundary (the water table) is fixed as a constant-head boundary. It could also be treated as a no-flow boundary which would effectively confine the system. This model was not designed specifically for simulation of cross sections, and consequently it does not have provision for a moving boundary. Rather than modifying this one-phase model for a moving-boundary problem, it would be better to design a model specifically for this purpose. The two-phase model described by Freeze (1971) is a good example.

The fourth problem is to consider the water-table case of the second problem. The only difference from problem 2 is that transmissivity is dependent upon (1) head in the aquifer, (2) aquifer base elevation, and (3) hydraulic conductivity of the aquifer.

Numerical Solution

In Pinder (1969) and Trescott (1973) the iterative, alternating-direction implicit procedure (ADI) was the only option available for numerical solution. For many field problems ADI is convergent and competitive, in terms of the computational work required,

FIGURE 12.-Characteristics of test problem 3.
with other iterative techniques available. It may be difficult, however, to obtain a solution for some problems with ADI (for example, steady-state simulations involving extremely variable coefficients). Consequently, it is convenient to have available other numerical techniques that may be more suited than ADI to particular problems. The three numerical methods available with this model are ADI, the strongly implicit procedure (SIP), and line successive overrelaxation (LSOR).

The following sections outline the computational algorithms for the three numerical methods. More details are given in the discussion on SIP, because that method is more complex.

For additional details on the theory behind the methods and rigorous analysis of convergence rates, see for example, Varga (1962) and Remson, Hornberger, and Molz (1971). The methods are presented in order of increasing complexity. In general, the more complex methods converge more rapidly and are applicable to more types of problems than the simpler methods such as LSOR. For clari-
ty, the numerical treatment of the source term is left to other sections.

Line successive overrelaxation

Line successive overrelaxation (LSOR) improves head values one row (or column) at a time. Whether the solution is oriented along rows or columns is generally immaterial for isotropic problems but has a significant affect on the convergence rate in anisotropic problems. The solution should be oriented in the direction of the larger coefficients, either $B_{i, j}$ and $H_{i, j}$ or $D_{i, j}$ and $F_{i, j}$ (Breitenbach, Thurnau, and van Poollen, 1969, p. 159). Differences in the magnitude of the coefficients may result from anisotropic transmissivity or from a large difference in grid spacing between the x and y directions. In problem 3 the largest transmissivity is in the horizontal direction in each layer, but the small grid spacing in the vertical direction makes the coefficients $B_{i, j}$ and $H_{i, j} \gg D_{i, j}$ and $\boldsymbol{F}_{i, j}$.

With the solution oriented along rows, an
intermediate value is computed by the line Gauss-Seidel iteration formula,
$D h_{j-1}^{\dagger}+E h^{\dagger}+F h_{j+1}^{\dagger}=Q_{\lambda}, j=1,2, \ldots, N_{x}(17 \mathrm{a})$
in which

$$
Q_{\lambda}=W-B h_{i-1}^{n}-H h_{i+1}^{n-1}-\frac{S}{\Delta t} h_{k-1} ;
$$

h^{\prime} is the intermediate head value at node

$$
(i, j) ;
$$

N_{x} is the number of nodes in a row.
Equation 17a can be expressed in matrix form as

$$
\begin{equation*}
\overline{\overline{A_{\lambda}}} \bar{h}^{\dagger}=\overline{Q_{\lambda}} . \tag{17b}
\end{equation*}
$$

In order to reduce rounding errors, equation 17 b is put in residual form. (See Wein-
stein, Stone, and Kwan, 1969, p. 283, and Breitenbach, Thurnau, and van Poollen, 1969, p. 159.) This is accomplished by adding and subtracting $\overline{\bar{A}}_{\lambda} \bar{h}^{n-1}$ to the right-hand side of equation 17b giving

$$
\begin{equation*}
\overline{\bar{A}}_{\lambda} \bar{h}^{\dagger}=\bar{Q}_{\lambda}+\overline{\bar{A}}_{\lambda} \bar{h}^{n-1}-\overline{\bar{A}}_{\lambda} \bar{h}^{n-1} \tag{17c}
\end{equation*}
$$

Rearrange equation 17 c to read

$$
\begin{equation*}
\overline{\bar{A}}_{\lambda} \bar{\xi}^{\dagger}=\bar{R}_{\lambda}{ }^{n-1} \tag{17d}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \bar{\xi}^{\dagger}=\bar{h}^{\dagger}-\bar{h}^{n-1} ; \\
& \bar{R}_{\lambda}^{n-1}=\bar{Q}_{\lambda}-\overline{\bar{A}}_{\lambda} \bar{h}^{n-1} .
\end{aligned}
$$

Equation 17d is the LSOR residual formulation and expanded has the following form for a 3×3 problem (fig. 13) :

FIGURE 13.-Hypothetical problem with 9 interior nodes.

Boundary conditions are not included in this equation because they are treated in the model without adding or subtracting terms to \bar{R}_{λ}^{n-1}.

The first row is solved by the Thomas algorithm for simultaneous equations with a tridiagonal coefficient matrix. The Thomas algorithm is given in many references. (For example, see Pinder and Bredehoeft, 1968; von Rosenberg, 1969; Remson, Hornberger, and Molz, 1971.) It is outlined below for equation 17 using notation from the program code (The coefficients D, E, F, and the known term \bar{R}^{n-1} have been subscripted with $[i, j]$ for clarity). $B E$, is an intermediate coefficient.

Recognizing that

$$
D_{i, 1}=F_{i, N_{x}}=0,
$$

an intermediate vector \bar{G} is computed by forward substitution as

$$
\begin{aligned}
& W=E_{i, j}-D_{i, j}\left(B E_{j-1}\right), \\
& B E_{j}=F_{i, j} / W \\
& G_{j}=\left(R^{n-1}\left[{ }_{[i, j]}-D_{i, j}\left(G_{j-1}\right)\right) / W .\right.
\end{aligned}
$$

The values of $\bar{\xi} \dagger$ for row i are then computed by backward substitution as

$$
\xi_{i, j, k}=G_{j}-B E_{j} \xi_{i, j+1, k}^{\dagger}
$$

where

$$
\xi_{i, N_{v}, i c}^{\dagger}=G_{N_{x}}
$$

since

$$
B E_{N_{x}}=0 .
$$

The head values for row 1 are then computed by the equation

$$
h_{i, j}^{n}=h_{\imath, j}^{n-1}+\omega \xi_{i, j}^{\dagger}, j=1, \ldots, N_{x}
$$

If ω is 1 , the solution is by the line GaussSeidel formula, but convergence is slow in general. The convergence rate is improved significantly by "overrelaxation" with $1<\omega$ <2. Discussion of the acceleration parameter is deferred until after the following section on two-dimensional correction.

Two-dimensional correction to LSOR

In certain problems, the rate of convergence of LSOR can be improved by applying a one-dimensional correction (1DC) procedure introduced by Watts (1971) or the extended two-dimensional correction (2DC) method described by Aziz and Settari (1972). These methods remove the components of certain eigenvectors in the LSOR iteration matrix from the solution vector. If the eigenvalues associated with these eigenvectors dominate the problem, particularly those including anisotropy, the convergence rate is greatly improved.

The 2DC method is applied after one or more LSOR iterations. The corrected head values are used as an improved starting point for the next iteration and the process is repeated until convergence is achieved.

The two-dimensional correction for the head at (i, j) is defined as

$$
h_{i, j, k}^{n^{*}}=h_{i, j, k}^{n}+\alpha_{i}+\hat{\beta}_{j}, \quad i=1, \ldots, N_{y}, i, \ldots, N_{x}
$$

in which
$h_{i, j, k}^{n *}$ is the corrected head at iteration $n ;$
α_{i} is the correction for row $i ;$
$\hat{\beta}_{j}$ is the correction for column j.
N_{y} is the number of nodes in a column.

An approximate equation for $\bar{\alpha}$ is

$$
\begin{array}{r}
B^{\prime}{ }_{\imath} \alpha_{i-1}+E^{\prime}{ }_{i} \alpha_{i}+H^{\prime}{ }_{i} \alpha_{i+1} \\
=R_{i}^{\prime}, i=1,2, \ldots, N_{\nu} \tag{18}
\end{array}
$$

in which

$$
\begin{aligned}
& B^{\prime}{ }_{i}=-\underset{j}{\Sigma B_{i, j}} ; \\
& E_{i}^{\prime}=\sum_{j}\left(B_{i, j}+H_{i, j}+\frac{S_{i, j}}{\Delta t}\right) ; \\
& H^{\prime}=-\sum_{j} H_{i, j} ; \\
& R_{i}^{\prime}=\Sigma R_{i, j}^{n} ; \\
& R_{i, j}^{n}=B_{i, j} h_{i-1, j, k}^{n}+D_{\imath, j} h_{i, j-3 k}^{n}+E_{i, j} h_{i, j, k}^{n} \\
& +F_{i, \lambda} h_{i, j+1, k}^{n}+H_{i, \lambda} h_{i+1, j, k}^{n}+\frac{S_{i, j}}{\Delta t} h_{i, j, k-1}-W_{i, j, k} ;
\end{aligned}
$$

An approximate equation for $\overline{\hat{\beta}}$ is

$$
\begin{equation*}
D_{j}^{\prime} \hat{\beta}_{j-1}+E^{\prime}, \hat{\beta}_{j}+F^{\prime}{ }_{j} \hat{\beta}_{j+1}=R_{j}^{\prime}, j=1,2, \ldots, N_{x} \tag{19}
\end{equation*}
$$

in which

$$
\begin{aligned}
& D_{j}^{\prime}=-\sum_{i} D_{i, j} ; \\
& E_{j}^{\prime}=\sum_{i}\left(D_{i, j}+F_{i, j}+\frac{S_{i, j}}{\Delta t}\right) ; \\
& F_{j}^{\prime}=-\sum_{i} F_{i, j} ; \\
& R_{j}^{\prime}=\Sigma R_{i, j}^{n}
\end{aligned}
$$

Equations 18 and 19 are derived with the following equations

$$
\sum_{j=1}^{N_{x}} R_{y, j}^{\mathrm{n}^{*}}=0, i=1,2, \ldots, N_{y}
$$

and

$$
\sum_{i=1}^{N_{y}} R_{i, j}^{n^{*}}=0, j=1,2, \ldots, N_{x}
$$

which force the sum of residuals for each row and each column to zero when the vector \bar{h}^{n}. is substituted into equation 8. Aziz and Settari (1972) give the exact equations for $\bar{\alpha}$ and $\bar{\beta}$ but point out that equations 18 and 19 are good approximations and, in practice, are easier to solve. For example, equation 19, which used alone is Watts' 1DC method, is written in matrix form as

$$
\left[\begin{array}{lll}
E^{\prime} & F^{\prime} & \\
D_{2}^{\prime} & E^{\prime}{ }_{2} & \dot{F}^{\prime}{ }_{2} \\
& D_{3}^{\prime} & E^{\prime}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\hat{\beta}_{3}
\end{array}\right]=\left[\begin{array}{l}
R_{1}^{\prime} \\
R^{\prime} \\
R_{3}^{\prime}
\end{array}\right]
$$

for the problem in figure 13. Equation 18 has an analogous form and both are easily solved by the Thomas algorithm.

Note that $\bar{\alpha}$ and $\overline{\hat{\beta}}$ in the model are zero for those rows and columns in which one or more constant-head nodes are located. If $\bar{\alpha}$ and $\bar{\beta}$ were not zero it would not be possible to maintain a constant value at the appropriate nodes. As Watts (1973) points out, therefore, the procedure is most useful in simulations dominated by no-flow boundaries. For those simulations in which 2DC is useful, it is generally better to apply the corrections after several rather than after each LSOR iteration. After experimenting with a few problems, we have found it practical to apply 2DC after every 5 LSOR iterations.

LSOR acceleration parameter

The optimum value of ω for maximum rate of convergence lies between 1 and 2 and is commonly between 1.6 and 1.9. If only one or two runs will be made on a problem, it is probably best to choose an ω based on experience. If many runs will be made, it will be worthwhile to use an ω close to the optimum value. For simple problems $\omega_{o p t}$ can be computed as explained, for example, by Remson, Hornberger, and Molz (1971, p. 188-199) using the equation

$$
\begin{equation*}
\omega=\frac{2}{1+\sqrt{1-p(G)}} \tag{20}
\end{equation*}
$$

in which

$$
\rho(G) \cong \frac{\left|\xi_{\max }^{\dagger(n)}\right|}{\left|\xi_{\max }^{\dagger(n-1)}\right|}
$$

$\rho(G)$ is the spectral radius (dominant eigenvalue) of the Gauss-Seidel iteration matrix. For typical field problems it is possible to use equation 20 to estimate $\omega_{\text {opt }}$ in an iterative process if 2DC is not used. In the first simulation of the problem, set $\omega=1.0$ and allow at least 100 iterations. In applying this method
to problems 1, 2, and 3 it took 25 iterations to arrive at $\omega_{\text {opt }}$ for problem 2, but about 100 iterations to obtain $\omega_{\text {opt }}$ for problem 1 and 3. Obviously this method may involve a lot of computational effort to obtain $\omega_{\text {opt }}$. More efficient methods using equation 20 have been devised to update ω during the iteration process. For example, Breitenbach, Thurnau, and van Poollen (1969) use a modified form of Varga's (1962) "power method," Carré's (1961) method is described by Remson, Hornberger, and Molz (1971, p. 199-203), and Cooley (1974) has a simple method for improving ω for transient problems.

Figure 14 illustrates the rate of convergence of LSOR and LSOR + 2DC for test problems 1, 2, and 3 using different acceleration parameters chosen by trial and error. The values exceeding 100 iterations for problem 1 were estimated by using a plot, which is nearly a straight line, of the absolute value of the \log of the maximum residual (defined by equation 28) versus the number of iterations. This plot was extrapolated to the value of maximum residual that corresponded roughly to the closure criterion chosen for the problem. The same procedure was used on problem 3 for values exceeding 200 iterations.

For problem 1 the optimum acceleration parameter is 1.87 for LSOR. Two-dimensional correction significantly improves the convergence rate of LSOR for this problem with an optimum acceleration parameter of 1.7. In problem 2, 2DC had no effect on the rate of convergence of LSOR because of the numerous constant-head nodes in the problem. Consequently, the optimum acceleration parameter is 1.6 with or without the application of 2DC. In problem 3, with LSOR oriented across the bedding, $\omega_{\text {opt }}$ is 1.88 for LSOR and about 1.70 for LSOR +2 DC . Note in problems 1 and 3 that finding $\omega_{\text {opt }}$ for LSOR is more critical than with LSOR + 2DC. LSOR is poorly suited for problem 4 because too many nodes drop out in the iteration process if $1<\omega<2$. Satisfactory results for problem 4 at the expense of slow convergence are obtained if $\omega=0.5$ (See fig. 23.)

PROBLEM 1

PROBLEM 2

PROBLEM 3

FIGURE 14.-Number of iterations required for solution by LSOR and LSOR + 2DC using different acceleration parameters.

Alternating-direction implicit procedure

Peaceman and Rachford (1955) described the iterative, alternating-direction implicit procedure for solution of a steady-state (Laplace) equation in two space dimensions. This procedure, however, is equally applicable to transient problems where it has the advantage of allowing larger time steps than can be used with non-iterative ADI. (Non-iterative ADI was used by Pinder and Bredehoeft, 1968.) In the ADI technique, two sets of matrix equations are solved each iteration. The equations for rows in which head values along rows are computed implicitly and those along columns are obtained from the previous column computations are defined as

$$
\begin{align*}
D h_{j-1}^{n-1 / 2}+E_{r}, h^{n-1 / 2} & +F h_{i+1}^{n-1 / 2} \\
& =Q_{r}, j=1,2, \ldots, N_{\infty} \tag{21a}
\end{align*}
$$

in which

$$
E_{r}=-\left(D+F+\frac{S}{\Delta t}+M_{l}\right) ;
$$

$$
\begin{aligned}
Q_{r}=-B h_{i-1}^{n-1}+(B+ & \left.H-M_{l}\right) h^{n-1} \\
& \quad-H h_{i+1}^{n-1}-\frac{S}{\Delta t} h_{k-1}+W
\end{aligned}
$$

M_{l} is the iteration parameter;
l is the iteration parameter index.
In matrix form equation 21a is

$$
\begin{equation*}
\overline{\bar{A}}_{r} \bar{h}^{\mathrm{n}-1 / 2}=\bar{Q}_{r} . \tag{21b}
\end{equation*}
$$

To put equation 21b in residual form, add and subtract $\bar{A}_{\mathrm{r}} \bar{h}^{n-1}$ to the right-hand side giving

$$
\begin{equation*}
\overline{\bar{A}}_{r} \bar{h}^{n-1 / 2}=\bar{Q}_{r}-\overline{\bar{A}}_{r} \bar{h}^{n-1}+\overline{\bar{A}}_{r} \bar{h}^{n-1} \tag{21c}
\end{equation*}
$$

Rearrange equation 21 c to read:

$$
\begin{equation*}
\overline{\bar{A}}_{r}{\overline{\xi^{n}}-1 / 2}^{10} \bar{R}_{r}^{n-1} \tag{21d}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \bar{\xi}^{n-1 / 2}=\bar{h}^{n-1 / 2}-\bar{h}^{n-1} ; \\
& \bar{R}_{r}^{n-1}=\bar{Q}_{r}-\overline{\bar{A}}_{r} \bar{h}^{n-1} .
\end{aligned}
$$

Equation 21d is the ADI row formula in residual form. Its matrix form is the same as that for equation 17 d and is solved for each row by the Thomas algorithm. To complete the first half of the ADI iteration, $\bar{h}^{n-1 / 2}$ is computed by

$$
\bar{h}^{n-1 / 2}=\bar{h}^{n-1}+\bar{\xi}^{n-1 / 2}
$$

The equations in which head values along columns are considered implicitly and those along rows explicitly are written as:

$$
\begin{equation*}
B h_{i-1}^{n}+E_{c} h^{n}+H h_{i+1}^{n}=Q_{c}, i=1,2, \ldots, N_{v} \tag{22a}
\end{equation*}
$$

in which

$$
\begin{aligned}
& E_{c}=-\left(B+H+\frac{S}{\Delta t}+M_{l}\right) ; \\
& Q_{c}=-D h_{j-1}^{n-1 / 2}+\left(D+F-M_{l}\right) h^{n-1 / 2} \\
& \quad-F h_{j+1}^{n-1 / 2}-\frac{S}{\Delta t} h_{k-1}+W .
\end{aligned}
$$

Equation 22a in matrix form is

$$
\begin{equation*}
\overline{\bar{A}}_{c} \bar{h}^{n}=\bar{Q}_{c} . \tag{22b}
\end{equation*}
$$

By adding and subtracting $\overline{\bar{A}_{\theta}} \bar{h}^{n-1 / 2}$ to the right-hand side of equation 22 b , it can be put in the residual form

$$
\begin{equation*}
\overline{\bar{A}}_{c_{c} \overline{\bar{\xi}}^{n}}=\bar{R}_{c}^{n-1 / 2} ; \tag{22c}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \bar{\epsilon}^{n}=\bar{h}^{n}-\bar{h}^{n-1 / 2} ; \\
& \bar{R}_{c}^{n-1 / 2}=\bar{Q}_{c}-\overline{\bar{A}}_{c} \bar{n}^{n-1 / 2} .
\end{aligned}
$$

Equation 22c is solved for each column by the Thomas algorithm, and the vector \bar{h}^{n} for each row is obtained by the equation

$$
\bar{h}^{n}=\bar{h}^{n-1 / 2}+\bar{\xi}^{n} .
$$

A set of iteration parameters is computed by the equation

$$
M_{l}=\omega_{l}(B+D+F+H)
$$

in which ω ranges between a minimum defined by

$$
\begin{align*}
& \operatorname{Min}_{\omega_{\min }}=\text { (over grid) }\left[\begin{array}{c}
\pi^{2} \frac{1}{2 \overline{N_{x}^{2}}} \frac{1}{1+\left(\frac{T_{y y}\{2, j\rfloor}{}\left(\Delta x_{i}\right)^{2}\right.} T_{x x[i, 3]}\left(\Delta y_{i}\right)^{2}
\end{array},\right. \\
& \left.\frac{\pi^{2}}{2 N_{y}^{2}} \frac{1}{1+\left(\frac{T_{x x i 2, j\rfloor}\left(\Delta y_{i}\right)^{2}}{T_{y y}}\right)}\right] \tag{23a}
\end{align*}
$$

and a maximum given by

$$
\omega_{\max }=\left\{\begin{array}{l}
1 \quad\left[T_{x x} \cong T_{y y}\right] ; \\
2 \quad\left[T_{x x} \gg T_{y y} \text { or } T_{y y} \gg T_{x x}\right] .
\end{array}\right.
$$

The set of parameters are spaced in a geometric sequence given by

$$
\begin{equation*}
\omega_{l+1}=\gamma \omega_{l} \tag{23b}
\end{equation*}
$$

in which

$$
\begin{equation*}
\ln \gamma=\frac{\ln \left(\omega_{\max } / \omega_{\min }\right)}{L-1} \tag{23c}
\end{equation*}
$$

$L=$ the number of iteration parameters used.
The iteration parameters starting with $\omega_{\text {min }}$ are cycled until convergence is achieved.

Equation 23a is based on a von Neuman error analysis of the normalized flow equations. (See, for example, Weinstein, Stone, and Kwan, 1969.) It will compute the optimum $\omega_{\text {min }}$ only for simple problems. For general problems $\omega_{\text {ullin }}$ computed by equation 23 a may or may not be close to the optimum $\omega_{\text {min }}$ for the problem. This is illustrated in figure 15 in which the rate of reduction in the maximum residual for arbitrarily chosen minimum parameters is compared with that for $\omega_{\min }$ computed with equation $23 a$. Ten parameters were used in problems 1 and 2, and four parameters were used in problem 3. The lines on figure 15 are meant to show the general trend only. The convergence rate using the best $\omega_{\text {min }}$ in figure 15 is nearly the same as that computed with equation 23a for problem 1, but there is a significant difference in rates for problems 2 and 3. (See figs. 21 and 22.)

The other factor that may be critical in determining the rate of convergence using ADI is the number of parameters. In general, the number of parameters is chosen as 5 if $\omega_{\text {max }}$ $-\omega_{\text {min }}$ is about two orders of magnitude; if $\omega_{\max }-\omega_{\text {min }}$ is three or more orders of magnitude, 7 or more parameters are chosen.

For the test problems, the number of iteration parameters were varied from 4 to 10 (fig. 16). The minimum parameter was calculated by equation 23 a ; the maximum parameter was 1 for problems 1 and 2 and was 2 for problem 3. The number of parameters had a relatively small effect in determining the rate of convergence for problems 1 and 3. For problem 2, however, the computations do not converge using 4 or 5 parameters. Problem 2 can be solved with ADI using 6 to 10 parameters with 10 parameters giving the most rapid convergence. ADI did not give satisfactory solutions for problem 4 (an ex-
cessive number of nodes always drop out of the solution) and, consequently, no results for problem 4 are shown in figure 16.

When difficulties occur with ADI in steadystate simulations, rather than experimenting with the critical minimum parameter or the number of parameters, it may be worthwhile to make the simulation a transient problem. In effect, $S / \Delta t$ is used as an additional iteration parameter. If the storage coefficient is not made too large or the time step too small,

Direct solution of equation 24 by Gaussian elimination usually requires more work and computer storage than iterative methods for problems of practical size because \bar{A} decomposes into a lower triangular matrix with non-zero elements from B to E in each row and an upper triangular matrix with nonzero elements from E to H in each row. All of these intermediate coefficients must be computed during Gaussian elimination, and the coefficients in the upper triangular matrix must be saved for backward substitution.

To reduce the computation time and storage requirements of direct Gaussian elimination, Stone (1968) developed an iterative method using approximate factorization. In this approach a modifying matrix \bar{B} is added to $\overline{\bar{A}}$ forming ($\overline{\overline{A+B}}$) so that equation 24 becomes

$$
\begin{equation*}
(\overline{\overline{A+B}}) \bar{h}=\bar{Q}+\overline{\bar{B}} \bar{h} . \tag{25}
\end{equation*}
$$

($\overline{\overline{A+B}}$) can be made close to \bar{A} but can be factored into the product of a lower triangular matrix $\overline{\bar{L}}$ and an upper triangular matrix $\overline{\bar{U}}$, each of which has no more than three nonzero elements in each row, regardless of the size of N_{x} and N_{y}. Therefore, if the righthand side of equation 25 is known, simple
steady state should be achieved within a reasonable number of time steps with rapid convergence at each time step.

Strongly implicit procedure

The set of equations (corresponding to equation 8) for the 3×3 problem in figure 13 may be expressed in matrix form as

$$
\begin{equation*}
\overline{\bar{A}} \bar{h}=\bar{Q} \tag{24}
\end{equation*}
$$

recursion formulas can be derived, resulting in a considerable savings in computer time and storage. This leads to the iteration scheme

$$
\begin{equation*}
(\overline{\overline{A+B}}) \bar{h}^{n}=\bar{Q}+\overline{\bar{B}} \bar{h}^{n-1} . \tag{26}
\end{equation*}
$$

In order to transform equation 26 into a residual form, $\bar{A} \bar{h}^{n-1}$ is subtracted from both sides giving

$$
\begin{equation*}
(\overline{\overline{A+B}}) \bar{\xi}^{n}=\bar{R}^{n-1} \tag{27}
\end{equation*}
$$

in which

$$
\begin{align*}
& \bar{\xi}^{n}=\bar{h}^{n}-\bar{h}^{n-1} ; \\
& \bar{R}^{n-1}=\bar{Q}-\overline{\bar{A}} \bar{h}^{n-1} . \tag{28}
\end{align*}
$$

The iterative scheme defined by equation 26 or 27 is closer to direct methods of solution (more implicit) than ADI (hence the term strongly implicit procedure or SIP). The SIP algorithm requires (1) relationships among the elements of $\overline{\bar{L}}, \overline{\bar{U}}$ and $(\overline{\overline{A+B}})$ defined by rules of matrix multiplication for the equation

$$
\begin{equation*}
\overline{\bar{L}} \overline{\bar{U}}=(\overline{\overline{A+B}}), \tag{29}
\end{equation*}
$$

and (2) relationships among the elements of $\overline{\bar{A}}$ and $(\overline{A+B})$.
$\overline{\bar{L}}$ and $\overline{\bar{U}}$ have the following form for a general 3×3 problem (much of the notation is adapted from Remson, Hornberger, and Molz, 1971) ;

FIGURE 15.-Reduction in the maximum residual for problems 1 to 3 for selected $\omega_{m i n}$ used to compute the ADI parameters.

$$
\begin{array}{lllllllll}
N_{x} \\
\text { Elements } \\
\bar{L}=
\end{array}\left\{\begin{array}{lllllllll}
\gamma_{1} & & & & & & & & \\
\beta_{2} & \gamma_{2} & & & & & & & \\
0 & \beta_{3} & \gamma_{3} & & & & & & \\
\alpha_{4} & 0 & \beta_{4} & \gamma_{4} & & & & & \\
& \alpha_{5} & 0 & \beta_{5} & \gamma_{5} & & & \\
& & \alpha_{6} & 0 & \beta_{6} & \gamma_{6} & & & \\
& & & \alpha_{7} & 0 & \beta_{7} & \gamma_{7} & & \\
& & & & \alpha_{8} & 0 & \beta_{8} & \beta_{8} & \\
& & & & & \alpha_{9} & 0 & \beta_{8} & \gamma_{9}
\end{array}\right]
$$

FIGURE 16.-Number of iterations required for solution of the test problems with ADI using different numbers of parameters.

The product $\overline{\bar{L}} \overline{\bar{U}}=(\overline{\overline{A+B}})$ is

$$
(\overline{\overline{A+B}})=\left[\begin{array}{ccccccccc}
\hat{E}_{1} & \hat{F}_{1} & 0 & \hat{H}_{1} & & & & & \\
\hat{D}_{2} & \hat{E}_{2} & \hat{F}_{2} & \hat{G}_{2} & \hat{H}_{2} & & & & \\
0 & \hat{D}_{3} & \hat{E}_{3} & \hat{F}_{3} & \hat{G}_{3} & \hat{H}_{3} & & & \\
\hat{B}_{4} & \hat{C}_{4} & \hat{D}_{4} & \hat{E}_{4} & \hat{F}_{4} & \hat{G}_{4} & \hat{H}_{4} & & \\
& \hat{B}_{5} & \hat{C}_{5} & \hat{D}_{5} & \hat{E}_{5} & \hat{F}_{5} & \hat{G}_{5} & \hat{H}_{5} & \\
& & \hat{B}_{6} & \hat{C}_{6} & \hat{D}_{6} & \hat{E}_{6} & \boxed{\hat{F}_{6}} & \hat{G}_{6} & \hat{H}_{6} \\
& & & \hat{B}_{7} & \hat{C}_{7} & \hat{D}_{7} & \hat{E}_{7} & \hat{F}_{7} & \hat{G}_{7} \\
& & & & \hat{B}_{8} & \hat{C}_{8} & \hat{D}_{8} & \hat{E}_{8} & \hat{F}_{8} \\
& & & & & \hat{B}_{9} & \hat{C}_{9} & \hat{D}_{9} & \hat{E}_{9}
\end{array}\right]
$$

Because of the boundary conditions, the elements of ($\overline{\overline{A+B}}$) inside squares will be zero for the 3×3 problem illustrated in figure 13 .

The relationships among the elements of $\overline{\bar{L}}$, \bar{U}, and ($\overline{A+B}$) are

α	$=\hat{B}$
$\alpha \delta_{i-1}$	$=\hat{C}$
β	$=\hat{D}$
$\gamma+\alpha \eta_{i-1}+\beta \delta_{j-1}$	$=\hat{E}$
$\gamma \delta$	$=\hat{\boldsymbol{F}}$
$\beta \eta_{j-1}$	$=\hat{G}$
$\gamma \eta$	$=\hat{H}$

where the i and j subscripts refer to the location on the model grid, not in matrix $(\overline{A+B})$.
In order to use equations $30 \mathrm{a}-30 \mathrm{~g}$ as the basis of a numerical technique for solving equation 24 efficiently by elimination, relationships between the elements of $\overline{\bar{A}}$ and ($\overline{\overline{A+B}}$) must be defined. One possibility is to let the elements correspond exactly and ignore the \hat{C} and \hat{G} diagonal in $(\overline{A+B})$. Stone (1968), however, found that this could not be used as the basis of a rapidly convergent iterative procedure. Instead, he defined a family of modified matrices starting with 30b and $30 f$.

Then the other elements of ($\overline{A+B}$) can be defined as equal to the corresponding elements in $\overline{\bar{A}}$ plus a linear combination of \hat{C} and \hat{G}. For example

$$
\hat{B}=B+\phi_{1} \hat{C}+\phi_{2} \hat{G}
$$

in which ϕ_{1} and ϕ_{2} are constants depending on the problem being solved.

What are appropriate linear combinations of \hat{C} and \hat{G} with the elements of $\overline{\bar{A}}$? If equation 27 is written for node (i, j), non-zero coefficients appear not only for the unknowns in the original difference equation but also for $\xi_{i-1, j+1}^{n}$ and $\xi_{i+1, j-1}^{n}$. This is illustrated in figure 17. To minimize the effects of the terms introduced in forming the modified matrix equation, $\bar{B} \bar{\xi}^{n}$ for the node (i, j) is defined as

$$
\begin{align*}
& \hat{\mathrm{C}}\left[\xi_{i-1, j+1}^{n}-\omega\left(\xi_{i-1}^{n}+\xi_{j+1}^{n}-\xi^{n}\right)\right] \\
& \quad+\hat{G}\left[\xi_{i+1, j-1}^{n}-\omega\left(\xi_{j-1}^{n}+\xi_{i+1}^{n}-\xi^{n}\right)\right] \tag{31}
\end{align*}
$$

where the terms in parentheses are secondorder correct approximations for $\xi_{i-1, j+1}$, and $\xi_{i+1, j-1}$, respectively. (See Remson, Hornberger, and Molz, 1971, p. 226, for derivation of these approximations.) To consider these terms good approximations to $\xi_{i-1, j+1}$ and

FIGURE 17.-Coefficients of unknowns in equation 27.
$\xi_{2+1, j-1}$ an iteration parameter, ω, is added. The value of ω ranges between 0 and 1 , and its computation is discussed at the end of this section.

With the definition of $\overline{\bar{B}}$ (31), the iteration scheme (equation 27) becomes

$$
\begin{align*}
& B \xi_{i-1}^{n}+D \xi_{j-1}^{n}+E \xi^{n}+F \xi_{j+1}^{n}+H \xi_{i+1}^{n} \\
& +\hat{C}\left[\xi_{i-1, j+1}^{n}-\omega\left(\xi_{i-1}^{n}+\tilde{\zeta}_{j+1}^{n}-\xi^{n}\right)\right]+\hat{G}\left[\xi_{i+1, j-1}^{n}\right. \\
& \left.-\omega\left(\xi_{j-1}^{n}+\xi_{i+1}^{n}-\xi^{n}\right)\right]=R^{n-1} \tag{32}
\end{align*}
$$

Collecting coefficients in equation 32 associated with the nodal positions in the original difference equation gives the desired linear combinations of \widehat{C} and \hat{G} with the elements of $\overline{\bar{A}}$ that define the remaining elements of $(\overline{\overline{A+B}})$:

$$
\begin{align*}
& \hat{B}=B-\omega \hat{C} \tag{33a}\\
& \hat{D}=D-\omega \hat{G} \tag{33b}\\
& \hat{E}=E+\omega \hat{C}+\omega \hat{G} \tag{33c}\\
& \hat{F}=F-\omega \hat{C} \tag{33d}\\
& \hat{H}=H-\omega \hat{G} \tag{33e}
\end{align*}
$$

The coefficient \hat{C} is obtained explicitly by combining equations $33 \mathrm{a}, 30 \mathrm{a}$, and 30 b as

$$
\begin{equation*}
\hat{C}=\frac{\delta_{i-1} B}{1+\omega \delta_{i-1}} \tag{34a}
\end{equation*}
$$

Finally combining equation 33 b and equations 30 c and 30 gives

$$
\begin{equation*}
\hat{G}=\frac{\eta_{j-1} D}{1+\omega \eta_{j-1}} . \tag{34b}
\end{equation*}
$$

Equations 34, 33 and 30 (in that order) are the first part of the SIP algorithm.

Equation 28 written for node (i, j) is

$$
\begin{aligned}
R^{n-1}=Q-\left(B h_{i-1}^{n-1}\right. & +D h_{j-1}^{n-1} \\
& \left.+E h^{n-1}+F h_{j+1}^{n-1}+H h_{i+1}^{n-1}\right) .
\end{aligned}
$$

As in the Thomas algorithm, the vector $\bar{\xi}^{n}$ is obtained by a process of forward and backward substitution. Combining equations 27 and 29 gives

$$
\begin{equation*}
\overline{\bar{L}} \overline{\bar{U}} \bar{\xi}^{n}=\bar{R}^{n-1} \tag{35}
\end{equation*}
$$

Define an intermediate vector ${\overline{V^{n}}}^{n}$ by

$$
\begin{equation*}
\overline{\bar{U}} \bar{\xi}^{n}=\bar{V}^{n} . \tag{36}
\end{equation*}
$$

Then equation 35 becomes

$$
\begin{equation*}
\bar{L} \overline{V^{n}}=\bar{R}^{n-1} . \tag{37}
\end{equation*}
$$

\bar{V}^{n} is first computed by forward substitution. This can be seen by writing equation 37 for node (i, j) :

$$
\alpha V_{i-1}^{n}+\beta V_{j-1}^{n}+\gamma V^{n}=R^{n-1}
$$

or

$$
V^{n}=\left(R^{n-1}-\alpha V_{i-1}^{n}-\beta V_{j-1}^{n}\right) / \gamma .
$$

The vector $\bar{\xi}^{n}$ may then be computed by backward substitution. Equation 36 for node (i, j) is

$$
\xi^{n}+\delta \xi_{1+1}^{n}+\eta \xi_{i+1}^{n}=V^{n}
$$

or

$$
\xi^{n}=V^{n}-\delta \xi_{j+1}^{n}-\eta \xi_{i+1}^{n} .
$$

Stone (1968) recommends an alternating computational procedure. On odd iterations, the equations are ordered in a "normal" manner as shown in figure 13. On even iterations, the numbering scheme is changed to that illustrated in figure 18. This has the effect of making non-zero coefficients appear for the heads $h_{i-1, j-1}$ and $h_{i+1, j+1}$ (the X's in fig. 17) instead of $h_{i-1, j+1}$ and $h_{i+1, j-1}$ and significantly improves the convergence rate. Note that some of the recursion equations are modified by reordering the grid points in the "reverse" manner. The modifications required for the reverse algorithm are

FIGURE 18.—Reverse numbering scheme for 3×3 problem.

$$
\begin{aligned}
& \hat{C}=\frac{\delta_{i+1} H}{1+\omega \delta_{l+1}} ; \\
& \hat{B}=H-\omega \hat{C} ; \\
& \hat{H}=B-\omega \hat{G} ; \\
& \gamma=E-\alpha \eta_{i+1}-\beta \delta_{j-1} ; \\
& V^{n}=\left(R^{n-1}-\alpha V_{i+1}^{n}-\beta V_{j-1}^{n}\right) / \gamma ; \\
& \xi^{n}=V^{n}-\delta \xi_{j+1}^{n}-\eta \xi_{i-1}^{n} .
\end{aligned}
$$

The iteration parameters are computed by equations given in Stone (1968). For variable transmissivity and grid spacing, Stone's equation is

$$
\begin{array}{r}
\left(1-\omega_{\max }\right)=\sum_{i=1}^{N_{y}} \sum_{j=1}^{N_{\sigma}} \operatorname{Min}\left[\begin{array}{c}
\frac{2\left(\delta x_{j}\right)^{2}}{1+\left(\frac{T_{y v}[i, i j}{}\left(\delta x_{j}\right)^{2}\right.} \\
T_{x x[i, j]}\left(\delta y_{i}\right)^{2}
\end{array}\right) \\
\left.1+\frac{2\left(\delta y_{i}\right)^{2}}{\left(\frac{T_{x x[i, j]}\left(\delta y_{i}\right)^{2}}{T_{y y[i, j]}\left(\delta x_{j}\right)^{2}}\right)}\right] \div\left(N_{x} \times N_{y}\right) \quad(38) \tag{38}
\end{array}
$$

in which

$$
\begin{aligned}
& \delta x=\Delta x_{j} / \text { width of model } \\
& \delta y=\Delta y_{i} / \text { length of model }
\end{aligned}
$$

Equation 38 computes an arithmetic average of $\omega_{\max }$ for the algorithm.

The remaining iteration parameters are computed by

$$
1-\omega_{l+1}=\left(1-\omega_{\max }\right)^{\eta /(L-1)}, l=0,1, \ldots, L-1
$$

in which L is the number of parameters in a cycle.

Stone (1968) recommends using a minimum of four parameters, each used twice in
succession, starting with the largest first. Weinstein, Stone, and Kwan (1969), however, indicate that it is not necessary to start with the largest parameter first or to repeat them.

The results using different numbers and sequences of parameters for the three test problems are shown in figure 19. Except for the sequence $4,3,2,1$ in problem 1 the number of iterations required for solution varies up to a maximum of 50 percent for the parameter sequences tested. Several parameter sequences (for example, 1, 2, 3, 4, 5) give convergence near the maximum observed rate for all problems. This result suggests that conducting numerical experiments to determine the best sequence of parameters for a particular problem is generally not justified.

Weinstein, Stone, and Kwan (1969) have a slightly different definition of the maximum parameter ($1-\omega_{\max }=$ ADI minimum parame-
ter). Their definition of the maximum parameter (which is the maximum over the model, not the arithmetic average of values computed for each node) was used in solving several test problems. In every case convergence was faster using equation 38 to compute the maximum parameter.

Stone (1968) states that a more general form of equation 27 includes another iteration parameter, β^{\prime}, to multiply the term \bar{R}^{n-1}. His experience indicated, however, that values of β^{\prime} other than unity did not generally improve the method. In contrast, the use of β^{\prime} other than unity has proven to be effective for some of the test problems. In fact, for the fourth problem, a value of β^{\prime} less than unity is required to obtain a reasonable solution using SIP. Results for problem 4 are not shown in figure 19 because the best sequence of parameters (No. 3) for problem 2 was used in experimenting with the parameter β^{\prime}.

FIGURE 19.-Iterations required for solution of the test problems by SIP using different numbers and sequences of parameters.

Comparison of Numerical Results

The rate of convergence using different numerical techniques for solving the test problems is compared in figures 20 to 23 . The best results from the experiments with each iterative technique are used in the comparisons. Two curves (except for fig. 23) are shown for SIP: one with the parameter $\beta^{\prime}=1$ and the other with the best rate of convergence for $\beta^{\prime} \neq 1$. The sequence of ω parameters is the same for both curves. Two curves are also shown for ADI: one in which the minimum parameter was calculated with equation 23a (indicated by an asterisk in the figures) ; the other with the best minimum parameter shown on figure 15.

In figures 20 to 23 the absolute value of the maximum residual for each iteration is plotted versus computation time where one unit of work is equal to the time required to complete one SIP iteration. Relative work per iteration is about 1 for ADI, 0.6 for LSOR, and 0.8 for $\mathrm{LSOR}+2 \mathrm{DC}$. The maximum residual for SIP and ADI fluctuates from a maximum to a minimum over each cycle of parameters. For clarity, the curves connect the local minima for these two methods. Comparisons in figures $20-23$ should be made on the basis of the horizontal displacement of the curves, not on the basis of the termination of the curves. This is similar to the type of comparisons made by Stone (1968).

Figure 20 shows the results for problem 1 (10 parameters for ADI, $\omega=1.87$ for LSOR, $\omega=1.7$ for LSOR + 2DC, parameter sequence, $1,1,3,3,5,5,2,2,4,4,6,6$, for SIP). Of the sequence of β^{\prime} parameters tried, the minimum work required to reduce the residual is obtained with $\beta^{\prime}=1.4$, but this is only moderately better than using $\beta^{\prime}=1.0$. ADI converges as rapidly as SIP for the first cycles of iteration, but from that point on converges slower than the other iterative techniques. The two ADI curves show about the same rate of convergence for this problem. Next to SIP, LSOR +2 DC is most attractive for this problem.

FIGURE 20.-Computational work required by different iterative techniques for problem 1.

The results for problem 2 are shown in figure 21 (10 parameters for ADI, $\omega=1.6$ for LSOR and LSOR + 2DC, parameter sequence $1,2,3,4,5$ for SIP). SIP requires the least amount of work for this problem (using $\beta^{\prime} \neq 1.0$ does not significantly reduce the work required). LSOR and ADI using the best $\omega_{\text {min }}$ from figure 15 are competitive with SIP. ADI using $\omega_{\text {min }}$ computed with equation 23a requires about twice as much computational work. LSOR and LSOR + 2DC take the same number of LSOR iterations so that the extra work required for 2DC is wasted for this problem.

In figure 22, the results using 4 parameters for ADI, the parameter sequence $1,2,3,4$ for SIP, $\omega=1.88$ for LSOR and $\omega=1.70$ for LSOR +2 DC are plotted for problem 3. In this problem LSOR (with solution lines oriented along columns), ADI with $\omega_{\min }$ computed with equation 23a, and SIP with $\beta^{\prime}=1$ are competitive. Convergence is significantly improved by adding 2DC to LSOR, choosing the best $\omega_{\text {min }}$ from figure 15 for ADI and letting $\beta^{\prime}=1.5$ with SIP.

FIGURE 21.-Computational work required by different iterative techniques for problem 2.

FIGURE 22.-Computational work required by different iterative techniques for problem 3.

The results for problem 4 are shown in figures 23 and 24. The ω iteration parameter sequence for SIP is $1,2,3,4,5$, and the twodimensional correction is applied every fifth iteration for LSOR + 2DC. Konikow (oral

FIGURE 23.-Computational work required by different iterative techniques for problem 4.

FIGURE 24.-Number of iterations required for solution of problem 4 by SIP using different values of β^{\prime}.
commun., 1975) was unable to obtain a solution to problem 4 using ADI due to oscillations that eliminated nodes that should have been in the solution. This problem occurred not only with ADI but also with LSOR and LSOR +2 DC with $\omega>0.6$ and with SIP with $\beta^{\prime}>0.6$. The oscillations are apparently caused in part by the nonlinearities of the water-table problem and the necessity to calculate transmissivity at the known iteration level. In a water-table simulation the transmissivity is set to zero and nodes are dropped from the aquifer if the computed head is below the base of the aquifer. For problem 4, at least 3 nodes should be dropped with the initial conditions used.

A solution to problem 4 in which 3 to 4 nodes are dropped is obtained with LSOR and LSOR +2 DC when $\omega=0.5$ at the expense of slow convergence. Clearly the most suitable method for this problem is SIP with $\beta^{\prime} \leq 0.6$ (fig. 23). In effect the use of $\beta^{\prime}<1$ for SIP and $\omega<1$ for LSOR represents "underrelaxation" and has the effect of dampening oscillations of head from one iteration to the next. This reduces the tendency for incorrect deletion of nodes from the solution.
Solution of problem 4 emphasizes the advantage of the extra SIP iteration parameter. The optimum value of β^{\prime} inferred from figure 24 is about 0.5 . Note in figure 24 that an additional node is dropped for $\beta^{\prime}=0.5$ and 0.6 . However, the effect of this node on the remainder of the solution is negligible. For $\beta^{\prime}>0.6$, either convergence was not obtained or excessive numbers of nodes were dropped for those cases that did converge.

The numerical experiments included in this report support the general conclusions of Stone (1968) and Weinstein, Stone, and Kwan (1969) that SIP is a more powerful iterative technique than ADI for most problems. SIP is attractive, not only because of its relatively high convergence rates but because it is generally not necessary to conduct numerical experiments to select a suitable sequence of parameters. SIP has the disadvantage of requiring 3 additional $N_{x} \times N_{v}$ arrays.

For the first three problems examined here, ADI is a slightly better technique than LSOR when $\omega_{\text {min }}$ near the optimum is used. Although this result agrees with Bjordammen and Coats (1969) who concluded that ADI is superior to LSOR for the oil reservoir problems they investigated, it is deceptive because less work is required to obtain $\omega_{\text {opt }}$ for LSOR than is required to find the best $\omega_{\min }$ for ADI by trial and error. Furthermore, LSOR is clearly superior to ADI in application to problem 4 where a solution was not possible with ADI as used in this simulator.

LSOR + 2DC seems to be particularly useful with problems dominated by no-flux boundaries. The correction procedure can significantly improve the rate of convergence of LSOR even in problems such as problem 3 where all β_{j} are zero and non-zero α_{i} occur for the lower half of the model only.

Considerations in Designing an Aquifer Model

Boundary conditions

An aquifer system is usually larger than the project area. Nevertheless the physical boundaries of the aquifer should be included in the model if it is feasible. Where it is impractical to include one or more physical boundaries (for example, in an alluvial valley that may be several hundred miles long) the finite-difference grid can be expanded and the boundaries located far enough from the project area so that they will have negligible effect in the area of interest during the simulation period. The influence of an artificial boundary can be checked by comparing the results of two simulation runs using different artificial boundary conditions.

Boundaries that can be treated by the model are of two types: constant head and constant flux. Constant-head boundaries are specified by assigning a negative storage coefficient to the nodes that define the constanthead boundary. This indicates to the program that these nodes are to be skipped in the computations.

A constant flux may be zero (impermeable boundaries) or have a finite value. A zeroflux boundary is treated by assigning a value of zero transmissivity to nodes outside the boundary. The harmonic mean of the transmissivity at the cell boundary is zero, and consequently, the flux across the boundary is zero. A no-flow boundary is inserted around the border of the model as a computational expediency, and constant-head or finite-flux boundaries are placed inside this border. A finite-flux boundary is treated by assigning recharge (or discharge) wells to the appropriate nodes. Figure 25 illustrates various types of boundary conditions.

The type of boundaries appropriate to the field problem may require careful consideration. In particular, should streams be treated as constant-head boundaries or are they more realistically treated as partially penetrating with a leaky streambed? If a leaky streambed is used, note that the leakage occurs over the area of the blocks assigned to the stream. If the area of the streambed is less than the area of the blocks, the ratio of streambed hydraulic conductivity to thickness can be proportionately reduced to make the amount of leakage realistic.

Initial conditions

In many simulations, the important results are not the computed head but the changes in head caused by a stress such as pumping wells. For this objective in a confined aquifer for which the equations are linear, there is no need to impose the natural flow system as the initial condition since the computed drawdown can be superimposed on the natural flow system, if desired.

If initial conditions are specified so that transient flow is occurring in the system at the start of the simulation, it should be recognized that water levels will change during the simulation, not only in response to the new pumping stress, but also due to the initial conditions. This may or may not be the intent of the user.

To start from steady-state conditions in which flow is occurring, the model can be used
to compute the initial head by leaving out the new stress (for example, wells) and setting all storage terms to zero. This is also a useful calibration procedure to compute unknown terms such as the ratio of hydraulic conductivity to thickness for leakage.

Designing the finite-difference grid

In designing a finite-difference grid, the following considerations should be kept in mind:

1. Nodes representing pumping and observation wells should be close to their respective positions to facilitate calibration. If several pumping wells are close together, their discharge may be lumped and assigned to one node since discharge is distributed over the area of the cell.
2. Boundaries within the project area should be located accurately. Distant boundaries can be located approximately and with fewer nodes by expanding the grid. In expanding a finite-difference grid in the positive X direction, experience has shown that restricting the ratio $\Delta X_{j} / \Delta X_{j-1} \leqq 1.5$ will avoid large truncation errors and possible convergence problems.
3. Nodes should be placed close together in areas where there are spatial changes in transmissivity. For example, in cross-sectional problems with aquifers separated by confining beds, many layers of nodes are required in the confining bed to obtain a good approximation of the head distribution (and consequently the flux) during transient conditions.
4. The grid should be oriented so that a minimum of nodes are outside the aquifer. The orientation of the grid with respect to latitude and longitude or some other geographic grid system would be a secondary consideration. However, if the aquifer is anisotropic, the grid should be oriented with its axes parallel to the principal directions of the transmissivity tensor. Otherwise,

EXPLANATION

Node symbols
Inside aquifer (transmissivity >0)
w Discharge well
R Recharge well
∇ Constant head

- Node without wells or specified head
Outside aquifer
- Transmissivity $=0$
-.- Aquifer boundary
- Mathematical boundary

DIML Number of rows
DIMW Number of columns
Boundary conditions

Constant flux
$\square \frac{\partial h}{\partial x}=0$
$R \frac{\partial h}{\partial x}=C$
the flow equation would include crossproduct terms and the solution would be restricted to ADI and LSOR because additional diagonals appear in the coefficient matrix and SIP, in its usual form, cannot be used.
5. The rows should be numbered in the short dimension for the alphameric plot on the line printer or for plotting data with an $X-Y$ plotter. On these plots, the X-direction is vertical and, for practical purposes, this dimension is unlimited. The Y direction is across the page which limits this dimension to the maximum width of the page. (See fig. 26.)
6. The core requirements and computation time are proportional to the number of nodes representing the aquifer.

Selected References

Akbar, A. M., and Arnold, M. D., and Harvey, O. H., 1974, Numerical simulation of individual wells in a field simulation model: Soc. Petrol. Eng. Jour., Aug. 1974, p. 315-320.
Aziz, K., and Settari, A., 1972, A new iterative method for solving reservoir simulation equations: Jour. Canadian Petrol. Technology, Jan.-Mar. 1972, p. 62-68.
Bjordamman, J., and Coats, K. H., 1969, Comparison of alternating-direction and successive overrelaxation techniques in simulation of reservoir fluid flow: Soc. Petrol. Eng. Jour., March, 1969, p. 47-58.

Bredehoeft, J. D., and Pinder, G. F., 1970, Digital analysis of areal flow in multiaquifer groundwater systems: A quasi threc-dimensional model: Water Resources Research, v. 6, no. 3, p. 883888.

Breitenbach, E. A., Thurnau, D. H., and van Poollen, H. K., 1969, Solution of the immiscible fluid flow simulation equations: Soc. Petrol. Eng. Jour., June 1969, p. 155-169.
Carnahan, B., Luther, H. A., and Wilkes, J. O., 1969, Applied numerical methods: New York, John Wiley and Sons, 604 p .
Carré, B. A., 1961, The determination of the optimum accelerating factor for successive over-relaxation: Comp. Jour., v. 4, p. 73-78.
Cooley, R. L., 1974, Finite element solutions for the equations of groundwater flow: Desert Research Institute Univ. Nevada, Tech. Report Series, HW, Hydrology and Water Resources Pub. No. 18, 134 p.

Cosner, O. J., and Horwich, E., 1974, Grid-coordinate generation program: U.S. Geol. Survey openfile report, 27 p .
Freeze, R. A., 1971, Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin: Water Resources Research, v. 7, no. 2, p. 347-366.
Hantush, M. S., 1960, Modification of the theory of leaky aquifers: Jour. Geophys. Research, v. 65, no. 11, p. 3713-3725.
Konikow, L. F., 1974, Modeling mass transport in a shallow aquifer: Am. Geophys. Union Trans., v. 55, no. 4, p. 256.

- 1975, Hydrogeologic maps of the alluvial aquifer in and adjacent to the Rocky Mountain Arsenal, Colorado: U.S. Geol. Survey open-file report, 74-342.
Peaceman, D. W., and Rachford, H. H., Jr., 1955, The numerical solution of parabolic and elliptic differential equations: Soc. Indust. Appl. Math. Jour., v. 3, no. 1, p. 28-41.
Pinder, G. F., 1969, An iterative digital model for aquifer evaluation: U.S. Geol. Survey open-file report, 43 p .
- 1970, A digital model for aquifer evaluation: U.S. Geol. Survey Tech. Water-Resources Investigations, Book 7, Chap. C1, 18 p.
Pinder, G. F., and Bredehoeft, J. D., 1968, Application of a digital computer for aquifer evaluation: Water Resources Research, v. 4, no. 5, p. 1069-1093.
Prickett, T. A., 1967, Designing pumped well characteristics into electric analog models: Ground Water, v. 5, no. 4, p. 38-46.
Prickett, T. A., and Lonnquist, C. G., 1971, Selected digital computer techniques for groundwater resources evaluation: Illinois State Water Survey Bull. 55,62 p., Urbana.
Remson, I., Hornberger, G. M., and Molz, F. J., 1971, Numerical methods in subsurface hydrology: New York: Wiley-Interscience, 389 p .
Stone, H. K., 1968, Iterative solution of implicit approximations of multidimensional partial differential equations: Soc. Indust. Appl. Math., Jour. Numer. Anal., v. 5, no. 3, p. 530-558.
Thiem, G., 1906, Hydrologische Methoden: Leipzig, Gebhardt, 56 p.
Trescott, P. C., 1973, Iterative digital model for aquifer evaluation: U.S. Geol. Survey open-file report, 18 p.
Varga, R. S.. 1962, Matrix iterative analysis: New Jersey, Prentice-Hall, 322 p .
von Rosenberg, D. U., 1969. Methods for the numerical solution of partial differential equations: New York, Elsevier, 128 p.
Watts, J. W., 1971, An iterative matrix solution method suitable for anisotropic problems: Soc. Petrol. Eng. Jour., March 1971, p. 47-51.

1973, A method for improving line successive overrelaxation in anisotropic problems-a theoretical analysis: Soc. Petrol. Eng. Jour., April 1973, p. 105-118.

Weinstein, H. G., Stone, H. L., and Kwan, T. V., 1969, Iterative procedure for solution of systems of parabolic and elliptic equations in three dimensions: Industrial and Eng. Chemistry Fundamentals, v. 8, no. 2, p. 281-287.

COMPUTER PROGRAM AND RELATED DATA

$\bar{\zeta}$	vector of change in head over an iteration;
$\rho(\mathbf{G})$	spectral radius of Gauss-Seidel iteration matrix;
$\boldsymbol{\phi}_{1}, \phi_{\mathbf{2}}$	constants in definition of co- efficients of $(\overline{A+B}) ;$
ω	acceleration parameter; ω_{l}
iteration parameter; $\omega_{\max }$	maximum iteration parameter; ω_{min}
ω_{opt}	minimum iteration parameter; optimum acceleration parameter.

Attachment II, Computer Program

Main program

The first function of the main program is to dimension the arrays for the field problem being simulated. The algorithm allocates storage space reserved in a vector, Y. Some arrays are required for every simulation; others are needed only if certain options are specified. The information needed to allocate space to the arrays is contained in the Group I data cards which are read by the main program (see Attachment III).

Once the model is compiled, it does not need to be recompiled for a new field problem unless (1) the logic is changed or (2) the vector Y is not dimensioned large enough for the new problem. The minimum dimension of the vector Y (YDIM) can be comnuted by

$$
\begin{equation*}
\mathrm{YDIM} \cong\left(15+N_{a}\right) N_{x} N_{v} \tag{39}
\end{equation*}
$$

in which N_{a} is the total number of arrays required for the options (from table 2).

Equation 39 is approximate, but normally will give a value that is sufficient for the simulation. The exact dimension required is

Table 2.-Number of arrays required for the options

Option	Number of arrays
Water Table	3
Conversion 1	1
Leakage	3
Evapotranspiration	1
SIP	4

[^1]printed on the first page of the output as 'WORDS OF VECTOR Y USED = XXXX'.
In the second part of the main program, the location of the initial addresses of the arrays are passed to the subroutines. (See table 3 for details.) The variables in table 3 defining the dimensions of the arrays are defined in Attachment VI; the first four arrays and XII are double precision.

The last part of the main program controls the sequence of computations illustrated by the gencralized flow chart (Appendix V). In the flow chart, the routines are lettered in sequence starting with the main program. Entry points for the routines are numbered in sequence along the left side of the chart. Exits from a routine are indicated by circles containing the entry point of the routine to which control passes. A break occurs in the flow chart following an unconditional exit. Variables used in the flow chart are defined in Attachment VI.

Subroutine DATAI

Instructions for the preparation of the data deck are given in Attachment III. Data may be input to the model in any consistent set of units in which second is the time unit. It is organized into four groups: Data in groups I and II are the simulation options and scalar parameters: group III cards are used to initialize the arrays. These three groups are required for each new simulation. Group IV contains data that varies with each new pumping period. The program permits changing well discharge and the time parameters each pumping period, but the program can be modified to read other data (for example, recharge rate) with this set of cards.

Time parameters

The time parameters include the initial time step, DELT; a multiplication factor for increasing the size of the time step, CDLT; the number of time steps, NUMT; and the simulation period, TMAX. Since the rate of water-level decline decreases during a pumping period, the time step is increased by the factor CDLT each step (commonly 1.5). For

Table 3.-Arrays passed to the subroutines and their relative location in the vector Y

Array	Sequencenumber in $\underset{\text { vector }}{\text { number in }}$	Subroutine						Dimensions
		datai	STEP	SOLVEI	COEF	CHECKI	PRNTAI	
PHI --------	1	\times	\times	\times	\times	\times	\times	(IZ, JZ) *8
BE -..-----	2	--	--	\times	--	--	--	IMAX 8
G	3	--	--	\times	--	--	--	IMAX 8
TEMP ----	4	--	--	\times	--	--	--	IMAX ${ }^{8}$
KEEP	5	--	\times	\times	\times	\times	--	IZ, JZ
PHE	6			\times	\times	\times	--	IZ, JZ
STRT	7	\times	\times	\times	\times	\times		IZ, JZ
SURI	8	\times	\times		\times		-	IZ, JZ
T	9	\times	\times	\times	\times	\times	--	IZ, JZ
TR	10	\times	\times	--	\times	\times	--	IZ, JZ
TC	11	\times	--	--	\times	\times		IZ. JZ
S	12	\times	--	\times	\times	\times	\times	IZ, JZ
QRE	13	\times	$\bar{\chi}$	\times		\times		IZ, JZ
WELL	14	\times	\times	\times	\times	\times	\times	IZ, JZ
TL	15	\times	--	\times	\times	\times	--	IZ, JZ
SL	16	\times	--	\times	\times	--	--	IZ, JZ
PERM	17	\times	\times	--	\times	\times	--	IP, JP
BOTTOM	18	\times	\times	--	\times	\times	--	IP, JP
SY	19	\times	--	--	\times	\times	--	IP, JP
RATE	20	\times	--	--	\times	\times	--	IR, JR
RIVER	21	\times	--	--	\times	\times	--	IR, JR
M	22	\times	--	--	\times	\times	--	IR, JR
TOP	23	\times	\times	--	\times	x	--	IC, JC
GRND	24	\times	--	--	\times	\times	--	IL, JL
DEL	25	--	--	\times	--	--	--	IS, JS
ETA	26	--	--	\times	--	--	--	IS, JS
V	27	--	--	\times	--	--	--	IS, JS
XI	28	--	--	\times	--	--	--	IS, JS
DELX	29	\times	\times	\times	\times	\times	\times	JZ
DDN	30	--	\times		--	--	--	JZ
BETA	31	--	--	x	--	--	--	JZ
DELY	32	\times	\times	\times	\times	\times	\times	IZ
ALFA	33	--	--	\times	--	--	--	IZ
WR	34	\times	\times	--	--	--	--	
NWR	35	\times	\times	\cdots	--	--	--	IH, 2
XII	36	--	--	x	--	--	--	IMAX * 8
TEST 3 -----	37	--	\times	\times	--	--	--	IMX1

any time step (k) the time increment is given by

$$
\operatorname{DELT}_{k}=\text { CDLT }^{*} \mathrm{DELT}_{k-1} .
$$

DELT_{o} is the time step recorded on the data card.

The program has two options for selecting the time parameters:

1. To simulate a given period of time, select CDLT and an appropriate DELT_{0}, and set NUMT greater than the expected number of time steps. The program computes the required initial DELT $_{0}$ (which will not exceed the value of

DELT $_{o}$ coded on card 1 of group IV) and NUMT to arrive exactly at TMAX on the final time step. In a simulation of one pumping period in which results are required at several specific times, the simulation can be broken into several "pumping periods." Each period will have the same pumpage, and TMAX is used to specify the appropriate times for display of results.
2. To simulate a given number of the time steps, set TMAX greater than the expected simulation period and the program will use DELT_{o}, CDLT, and

NUMT as specified on the time parameter card.
To minimize the error due to approximation of the time derivative, several time steps should be simulated before the first step at which results are displayed. This suggestion should be followed unless the system is nearly steady-state before the results are needed. In this case a one-step simulation may be satisfactory, but this approach should be checked by making one run as a multistep simulation so that the results can be compared.

For steady-state simulations, set the storage coefficient and (or) specific yield of the aquifer and the specific storage of the confining bed to zero. Compute for one time step of any length (for example, set TMAX $=1$, NUMT $=1$, CDLT $=1, \operatorname{DELT}=24$) and the program should iterate to a solution. The maximum permitted number of iterations (ITMAX) should be larger for steady-state than for transient simulations. If the calculations do not converge to a solution within a reasonable number of iterations, it may be necessary to use a transient simulation for enough steps to attain steady state (see also the discussion of ADI iteration parameters) or use another numerical technique.

Initialization

In addition to reading data and computing the time parameter, this routine initializes other arrays and scalar parameters. In particular, note that the leakage coefficient, $T L$, will equal $K_{i, j}^{\prime} / m_{i, j}$ and can be computed once for the entire simulation if the specific storage of the confining bed is zero. The computation of the steady leakage term, $S L$, and the division of well discharge by the area of the cell need to be done only once for each pumping period. At the beginning of each pumping period the starting head (STRT) and the simulation time (SUMP) used in computing transient leakage are initialized.

Subroutine STEP

Subroutine STEP initializes variables for a new time step, checks for steady-state conditions after a solution is obtained for the
time step, and controls the printing and punching of results and the writing of results on disk. If head values are punched at the end of the simulation or are written on disk, they can be used to extend the simulation or as input to plotting routines. (See the program by Cosner and Horwich, 1974.) Currently, a general program is being written to display results in various forms on the line printer and plotters; it is described in detail in another section of this report.

In the check for steady state during transient simulations, the head change over a time step is computed. If the absolute value of change at all nodes is less than EROR, the message 'STEADY STATE AT TIME STEP X^{\prime} is printed. The program then prints all desired output for the final time step (X) and proceeds to read data for the next pumping period, if any.

Maximum head change for each iteration

The printed results are explained in the section on theory and in the discussions of subroutines COEF, CHECKI, and PRNTAI or are self explanatory, except for the listing of the absolute value of the maximum head change for each iteration. This information is useful if convergence is slow with ADI or SIP because it may indicate that a slightly larger error criterion will give a satisfactory solution with considerably fewer iterations.

Subroutine SOLVE

The three SOLVE routines, SOLVE1, SOLVE2, and SOLVE3 are, respectively, SIP, LSOR and ADI. They have been described in previous sections, but a few additional comments are necessary.

In these routines and in subroutine COEF, the usual (I,J) notation has been replaced in favor of single-subscript notation. Less time is involved in finding the value of a variable with a single subscript than in finding the value of one with a double subscript and, as a consequence, computational efficiency is improved. The five variables used as subscripts in this notation are defined in Attachment VI.

SIP iteration parameters

The algorithm in ITER1 permits computation of the iteration parameters in increasing or decreasing order and repeat of parameters depending on the initialization of the vector IORDER. Note that LENGTH is twice the number of different parameters and that the DATA statement that initializes IORDER assumes LENGTH $=10$. Replace the DATA statement with a READ statement if additional flexibility is desired in choosing the order of parameters without recompiling the subroutine.

Exceeding permitted iterations

If the permitted number of iterations for a time step is exceeded, the message 'EXCEEDED PERMITTED NUMBER OF ITERATIONS' is printed. Following the message the mass balance, head matrix, etc., as specified in the options are printed for the final iteration. This information is useful in determining the cause of the nonconvergence. Before terminating the run, the mass balance and head values will be punched if PUNC was specified in the options or written on disk if IDK2 was specified. With punched output or results on disk, the user has the option to extend the number of iterations if it appears that a solution can be obtained. If iterations are exceeded on the first time step, the head values saved (punched or written on disk) were computed in the last iteration. If iterations are exceeded on a subsequent time step, KT, the head values and mass-balance parameters saved are the results for time step KT-1.

Subroutine COEF

Most of the calculations for coefficients used in the solution of the numerical schemes are done in this routine. The more extensive computations except those described in the section on theory are discussed in the following paragraphs.

Transient leakage coefficients

The algorithm for the transient parts of equations 9 and 10 is the same except for two
conditional statements that recompute PPT and DENOM if dimensionless time is in the range for applying equation 9 . In performing the infinite summation, the code checks for the significance of additional terms, but in any case limits the summation to a maximum of 200 terms. The minimum and maximum valucs of dimensionless time, TMIN and TT, are retained and printed with the results for the time step so that the user will know whether or not transient leakage effects are significant.

Transmissivity as a function of head

The transmissivity for water-table or combined water-table-artesian aquifers is computed as a function of the saturated thickness of the aquifcr. If a cell (except a cell with well discharge) goes dry, a message 'NODE I, J GOES DRY' is printed, the transmissivity for the cell is set to zero, and the head is set to the initial surface (so that the location of the cell will show up in the output). No provision is made to permit the cell to resaturate in subsequent pumping periods because the additional code necessary to accommodate this special situation is not warranted in a general program.

When a cell with well discharge goes dry (that is, a hypothetical well with radius r_{e} goes dry), the program terminates the computation with printed output, and, if specified in the options, saves the results. Printed output is headed by 'WELL I, J GOES DRY' followed by drawdown when the well went dry. If results for the previous time step were not printed, drawdown and a mass balance (if specified in the program options) for the previous time step are printed. Finally, if specified in the options, mass-balance parameters and head values for the previous time step are punched or written on disk so that the user has the option of continuing the simulation after modifying the well discharge.

TR and TC coefficients

The TR and TC arrays save values that are used repeatedly in the algorithm. They are computed once for artesian problems and
each iteration for water-table and combined artesian-water-table simulations. TR (I,J) is the harmonic mean of $T_{x x}(\mathrm{I}, \mathrm{J}) / \mathrm{DELX}(\mathrm{J})$, $T_{x x}(\mathrm{I}, \mathrm{J}+1) / \mathrm{DELX}(\mathrm{J}+1)$; TC (I,J) is the harmonic mean of $T_{y y}(\mathrm{I}, \mathrm{J}) / \mathrm{DELY}(\mathrm{I}), T_{x x}$ $(\mathrm{I}+1, \mathrm{~J}) / \mathrm{DELY}(\mathrm{I}+1)$.

Subroutine CHECKI

A mass balance is computed in this routine. The results are expressed in two ways: (1) as a cumulative volume of water from each source and each type of discharge and (2) as rates for the current time step.

In the cumulative mass balance, storage is treated as a source of water. Flow to and from constant-head boundaries is computed with Darcy's law using the gradients from constant-head nodes to adjacent nodes inside the aquifer. Other computations in the algorithm are self explanatory.

The difference between the sum of sources and sum of discharges from the system is usually less than 1 percent. A larger error, however, does not necessarily mean that the results are poor; it may be due to lack of precision in calculating the mass balance. This has been observed, for example, if a leaky streambed is given a large K^{\prime} / m ratio so that it is effectively a constant-head boundary. The leakage computation is inaccurate if the head values at a stream node are identical to 6 or 7 significant figures and they are stored as single precision variables.
To the right of the cumulative mass balance are printed the flow rates for the current time step. They are self explanatory except for leakage. "Leakage from previous pumping period" is the leakage resulting from gradients across the confining bed at the start of the current pumping period. The "total" leakage is the sum of leakage due to the initial gradients plus leakage induced by head changes during the current pumping period.

Subroutine PRNTAI

This routine prints a map of drawdown and hydraulic head. Up to three characters
are plotted for each cell with the rightmost character as close to the location of the node as the printer will allow. An option to permit the printing of results at different scales in the x and y dimensions is useful for cross sections. This routine is useful for displaying results during calibration runs. More elegant graphical displays for final results are described in another section.
The user specifies XSCALE and YSCALE, the multiplication factors required to change from units used in the model to units used on the map; DINCH, the number of map units per inch; FACT1 and FACT2, the multiplication factors for adjusting the values of drawdown and head to be plotted, respectively; and MESUR, the name of the unit used on the map. As an example, assume that the length unit used in the model is feet, the map is to be scaled at 3 miles per inch and drawdown values at 1 foot increments and head values at 10 foot increments are to be plotted. Then XSCALE $=$ YSCALE $=5280$, DINCH-3, FACT1=1, FACT2=0.1; and MESUR = MILES.

To print a map of maximum possible size, number the rows in the short dimension to take advantage of the orientation of the map on the computer page where the X direction is vertical and the Y direction horizontal. (See fig. 26.) The origin is the upper lefthand corner of the block for row 2 , column 2. Orienting the map with the origin in the upper left-hand corner, the right and bottom sides of the map include the node locations for the second to last column and row, respectively. The border is located to the nearest inch outside these node locations and may or may not fall on the cell boundaries depending on the scaling. The map is automatically centered on the page and is limited to a maximum of 12 inches (300 mm) in the Y direction. If the parameters for a map are specified such that the Y dimension is more than 12 inches (300 mm) adjustments are automatically made to fit the map within this limit. A common mistake is to specify a value for Y scale that is less than 1.0. This generates the message 'NOTE: GENERALLY SCALE SHOULD BE >0 R $=1.0$,' and a suit-

FIGURE 26.-Orientation of map on computer page.
able adjustment is made to DINCH. In the \mathbf{X} direction, the map is limited only by the dimension of the NX vector. (For example, when the dimension of NX is 100 , the map is limited in the X direction to $100-1=99$ inches (2500 mm).) Several parameters (PRNT, BLANK, N1, N2, N3, and XN1) are initialized in the BLOCK DATA routine to values that assume the line printer prints 6 lines per inch, 10 characters per inch, and 132 characters per line. These parameter values may need to be changed for a line printer with other specifications.

The PRNTAI subroutine can be modified to cycle a set of alphameric symbols for drawdown. If this type of map is desired, remove the C from column 1 of statements PRN1060 and PRN1230. This will cycle the symbols $1,2,3,4,5,6,7,8,9,0$ for drawdown. To plot a different set of symbols will require modification of the initialization of SYM in BLOCK DATA. To cycle more than 10 sym-
bols will require more extensive changes to the initialization of SYM and modifications to the code in ENTRY PRNTA.

BLOCK DATA routine

The BLOCK DATA routine initializes scalar parameters and arrays used in PRNTAI and other subroutines. The unit numbers for card reader, line printer, and card punch are commonly 5, 6 and 7, respectively. At computer installations where other numbers are used, change the initialization of P, R, and PU.

Technical information

Storage requirements

Using the FORTRAN G, Level 21 compiler, the source code and fixed-dimension arrays require 100 K bytes of memory (88 K bytes if only one SOLVE routine is complied). The storage requirements including all options but not including storage requirements for reading and writing on disk are ($100+\mathrm{X} / 256$) K bytes where X is the dimension of the vector Y in the main program. Subtract 14K bytes from the values if the FORTRAN H, OPT $=2$ compiler is used. The FORTRAN G compile step requires 120 K bytes of memory and the FORTRAN H, $\mathrm{OPT}=2$ compiler requires 218 K bytes of memory.

Computation time

Computation time is a function of so many variables that no general rule can be stated. For example, the simulation of a nonlinear water-table problem requires many more computations per time step than does the simulation of a linear artesian-aquifer problem.

As an example, the simulation of a linear aquifer system (problem 2) with a grid of 25×38 required 45 seconds for 40 iterations with the program compiled under FORTRAN G. This is about 0.002 seconds for each node inside the aquifer each iteration on the IBM $370 / 155$. A significant reduction (about $1 / 3$)
in execution time can be achieved by using the FORTRAN H compiler which generates a more efficient code than the FORTRAN G compiler.

Further significant reductions in execution time can be achieved if the model is designed for a specific problem. Problem 3, for example, does not require computation of leakage, storage, or evapotranspiration terms.

Use of disk facilities for storage of array data and interim results

In an effort to expedite use of the program on remote terminals connected to the IBM $370 / 155$, options are included to utilize disk storage facilities. These options enable storage and retricval of array data (STRT, PERM, and so forth) and the saving of interim head values without punching them on cards.

Use of these options can be particularly beneficial at remote terminals with low speed data transmission or without punch output capability. Also, the type of read statements used afford more efficient data transmission from disk than from cards.

Storage of array data is accomplished via a direct access data set that is defined by a DEFINE FILE statement in the main program (card MAN0480) and by a DD statement in the JCL string used to execute the program. To establish the data set, the DEFINE FILE statement and the DD statement must indicate the amount of space that is required. The DEFINE FILE statement takes the following form:

> DEFINE FILE $2(14, ? ? ?, \mathrm{U}, \mathrm{KKK})$ MAN0480
where ??? is the number of nodes for the problem being solved (DIMLxDIMW). Parameters U and KKK are indicators and do not vary.
The DD statement contains information, such as account number, that will be different for each user. Also, the first reference to the data set is somewhat different from subsequent references. To utilize one of the disk packs provided by the system (IBM 370/
155) for semipermanent storage of user data, the first reference to the data set will take the following general form if the FORTGCG procedure is used to compile and execute the program.
//GØ. FT02F001 DD DSN = Azzzzzz.AZbbb. cxxwwwww.aaaaaaa,
// UNIT = ØNLINE,DISP = (NEW,
KEEP),
// SPACE = (????,(14)), DCB=
$\underline{(\text { RECFM }=F)}$
where
> zzzzzz
> are the first six digits of a nine digit account number;
> $\mathrm{bbb} \quad$ are the last three digits of a nine digit account number;
> c is the center code (same as column 3 on job card) ;
> xx is the two digit organization code (same as columns 4 and 5 on job card) ;

wwwww is the four or five digit program number (same as the program number beginning in column 24 of the job card) ;
aaaaaaaa is any 1 to 8 character name used to designate the name of the data set;
???? is the number of bytes per record that are to be reserved and should be set equal to DIMLxDIMWx4.
The instructions for the DSN parameter are also given in the CCD users manual, chapter 5, pages 3 and 4 . When this initial allocation is processed the system will indicate in the HASP system log, JCL string output, the volume on which the data set was established (for example, SYS011 or SYS015). Subsequent use of the data set must indicate this information by modifying the underlined parameters in the initial reference to the data set. Thus the DD statement will read:
//GØ. FT02F001 DD DSN = Azzzzzz.Azbbb.
cxxwwwww.aaaaaaa,
// UNIT= \emptyset NLINE, DISP = SHR,VØL
$=$ SER = yyyyyy
where the DSN parameter is the same as the initial run and yyyyyy indicates the volume (for example, SYS015) on which the data set was established by the initial run. The individual data arrays that are to be stored and later retrieved from this data set are specified on the parameter card for each array. These specifications will be discussed completely in the section on Data Deck Instructions (Attachment III).

If use of this option is selected, space for buffers must be reserved via the REGION parameter on the EXEC card. The amount of space needed is approximately equal to two times the number of bytes per record (indicated in the SPACE parameter on the DD card defined above).

Interim results (head values, cumulative simulation time, and mass-balance parameters) can be punched on cards or can be stored and retrieved from data sets on disk in much the same manner as array data. Use of storage on disk is initiated by parameters on the simulation options card. (See attachment III, card 3.)

Definition of the sequential data set on disk where the information will be stored is accomplished by a DD statement in the JCL string used to execute the program. If one of the system disk packs is used to store the data set, the first reference to the data will be different from subsequent references as in the case of array data sets. The first reference will take the following form if the FORTGCG procedure is used.
//GØ. FT04F001 DD DSN = Azzzzzz.AZbbb. exxwwwww.aaaaaaa,
// UNIT = ØNLINE, DISP = (NEW, KEEP), SPACE $=($ TRK, $(1,1)$, RLSE),
// $\mathrm{DCB}=($ RECFM $=$ VBS,LRECL = dddd, BLKSIZE = eeee)
The DSN parameter is defined in the same manner as previously discussed for the direct access (array) data sets and:
dddd-equals DIMLxDIMWx8+48(§6440)
eeee-equals DIMLxDIMWx8 $+52(\leqq 6440)$

If BLKSIZE (eeee) exceeds 6444, code 6444 for (eeee) and 6440 for (dddd). Also, additional core equal to about two times the value of BLKSIZE must be reserved for buffers via the REGION parameter on the EXEC card.

Once the initial reference to the data set has been successfully processed, the system will indicate (via the JCL printout) on what volume the data set has been established (for example, SYS011 or SYS015) and, subsequent references to the data set will appear as follows:
//GØ. FT4F001 DD DSN = Azzzzzz.AZbbb. cxxwwwww.aaaaaaa,
// UNIT = $\emptyset \mathrm{NLINE}, \mathrm{V} \emptyset \mathrm{L}=\mathrm{SER}=$ yyyyyy,DISP = SHR
where yyyyyy is the name of the disk pack (for example, SYS011) that contains the data set and DSN is as previously described.
To destroy (erase) an array data set or an interim results data set, simply execute the following job.

```
// EXEC PGM=IEFBR14
//X DD DSN = Azzzzzz.AZbbb.cxxwwwww.
    aaaaaaa,
// UNIT = ØNLINE, V\emptysetL = SER = yyyyyy,
    DISP=(\emptysetLD,DELETE}
```

Use of the disk facilities is illustrated in Appendix IV.

Graphical display package

A series of computer programs are currently being written and assembled that will enable graphical display of results of computer models. Components of this graphical display package will include:

1. time-series plots of model results on the printer,
2. time-series plots on pen plotters (CALCOMP),
3. contour maps of model results at selected time steps on the printer,
4. contour maps utilizing pen plotters, and
5. other graphical displays, such as perspective (three-dimensional) drawings.

The FORTRAN code shown in figure 27 can be inserted into the program to produce output that can be used in the graphical display package. The changes to MAIN and STEP are required after statements MAN2600 and STP1000, respectively. Statement MAN2600 is deleted. In subroutine PRNTAI, the REAL*8 specification and the DIMENSION statement must be added and the remaining code inserted after statement PRN1650. Also, unit numbers 10 and 11 must be specified on DD statements when the program is executed. Unit 10 is used only for temporary storage and the following DD statement will generally suffice.
//GØ. FT10F001 DD DSN = \&\&DATA,DISP = (NEW,DELETE), UNIT $=$ ONLINE,
// $\mathrm{SPACE}=(\operatorname{TRK},(10,5)), \mathrm{DCB}=$ $($ RECFM $=\mathrm{VBS}, \mathrm{LRECL}=6440$, BLKSIZE $=6444$)
Unit 11 points to the data set that is used to store the data required by the graphical display package and must be semipermanent in nature. That is, it must not be deleted upon completion of your job. The DD statement will generally take the following form.

```
//G\emptyset. FT11F001 DD DSN=Azzzzzz.AZbbb. cxwwwww.aaaaaaa,
// DISP = (NEW,KEEP),UNIT =
        \emptysetNLINE,SPACE - (TRK, (10,5),
        RLSE),
// DCB= (RECFM=VBS,LRECL=6440,
    BLKSIZE = 6444)
```

The data set name parameter (DSN) was discussed in the previous section. The SPACE and DCB parameters shown above should generally be adequate. Recall that once the data set is established, it will be assigned to a certain volume (disk pack) by the IBM operating system. Subsequent references to the data set must include this volume number in the DD statement, that is, VØL=SER=??.

Results of using a preliminary version of the graphical display package are shown in figures 28 and 29 . The time-series plot shown in figure 28 was made on the line printer and the contour map shown in figure

29 was made on a CALCOMP plotter. Documentation on the use of the graphical display package is currently being written.

Modification of program logic

Some users may wish to compile only one or two numerical options with the program. This is done by removing the SOLVE routine(s) not needed from the card deck and modifying the main program in either of the following ways, assuming for this example that SIP is being removed: (1) remove the three IF statements that call SOLVE1, ITER1, and NEWITA, or (2) punch a C in column 1 of these statements and leave them in the main program.

Other modifications to the program logic will be required for certain applications. Modifications will range from changing a few statements to adding a subroutine or deleting options not used. In any case the changes should be made by a programmer familiar with the computational scheme because almost any change has an unanticipated effect on another part of the program requiring several debugging runs.

Reasonably simple modifications to the program include changing format statements and shifting data sets (for example, recharge rate) from GROUP III to GROUP IV so they can be modified for each pumping period.

Adding a second confining bed would be a more complex modification because it may require additional arrays, and ENTRY CLAY in subroutine COEF would have to be made general to accept confining-bed parameters for either bed.

FORTRAN IV

The program includes several FORTRAN IV features that are not in ANS FORTRAN (for example, ENTRY, END parameter in read statement, mixed-mode expressions, G format code, literal enclosed in apostrophes). If the program is used at a computer center where the FORTRAN compiler does not include these extensions, programmers at the

```
MAIN
    300 CALL GRAPH (Y(L(3)),Y(L(4)),Y(L(5)),Y(L(6)),Y(L(7))!
        1 YY(1),Y(L(8)))
        READ (R, 320,ENO=310) NEXT
STEP
```

```
    WRITE(10) PHI,SUN
```

 WRITE(10) PHI,SUN
 PRINTAI
REAL\#8 HD
DIMENSION NN(1),SUMX(1),SUMY(1),X(1),Y(1),ZZ(1),HD(1)
C****************
ENTRY GRAPH (SUNX,SUMY,X,Y,ZZ,HD,NN)
C************\#\#\#
C COMPUTE X AND Y COORDINATES OF ROWS AND COLUMNS
SUMX(1)=DELX(1)/2.
SUMY(1)=DELY(1)/2.
DO 325 I=2.DIML
325 SUMY(I)=SUMY(I-I)+(DELY(I)+DELY(I-1))/2.
DO 330 I=2.DIMW
330 SUMX(I)=SUMX(I-1)*(DELX(I)*DELX(I-1))/2.
C DETERMINE NUMBER OF ACTIVE NODES, THEIR STORAGE LOCATION,
C ANO THEIR X ANO Y COOROINATES
N=0
DO 340 I=2.INOI
00 340 J=2.JNOI
IF(T(I.J).EQ.O.) GO TO 340
N=N+1
NN(N)=I*DIML*(J-1)
X(N)=SUMX(J)
Y(N)=SUMY(I)
340 CONTINUE
C WRITE X AND Y COORDINATES ON UNIT II
WAITE(II) (X(I),I=I,N)
WAITE(II) (Y(I),I:I,N)
C REWI'ND UNIT 10 AND REPROCESS PHI MATRIX AT EACH TIME STEP
C PlACING PHI VALUES AT ACTIVE NODES IN THE ZZ ARRAY (REAL*A)
REWINO 10
DO 380 I=1,KT
READ(10) PHI,SUM
DO 350 J=1,N
NIJaNN(J)
350 Z2(J)=HD(NIJ)
C WRITE PHI VALUES AT ACTIVE NODES AND ELAPSED SIMULATION TIME
C ON UNIT II
WRITE(11) (ZZ(U),N=1,N),SUM
380 CONTINUE
WRITE(6.390) NoKT,SUMX(DIMW),SUMY(DIML)
390 FORMATI//,' GRAPHICS OUTPUT FOR I,IG,' ACTIVE NODES AND I,I4,
1 : TIME STEPS HAS BEEN WRITTEN ON UNIT 11',/,
2 ' MAXIMUM X,Y COORDINATE PAIR IS 1,F10.2.',',F10.2)
RETURN

```

FIGURE 27.—Additional FORTRAN code required to produce output for graphical display.


FIGURE 28.-Water level versus time at various nodes of the sample aquifer problem produced by the graphical display package.
selected installation may be available to modify the computer code as necessary.

\section*{Limitations of program}

The model documented in this report is reasonably free of errors and has been used successfully to simulate a variety of aquifer systems in two dimensions. Undiscovered er-
rors in the logic, however, may appear as the model is applied to a variety of new problems.

The user is cautioned against using this model to make more than a crude simulation of three-dimensional problems. A rigorous analysis of three-dimensional aquifer systems can be made only with the appropriate analog or digital simulators.


FIGURE 29.-Contour map of water level (in feet) for sample aquifer problem produced by graphical display package. Contour interval is 0.5 ft .

\section*{Attachment III}

\section*{Data Deck Instructions}

\section*{Group I: Title, simulation options, and problem dimensions}

This group of cards, which are read by the main program, contains data required to dimension the model. To specify an option on card 3, punch the characters underlined in the definition, starting in the first column of the field. For any option not used, leave the appropriate columns blank.
\begin{tabular}{|c|c|c|c|c|}
\hline CARD & COLUMNS & FORMAT & variable & DEFINITION \\
\hline 1 & 1-80 & 20A4 & & \\
\hline 2 & 1-48 & 12A4 & HEADNG & Any title the user wishes to print on one line at the start of output. \\
\hline 3 & 1-5 & A4,1X & WATER & WATE for water table or combined water-table-artesian aquifer. \\
\hline & 6-10 & A4,1X & LEAK & LEAK for an aquifer system including leakage from a stream or confining bed. \\
\hline & 11-15 & A4,1X & CONVRT & CONV for combined artesian-watertable aquifer. \\
\hline & 16-20 & A4,1X & EVAP & EVAP to permit discharge by evapotranspiration. \\
\hline & 21-25 & A4,1X & RECH & RECH to include a constant recharge rate. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{\(C A R D\)} & COLUMNS & FORMAT & VARIABLE & DEFINITION \\
\hline & 26-30 & A4,1X & NUMS & SIP or LSOR or ADI to designate the equation-solving scheme. \\
\hline & 31-35 & A4,1X & CHCK & CHEC to compute a mass balance. \\
\hline & 36-40 & A4,1X & PNCH & PUNC for punched output at the end of the simulation. \\
\hline & 41-45 & A4,1X & IDK1 & DK1 to read initial head and mass balance parameters from disk (unit 4). \\
\hline & 46-50 & A4,1X & IDK2 & DK2 to save (write) computed head, elapsed time, and mass balance parameters on disk (unit 4). \\
\hline & 51-55 & A4,1X & NUM & \(\frac{\text { NUME }}{\text { form }}\) to print drawdown in numeric form. \\
\hline & 56-60 & A4,1X & HEAD & HEAD to print the head matrix. \\
\hline & \multicolumn{4}{|c|}{(All variables on card 4 are integers)} \\
\hline \multirow[t]{4}{*}{4} & 1-10 & I10 & DIML & Number of rows. \\
\hline & 11-20 & I10 & DIMW & Number of columns. \\
\hline & 21-30 & I10 & NW & Number of pumping wells for which drawdown is to be computed at a "real" well radius. \\
\hline & 31-40 & I10 & ITMAX & Maximum number of iterations per time step. \\
\hline
\end{tabular}

Note.-Steady-state simulations often require more than 50 iterations. Transient time steps usually require less than 30 iterations.

\section*{Group II: Scalar parameters}

The parameters required in every problem are underlined. The other parameters are required as noted; when not required, their location on the card can be left blank. The G format is used to read E, F and I data. Minimize mistakes by always right-justifying data in the field. If F format data do not contain significant figures to the right of the decimal point, the decimal point can be omitted. Default typing of variables applies.
\begin{tabular}{|c|c|c|c|c|}
\hline \(C A R D\) & COLUMNS & FORMAT & VARIABLE & DEFINITION \\
\hline \multirow[t]{10}{*}{1} & 1-4 & A4 & CONTR & CONT to generate a map of drawdown and (or) hydraulic head; for no maps insert a blank card. \\
\hline & 11-20 & G10.0 & XSCALE & Factor to convert model length unit to unit used in \(X\) direction on maps (that is, to convert from feet to miles, XSCALE = 5280) . \\
\hline & 21-30 & G10.0 & YSCALE & Factor to convert model length unit to unit used in \(Y\) direction on maps. \\
\hline & 31-40 & G10.0 & DINCH & Number of map units per inch. \\
\hline & 41-50 & G10.0 & FACT1 & Factor to adjust value of drawdown printed*. \\
\hline & 51-60 & G10.0 & FACT2 & Factor to adjust value of head printed*. \\
\hline & & *Value of drawdown or head & FACT 1 or & Printed \\
\hline & & & . 11 & 0
5 \\
\hline & & 52.57 & 1 & 52 \\
\hline & & & ( \(\begin{array}{r}10 \\ 100\end{array}\) & \({ }_{\text {* }} \mathbf{5 6}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CARD & Columis & FORMAT & VARIABLE & definition \\
\hline & 61-68 & A8 & MESUR & Name of map length unit. \\
\hline \multirow[t]{4}{*}{2} & 1-10 & G10.0 & NPER & Number of pumping periods for this simulation. \\
\hline & 11-20 & G10.0 & KTH & Number of time steps between printouts. \\
\hline & \multicolumn{4}{|l|}{Note.-To print only the results for the final time step in a pumping period, make KTH greater than the expected number of time steps. The program always prints the results for the final time step.} \\
\hline & 21-30 & G10.0 & ERR & Error criterion for closure ( \(L\) ). \\
\hline
\end{tabular}
Note.-When the head change at all nodes on subsequent iterations is less than this value (for example, 0.01 foot), the program has reached a solution for the time step.
31-40 G10.0 EROR Steady-state error criterion ( \(L\) ).
NOTE.-If the head change between time steps in transient simulations is less than this amount, the pumping period is terminated.
41-50
G10.0
SS
Specific storage of confining bed \((1 / L)\).
Note.-SS has a finite value only in transient simulations where leakage is a function of storage in the confining bed.
\begin{tabular}{cccc} 
51-60 & G10.0 & QET & \begin{tabular}{c} 
Maximum evapotranspiration rate \\
\((L / T)\).
\end{tabular} \\
\(61-70\) & G10.0 & ETDIST & \begin{tabular}{c} 
Depth at which ET ceases below land \\
surface \((L)\).
\end{tabular}
\end{tabular}
Note.-QET and ETDIST required only for simulations including evapotranspiration.
71-80 G10.0 LENGTH \begin{tabular}{c} 
Definition depends on the numerical solu- \\
tion used:
\end{tabular} tion used:
LSOR: number of LSOR iterations between 2-D corrections.
ADI and SIP: Number of iteration parameters; unless the program is modified, code 10 for SIP.
Definition depends on numerical solution used:
LSOR: acceleration parameter.
ADI: maximum iteration parameter. SIP: value of \(\beta^{\prime}\).
Note.-See the discussion of the numerical methods in the text for information on iteration parameters.
\begin{tabular}{llll} 
11-20 & G10.0 & FACTX & \begin{tabular}{c} 
Multiplication factor for transmissivity \\
in X direction. \\
Multiplication factor for transmissivity \\
in Y direction.
\end{tabular}
\end{tabular}
Note.-FACTX \(=\) FACTY \(=1\) for isotropic aquifers.
\(\left.\begin{array}{ccll}\text { CARD } & \text { COLUMNS } & \text { FORMAT } & \text { VARIABLE } \\
4 & 1-20 & \text { G20.10 } & \text { SUM } \\
& 21-40 & \text { G20.10 } & \text { SUMP } \\
& 41-60 & \text { G20.10 } & \text { PUMPT } \\
& 61-80 & \text { G20.10 } & \text { CFLUXT } \\
& 1-20 & \text { G20.10 } & \text { QRET } \\
& 21-40 & \text { G20.10 } & \text { CHST } \\
& 41-60 & \text { G20.10 } & \text { CHDT } \\
& 61-80 & \text { G20.10 } & \text { FLUXT } \\
& 1-20 & \text { G20.10 } & \text { STORT } \\
& 21-40 & \text { G20.10 } & \text { ETFLXT } \\
\text { cumulative volumes for mass balance } \\
\text { are stored. For the start of a simula- } \\
\text { tion insert three blank cards. For con- } \\
\text { tinuation of a previous run from } \\
\text { punched output, remove the three } \\
& 41-60 & \text { G20.10 } & \text { FLXNT }\end{array}\right\}\)\begin{tabular}{l} 
blank cards and insert the first three \\
cards of the punched output from the \\
previous run. If continuation is from \\
interim storage on disk, the three
\end{tabular}

\section*{Group III: Array data}

Each of the following data sets, except the first one (PHI), consists of a parameter card and, if the data set contains variable data, may include a set of data cards. Default typing applies except for \(\mathrm{M}(\mathrm{I}, \mathrm{J})\) which is a real array. Each parameter card contains five variables defined as follows:
\begin{tabular}{llll} 
CARD & COLUMNS & FORMAT & VARIABLE \\
Every & \(1-10\) & G10.0 & FACT \\
parame- & & \\
ter card. & &
\end{tabular}
\begin{tabular}{lll}
\(11-20\) & G10.0 & IVAR \\
\(21-30\) & G10.0 & IPRN \\
\(31-40\) & G10.0 & IRECS \\
\(41-50\) & G10.0 & IRECD
\end{tabular}

\section*{DEFINITION}

If \(\operatorname{IVAR}=0\), FACT is the value assigned to every element of the matrix;
If \(\operatorname{IVAR}=1\), FACT is the multiplication factor for the following set of data cards.
\(=0\) if no data cards are to be read for this matrix;
\(=1\) if data cards for this matrix follow.
\(=0\) if input data for this matrix are to be printed;
\(=1\) if input data for the matrix are not to be printed.
\(=0\) if the matrix is being read from cards or if each element is being set equal to FACT.
\(=1\) if the matrix is to be read from disk (unit 2).
\(=0\) if the matrix is not to be stored on disk.
\(=1\) if the matrix being read from cards or set equal to FACT is to be stored on disk (unit 2) for later retrieval.

Refer to the examples in figures 31-33, Attachment IV. Figure 33 illustrates data for the sample problem without using disk files.

For the uniform starting head \(=100\), FACT \(=100\), \(\mathrm{IVAR}=\mathrm{IPRN}=\mathrm{IRECS}=\mathrm{IRECD}=0\) and no data cards are required. The storage coefficient matrix is used to locate a constanthead boundary ; therefore, \(\operatorname{FACT}=-1\), IVAR \(=1\), IPRN \(=I R E C S=I R E C D=0\) and a set of data cards with the location of the boundary nodes follows.

To save the storage coefficient matrix on disk (provided unit 2 has been defined on a DD statement; see technical information), set \(\mathrm{FACT}=1, \mathrm{IVAR}=1, \mathrm{IPRN}=\mathrm{IRECS}=0, \operatorname{IRECD}=1\), and include the set of data cards (figure 31). After this has been processed successfully, subsequent runs need only include a parameter card with the following: FACT \(=I V A R=I P R N\) \(=0\), IRECS \(=1\), IRECD \(=0\). The set of data cards are not included and the storage coefficient matrix is input via unit 2 from disk storage. (See figure 32.)

When data cards are included, start each row on a new card. To prepare a set of data cards for an array that is a function of space, the general procedure is to overlay the finitedifference grid on a contoured map of the parameter and record the average value of the parameter for each finite-difference block on coding forms according to the appropriate format. In general, record only significant digits and no decimal points (except for data set 2); use the multiplication factor to convert the data to their appropriate values. For example, if vertical conductivity of the confining bed (RATE) ranges from \(2 \times 10^{-9}\) to \(9 \times 10^{-8} \mathrm{ft} / \mathrm{sec}\), coded values should range from 2 to 90 ; the multiplication factor (FACT) would be \(1.0 \mathrm{E}-9\).

Arrays needed in every simulation are underlined. Omit parameter cards and data cards not used in the simulation (however, see the footnote for the S matrix).
\begin{tabular}{|c|c|c|c|c|}
\hline \(C A R D\) & COLUMNS & FORMAT & VARIABLE & DEFINITION \\
\hline \multirow[t]{2}{*}{1} & 1-80 & 8F10.4 & PHI (I,J) & Head values for continuation of a pr ous run ( \(L\) ). \\
\hline & \multicolumn{4}{|l|}{Note.-For a new simulation this data set is omitted. Do not include a parameter card with this data set.} \\
\hline 2 & 1-80 & 8F10.4 & STRT (I,J) & Starting head matrix ( \(L\) ). \\
\hline 3 & 1-80 & 20 F 4.0 & \(\overline{\mathrm{S}}\) (I, J) & Storage coefficient (dimensionless). \\
\hline
\end{tabular}

Note.-Always required. In addition to specifying storage coefficient values for artesian aquifers, this matrix is used to locate con-stant-head boundaries by coding a negative number at constant-head nodes. At these nodes T or PERM must be greater than zero. For a problem with no constant-head nodes and that does not require S values, insert a blank parameter card.
\[
\begin{array}{ccccc}
4 & 1-80 & 20 \mathrm{~F} 4.0 & \mathrm{~T}(\mathrm{I}, \mathrm{~J}) & \text { Transmissivity }\left(L^{2} / T\right) .
\end{array}
\]

Note.-(1) Required for artesian aquifer simulation only.
(2) Zero values must be placed around the perimeter of the T or PERM matrix for reasons inherent in the computational scheme. If IVAR \(=0\), zero values are automatically inserted around the border of the model.
\begin{tabular}{|c|c|c|c|c|}
\hline 5 & 1-80 & 20F4.0 & PERM (I,J) & Hydraulic conductivity ( \(L / T\) ) (see note 2 for data set 4). \\
\hline 6 & 1-80 & 20F4.0 & BOTTOM (I,J) & Elevation of bottom of aquifer ( \(L\) ). \\
\hline 7 & 1-80 & 20F4.0 & SY (I,J) & Specific yield (dimensionless). \\
\hline \multicolumn{5}{|r|}{Note.-Data sets 5, 6, and 7 are required for water table or combined artesian-water table simulations.} \\
\hline 8 & 1-80 & 20F4.0 & TOP (I,J) & Elevation of top of aquifer ( \(L\) ). \\
\hline \multicolumn{5}{|r|}{Note.-Required only in combined artesian-water-table simulations.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { DATA } \\
\text { SETT }
\end{gathered}
\] & Columins & FORMAT & VARIABLE & DEFINITION \\
\hline 9 & 1-80 & 20 F 4.0 & RATE (I,J) & Hydraulic conductivity of confining bed ( \(L / T\) ). \\
\hline 10 & 1-80 & 20F4.0 & RIVER (I,J) & Head on the other side of confining bed (L). \\
\hline 11 & 1-80 & 20F4.0 & M ( \(\mathrm{I}, \mathrm{J}\) ) & Thickness of confining bed ( \(L\) ). \\
\hline & \multicolumn{4}{|l|}{Note.-Data sets 9,10 , and 11 are required in simulations with leakage. If the confining bed or streambed does not extend over the entire aquifer use the M matrix to locate the confining bed. If RATE and RIVER do not vary over the extent of the confining bed they can be initialized to a uniform value.} \\
\hline 12 & 1-80 & 20F4.0 & GRND ( \(\mathrm{I}, \mathrm{J}\) ) & Land elevation ( \(L\) ). \\
\hline \multicolumn{5}{|r|}{Note.-Required for simulations with evapotranspiration.} \\
\hline 13 & 1-80 & 20F4.0 & QRE ( \(\mathrm{I}, \mathrm{J}\) ) & Recharge rate ( \(L / T\) ). \\
\hline \multicolumn{5}{|c|}{Note.-Omit if not used.} \\
\hline 14 & 1-80 & 8G10.0 & DELX (J) & Grid spacing in X direction ( \(L\) ). \\
\hline 15 & 1-80 & 8G10.0 & DELY (I) & Grid spacing in Y direction ( \(L\) ). \\
\hline
\end{tabular}

\section*{Group IV: Parameters that change with the pumping period}

The program has two options for the simulation period:
1. To simulate a given number of time steps, set TMAX to a value larger than the expected simulation period. The program will use NUMT, CDLT, and DELT as coded.
2. To simulate a given pumping period, set NUMT larger than the number required for the simulation period (for example, 100). The program will compute the exact DELT (which will be \(\leqq\) DELT coded) and NUMT to arrive exactly at TMAX on the last time step.
Default typing applies.
\begin{tabular}{ccccc} 
CARD & COLUMNS & FORMAT & \multicolumn{1}{c}{ VARIABLE } & DEFINITION \\
1 & \(1-10\) & G10.0 & KP & Number of the pumping period. \\
\(11-20\) & G10.0 & \(\underline{\text { KPM1 }}\) & Number of the previous pumping period.
\end{tabular}

If NWEL \(=0\) the following set of cards is omitted.
\begin{tabular}{|c|c|c|c|}
\hline DATA SET 1 & \multicolumn{3}{|c|}{(NWEL cards)} \\
\hline COLUMNS & FORMAT & VARIABLE & DEFINITION \\
\hline 1-10 & G10.0 & 1 & Row location of well. \\
\hline 11-20 & G10.0 & J & Column location of well. \\
\hline 21-30 & G10.0 & WELL (I,J) & Pumping rate \(\left(L^{3} / T\right)\), negative for a pumping well. \\
\hline 31-40 & G10.0 & RADIUS & Real well radius ( \(L\) ). \\
\hline
\end{tabular}

Note.-Radius is required only for those wells, if any, where computation of drawdown at a real well radius is to be made.

\footnotetext{
For each additional pumping period, another set of group IV cards is required (that is, NPER sets of group IV cards are required).

If another simulation is included in the same job, insert a blank card before the next group I cards.
}

\section*{Attachment IV}

\section*{Sample Aquifer Simulation And Job Control Language}

This appendix includes examples of job control language (JCL) for several different runs and an example problem designed to illustrate many of the options in the program. The grid and boundary conditions for the problem are given in figure 25. Figure 30 illustrates in cross section the type of problem being simulated, but note that it is not to scale.

The listing of data with the JCL examples is not on a coding form, but it should not be


FIGURE 30.-Cross section illustrates several options included in the sample problem and identifies the meaning of several program parameters.
difficult to determine the proper location of the numbers since the fields are either 4 or 10 spaces. Zero values have not been coded on the data cards to avoid unnecessary punching.

Figures 31 and 32 illustrate the JCL and data decks for two successive simulations of the sample problem. They are designed to show the use of disk facilities to store array data and interim results. The first run (fig. 31) is terminated after 5 iterations and interim results are stored on the data set specified by the FT04F001 DD statement. Note that arrays S, PERM, DELX, and DELY have been stored in the array data set specified by the FT02F001 DD statement (a 1 appears in column 40 of the parameter card for these arrays). The second run (fig. 32) continues computations from the previous stopping point and calculates a solution. Note that PHI, S, PERM, DELX, and DELY are read from disk storage. The final example (fig. 33) illustrates the JCL and data deck for a run without using the disk files. Following figure 33 is the output for the sample prob-


FIGURE 31. \(\quad J C L\) and data deck to copy some of the data sets on disk, compute for 5 iterations, and store the results on disk.


FIGURE 32.-JCL and data deck to continue the previous run (fig. 31) to a solution.
lem generated using the JCL and problem deck shown in figure 33.

Figures 31 to 33 show that the source cards are being compiled for each run. It is more efficient, of course, to compile the source
deck once and store it as a load module on disk. Subsequent runs can use the load module with considerable reduction in cards read, CPU time, and lines printed.


FIGURE 33.-JCL and data deck to simulate the sample problem without using disk files.
Program Output using data deck illustrated in figure 33
>
\(\left.\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & & & & & & & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \vdots & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)\)
\[
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \vdots & 0
\end{array}
\]
\[
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \vdots & 0
\end{array}
\]
\[
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
\[
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}
\]
\[
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0
\]
\[
\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}
\]
\[
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
\[
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
- & 0 & m & 0 & n & 0 & r & 0 & 0 & 0
\end{array}
\]


R = CONSTANT HEAD BOUNDARY
EWALUE EXCEEDED 3 FIGURES
E VACTOR
MULTIPLICATION FACTOR = 1.000

HEAD MATRIX
1100.0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0100 .0





 \(100.100 .0100 .0 \quad 100.0 \quad 100.0\)
 100.0
100.0
100.0 \(\stackrel{n}{i}\) 100.0100 .0100 .0 \(100.0 \quad 100.0 \quad 100.0 \quad 78.8\) \(100.0 \quad 100.0 \quad 100.0 \quad 18.4\) \(100.0 \quad 100.0 \quad 100.0 \quad 81.5 \quad 8\) \(100.0 \quad 84.0 \quad 83.9 \quad 83\). \(\rightarrow\)
\[
\dot{0} \quad 0 \quad 0
\]
\[
\begin{array}{llllllllll}
0 & \dot{0} & \dot{0} & 0 & 0 & 0 & 0 & \overrightarrow{0} & 0 & 0 \\
0 & \dot{0} & \dot{0} & \dot{0} & \dot{0} & 0
\end{array}
\]
\[
\vdots \vdots
\]
\[
\ddot{0} 00000000000000
\]
\[
-\infty m \in \infty \quad \infty \quad \infty \quad 0
\]

\section*{Attachment V}

\section*{Generalized Flow Chart For Aquifer Simulation Model}

A, MAIN PROGRAM


Flow chart-Continued


Flow chart-Continued


Flow chart-Continued
D, SOLVEI


Flow chart-Continued



\title{
Attachment VI Definition Of Program Variables
}
\begin{tabular}{|c|c|}
\hline \(\triangle\) IN & IN DATAI. DUMMY ARRAY (DOES NOT USE CORE SPACE) USED TO OBTAIN ADDRESSES OF ARRAY DATA SETS: \\
\hline Alfa & CORRECTION VECTOR FOR ROWS (LSOR): \\
\hline & PARAMETER IN SIP ALGORITHM \\
\hline B & TC(I-1.j)/DELY(I) (1/T): \\
\hline BE P & PARAMETER IN THOMAS ALGORITHM \\
\hline BOTTOM & ELEVATION OF THE BOTTOM OF THE AQUIFER (L): \\
\hline CDLT M & MULTIPLYING FACTOR FOR THE TIME STEP: \\
\hline CHCK & CONTAINS CHARACTER STRING FOR MASS BALANCE OPTION: \\
\hline CHK & VECTOR CONTAINING PROBLEM OPTIONS; \\
\hline CONTR & CONTAINS CHARACTER STRING FOR OPTION TO PRINT \\
\hline & MARS OF DRAWDOWN AND/OR MEAD: \\
\hline CONVRT & CONTAINS CHARACTER STRING FOR WATER TABLE-ARTESIAN OPTION: \\
\hline D & TR(I,J-1)/DELX(J) (1/T): \\
\hline DON & VECTOR THAT CONTAINS DRAWDOWN VALUES (L)! \\
\hline DEL A & ARRAY USED IN SIP ALGORITHM \\
\hline DELT & TIME INCREMENT (T): \\
\hline DELX GR & GRID SPACING IN THE \(X\) DIRECTION (L): \\
\hline DELY GR & GRID SPACING IN THE Y DIRECTION (L): \\
\hline DIML N & NUMEER OF ROWS \\
\hline DIMW N & NUMBER OF COLUMNS \\
\hline EROR ST & STEADY STATE EROR CRITERION (L): \\
\hline ERR C & CLOSURE CRITERION (L): \\
\hline ETA A & ARRAY USED IN SIP ALGORITHMI \\
\hline ETOIST D & depth at which evapotranspiration ceases below land SURFACE (L): \\
\hline ETOB T & that part of et source term treated implicitly \\
\hline ETQD & THAT PART OF ET SOURCE TERM TREATED EXPLICITLY: \\
\hline EVAP CON & CONTAINS CHARACTER STRING FOR EVAPOTRANSPIRATION OPTION: \\
\hline F & TR(I.J)/DELX(J) (1/T): \\
\hline FACT & SEE EXPLANATION IN GROUP III: ARRAY DATA: \\
\hline FACTX & MULTIPLICATION FACTOR FOR TRANSMISSIVITY IN X DIRECTION: \\
\hline FACTY M & MULTIPLICATION FACTOR FOR TRANSMISSIVITY IN Y DIRECTICN: \\
\hline G P & Parameter in thomas algorithma \\
\hline H T & TC(IPJ)/DELY(T) (1/T): \\
\hline GRND E & ELEVATION OF LAND SURFACE (L): \\
\hline HEAD C & CONTAINS CHARACTER STRING FOR`OPTION TO PRINT HEAD VALUES: \\
\hline HEADNG & TITLE FOR SIMULATION: \\
\hline HMAX M & maximum iteration parameter (adi): aCCELERATION PARAMETER (LSOR): \\
\hline & ACCELERATION PARAMETER (LSOR): \\
\hline & beta parameter (SIP): \\
\hline 1 C & INDICATOR USED TO DETERMINE THE TYPE OF ARRAY DATA: \\
\hline IERR & = 0 PUMPING WELLS ARE IN SATURATED PART \\
\hline & OF WATER TABLE AQUIFER: \\
\hline & = 1 PUMPING WELL HAS GONE ORY: \\
\hline IFINAL & = 0 ALL TIME STEPS EXCEPT THE LAST; \\
\hline & = 1 LAST TIME STEP IN PUMPING PERIOD: \\
\hline IFMT1,IFMT2 & 2,IFMT3 Variable -ormat arrays passed to datai via array \\
\hline & ENTEY POINT: \\
\hline IN & IN datal, dummy array to which name is passed: \\
\hline INOI D & DIML-1\% \\
\hline IPRN & SEE EXPLANATION IN GROUP III: ARRAY DATA: \\
\hline IRECS,IRECD & O SEE EXPLANATION IN GROUP III,ARRAY OATA \\
\hline IRN & RECORD NUMBER USED FOR DISK Storage and retrieval of \\
\hline & ARRAY DATA: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ITMAAX & maximum number of iterations per time step; \\
\hline IVAR & SEE EXPLANATION IN GROUP IIII ARRAY DATA \\
\hline ISUM & THE CUMULATIVE WORDS Of Storage used in the y vector: \\
\hline IZ.JZ.ETC & . DIMENSIONS OF ARRAYS IN MODEL.COMFUTED IN MAIN PROGRAM \\
\hline JNOl & DIMW-1; \\
\hline KEEP & hydraulic head at the previous time step (L): \\
\hline KKK & aSSOCiated Variable in define file. indicates number of NEXT RECORD: \\
\hline KOUNT & ITERATION COUNTER: \\
\hline KP & NUMBER OF THE PUMPING PERIOD: \\
\hline KFM1 & NUMBER OF PREVIOUS PUMPING PERIOD: \\
\hline \(K\) & TIME STEP COUNTER: \\
\hline KTH & NUMBER OF TIME STEPS BETWEEN PRINTOUTS: \\
\hline L & VECTOR CONTAINING INITIAL ADDRESS OF ARRAYS: \\
\hline Leak & CONTAINS CHARACTER STRING FOR LEAKAGE OPTION: \\
\hline LENGTH & NUMBER OF ITERATION PARAMETERS (SIP.ADI): \\
\hline & NUMEER OF ITERATIONS BETWEEN 2-D CORRECTION (LSOR): \\
\hline M & THICKNESS OF CONFINING OR STREAM BED (L): \\
\hline NPER & NUMEER OF PUMPING PERIODS; \\
\hline NUM & CONTAINS CHARACTER STRING FOR OPTION TO PRINT DRAWDOWN: \\
\hline NUMT & NUMEER OF TIME STEPS: \\
\hline NW & NUMAER OF PUMPING WELLS FOR WHICH DRAWDOWN IS TO be \\
\hline & COMPUTED AT A PREAL' WELL RADIUS: \\
\hline NWEL & NUMEER OF WELLS FOR A PUMPING PERIOD: \\
\hline NWR & LOCATION OF WELLS; \\
\hline PNCH & CONTAINS CHARACTER STRING FOR OFTION TO PUNCH HYDRAULIC \\
\hline & head values: \\
\hline P & PRINTER UNIT NUMBER: \\
\hline Param & ItERATION PARAMETER: \\
\hline PERM & HYORAULIC CONDUCTIVITY OF THE AQUIFER (L/T): \\
\hline PHE & hyoraulic head at the start of the iteration (l)f \\
\hline PHI & hYoraulic head (L): \\
\hline PU & PUNCH UNIT NUMBER; \\
\hline QET & maximum evapotranspiration rate (l/t); \\
\hline gre & RECHARGE RATE (L/T): \\
\hline R & READER UNIT NUMBER: \\
\hline radius & REAL WELL RADIUS (L): \\
\hline RATE & VERTICAL HYDRAULIC CONDUCTIVITY OF THE CONFINING BED OR STREAM BED (L/T): \\
\hline RECH & CONTAINS CHARACTER STRING FOR RECHARGE OPTION; \\
\hline RHO & S/DELT (I/T): \\
\hline RHOP & VECTOR CONTAINING ITERATION PARAMETERS: \\
\hline RIVER & hydraulic head of the stream or in the aguifer \\
\hline & ABOVE OR BELOW THE PUMPED AQUIFER (L): \\
\hline RW & WELL AND RECHARGE SOURCE TERM (L/T): \\
\hline S & Storage coefficient: \\
\hline SIP & CONTAINS CHARACTER STRING FOR SIP ORTION: \\
\hline SL & Steadr part of leakage coefficient (L)T): \\
\hline SLEAK & INITIAL \& TRANSIENT LEAKAGE (L/T): \\
\hline SS & SPECIFIC STORAGE OF CONFINING EED (1/L): \\
\hline Store & CONTAINS EITHER THE STORAGE COEFFICIENT OR SPECIFIC YIELD DEPENDING ON THE TYPE OF AQUIFER: \\
\hline STRT & hydraulic head at the beginning of the current PUMPING PERIOC (L): \\
\hline SUBS & MODIFIES StORAGE TERM IN WATER TABLE-ARTESIAN CONVERSION: \\
\hline sum & total elapsed time in the simulation (t): \\
\hline SUMP & total elapsed time in the pumping period (t): \\
\hline SUR 1 & hyoraulic head at the start of the simulation (l): \\
\hline SY & SPECIFIC YIELD: \\
\hline \(T\) & TRANSMISSIVITY (L**2/T) \\
\hline TC & HARMONIC AVERAGE OF T/DELY \(1+1 / 2 . J\) (L/t): \\
\hline
\end{tabular}



\title{
Attachment VII \\ Program Listing
}


Program listing-Continued
```

 10 (NUMS.EQ.CHK(11).OR.NUMS.EQ.CHK(12).OR.NUMS.EQ.CHK(13)) GO TO 2MAN 580
 1 0
 WRITE (P,350)
 STOP
 20 READ (R,320) DIML,DIMW,NW,ITMAX
 WRITE (P,340) DIML,OIMW,NW,ITMAX
 c
C ---COMPUTE OIMENSIONS FOR ARRAYS---
IZ=DIML
JZ=DIMW
IH=MAXO(1,NW)
IMAX=MAXO(OIML.DIMW)
ISI2=DIML*OIMW
ISUM=2*ISI2*I
IMXI=ITMAX +I
L(1)=1
DO 30 I =2.4
L(I)=ISUM
30 ISUM=ISUM*2*IMAX
DO 40 I=5.16
L(I)=ISUM
40 ISUM=ISUM+ISIZ
IF (WATER.NE.CHK(Z)) GO TO 60
DO 50 1=17.19
L(I)=ISUM
50 ISUM_ISUM*ISIZ
IP=OIML
JP=DIMW
GO TO 80
60 DO 70 1=17.19
L(I)=ISUM
70 ISUM=ISUM+1
IP=1
JP=1
80 IF (LEAK.NE.CHK(9)) GO TO 100
DO 90 I=20,22
L(I)=I SUM
90 ISUM=ISUM*ISIZ
IR=DIML
JR=DIMW
GO TO 120
100 00 110 I=20.22
L(I)=ISUM
110 ISUM=ISUM+1
IR=1
JR=1
120 IF (CONVRT.NE.CHK(7)) GO TO 130
L(23)=ISUM
ISUM=ISUM*ISIZ
IC=OIML
JC=DIMW
GO TO 140
130 L(23)=1SUM MAN1100
ISUM=ISUM\&1 MANI110
IC=1
JC=1
140 IF (EVAP.NE.CHK(6)) GO TO 150
L(24)=ISUM
ISUM=ISUM+ISIZ
IL=DIML
JL=DIMW
GO TO 160
MAN 590
MAN }60
MAN 610
MAN 620
MAN 630
MAN 640
MAN 650
MAN 660
MAN 670
MAN 680
MAN 690
MAN 700
MAN 710
MAN 720
MAN 730
MAN 740
MAN 750
MAN 760
MAN }77
MAN 780
MAN 790
MAN 800
MAN 810
MAN 820
MAN 830
MAN 840
MAN 850
MAN 860
MAN 870
MAN 880
MAN 890
MAN 900
MAN 910
MAN 920
MAN 930
MAN 940
MAN 950
MAN 960
MAN 970
MAN 980
MAN 990
MAN1000
MAN1010
MAN1020
MAN1O30
MAN1040
MAN1050
MAN1050
MAN1060
MAN1070
MAN1080
MAN10gO
MAN1110
MAN1120
MAN1130
MAN1140
MANIISO
MAN1160
MANI170
MAN1180
MANII9O

```
```

 150 L(24)=ISUM
 ISUM=ISUM+1
 IL=1
 J!1
 160 IF (NUMS.NE.CHK(11)) GO TO 180
 00 170 I=25.28
 L(I)=ISUM
 170 ISUM=ISUM+ISIZ
 IS=DIML
 JS=DIMM
 GO TO 200
 180 DO 190 I=25.28
L(I)=ISUM
190 ISUM=I SUM+1
IS=1
JS=1
200 DO 210 I=29,31
L(I)=ISUM
210 L(I)=ISUMM
DO 220 [x32,33
L(I)=ISUM
220 1SUM=ISUM+DIML
L(34)=ISUM
ISUM=ISUM H IH
L(35)=ISUM
ISUM=ISUM+2\#IH
IF (MOD(ISUM.2),EG.0) ISUM=ISUM*1
cONTINUE
230 L(36)=ISUM
ISUM=1SUM+2*IMAX
L(37)=ISUM
ISUM=ISUM*IMXI
WRITE (P,330) ISUM MAN1520
C
MAN1200
MAN1210
MAN1220
MAN1230
IF (NUMS.NE.CHK(11)) GO TO 180 MAN124O
MAN1260
MAN1270
MAN1280
MAN1290
MAN1300
MANI310
MAN1320
MAN1330
0
MAN1350
MAN1360
MANI
MAN14O
MAN1440
MAN1460
L(36)=ISUM
MAN1470
MAN1490
MAN1500
MAN1510
---PASS INTIIAL ADDRESSES OF ARRAYS TO SUBROUTINES---E MANI54O
MAN
CALL DATAI(Y(L(1)),Y(L(7)),Y(L(8)),Y(L(9)),Y(L(10)),Y(L(11)),Y(L(.AMAN1550
12)),Y(L(13)),Y(L(14)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(18)),Y(L(19))MMAN1560
2,Y(L(20)),Y(L(21)),Y(L(22)),Y(L(23)),Y(L(24)),Y(L(29)),Y(L(32)),Y(MAN1570
3L(34))OY(L(35))) MAN1580
CALL STEP(Y(L(1)),Y(L(5)),Y(L(7)),Y(L(8)),Y(L(9)),Y(L(14)),Y(L(17)MAN1590
1),Y(L(18)),Y(L(23)),Y(L(29)),Y(L(30)),Y(L(32)),Y(L(34)),Y(L(35)),YMAN1600
2(L(37)))
MAN1610
IF (NUMS.EQ.CHK(11)) CALL SOLVEI(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),YMAN1620
I(L(5)),Y(L(6)),Y(L(7)),Y(L(9)),Y(L(12)),Y(L(13)),Y(L(14)),Y(L(15))MAN1630
2,Y(L(16)),Y(L(25)),Y(L(26)),Y(L(27)),Y(L(28)),Y(L(29)),Y(L(31)),Y(MAN1640
3L(32)),Y(L(33)),Y(L(37)),Y(L(10)),Y(L(11)),Y(L(24)),Y(L(19)),Y(L(2MAN1650
43)),Y(L(20)),Y(L(22)),Y(L(21)))
IF (NUMS.EQ.CHK(12)) CALL SOLVE2(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),YMAN1670
1(L(5)).Y(L(6)),Y(L(7)),Y(L(9)),Y(L(12)),Y(L(13)),Y(L(14)),Y(L(15))MAN1680
2,Y(L(16)),Y(L(25)),Y(LI26)),Y(L(27)),Y(L(28)),Y(L(29)),Y(L(31)),Y(MAN1690
3L(32)),Y(L(33)),Y(L(37)),Y(L(10)),Y(L(11)),Y(L(24)),Y(L(19)),Y(L(2MAN1700
43)),Y(L(20)),Y(L(22)),Y(L(21)))
MAN1710
IF (NUMS.EQ.CHK(13)) CALL SOLVE3(Y(L(1)),Y(L(2)),Y(L(3)),Y(L(4)),YMAN1720
l(L(5)),Y(L(6)),Y(L(7)),Y(L(9)),Y(L(12)),Y(L(13)),Y(L(14)),Y(L(15))MAN1730
2,Y(L(16)),Y(L(25)),Y(L(26)),Y(L(27)),Y(L(28)),Y(L(29)),Y(L(31)),Y(MAN1740
3L(32)),Y(L(33)),Y(L(36)),Y(L(37)),Y(L(10)),Y(L(11)),Y(L(24)),Y(LIIMAN1750
49)),Y(L(23)),Y(L(20)),Y(L(22)),Y(L(21)))}\mathrm{ MAN1760
CALL COEF(Y(L(1)),Y(L(5)),Y(L(6)),Y(L(7)),Y(L(8)),Y(L(9)),Y(L(10))MAN1770
1,Y(L(11)),Y(L(12)),Y(L(14)),Y(L(15)),Y(L(16)),Y(L(17)),Y(L(18)),Y(MAN1780
2L(19)),Y(L(20)),Y(L(21)),Y(L(22)),Y(L(23)),Y(L(24)),Y(L(29)),Y(L(3MAN1790
32!)!
MAN1800

```


\section*{Program listing-Continued}
\begin{tabular}{lll} 
C & TIME STEPSM- \\
C \\
CALL STEADY
\end{tabular}
COMMON /SARRAY/ VF4(11):CHK(15)

DAT 190

COMMON /SPARAM/ WATER,CONVRT,EVAP,CHCK,PNCH,NUM,HEAD,CONTR,EROR,LEDAT 200
LAK, RECH,SIP,U,SS,TT,TMIN,ETOIST, QET,ERR,TMAX,CDLT,HMAX,YDIM,WIOTH,DAT 210
ZNUMS,LSOR, ACI, DELT,SUM,SUMP,SUBS,STORE,TEST,ETQB,ETQD,FACTX,FACTY,DAT 220
3IERR,KOUNT, IFINAL, NUMT,KT,KP, NPER,KTH,ITMAX,LENGTH,NWEL,NW, OIML,DIDAT 230
4MW, JNOI,INOI,R,P,PU,I,J,IOKL,IDK2
DAT 240
COMMON /CK/ ETFLXT,STORT, QRET,CHST,CHDT,FLUXT, PUMPT, CFLUXT,FLXNT DAT 250
COMMON /PR/ XLABEL (3),YLABEL (6),TITLE(5), XNI,MESUR,PRNT (122), BLANKDAT 260
1(60), DIGIT(122),VF1(6),VF2(6),VF3(7),XSCALEDDINCH,SYM(17),XN(100),DAT 270
2YN(13),NA(4),N1,NZ,N3,YSCALE,FACT1,FACTZ DAT 280
COMMON /ARSIZE/ IZ.JZ.IP.JP,IR.JR,IC,JCOIL.JL.IS.JS.IH.IMAX,IMXI DAT 290
RETURN DAT 300


ENTRY DATAIN DAT 330

DAT 350
READ (R 500) CONTR,XSCALE Y
(R.SOO) CONTR,XSCALE,YSCALE,DINCH,FACTI,FACTZ.MESUR
(CONTR.EO.CHK (3)) WRITE (P,610) XSCALE,YSCALE,MESUR,MESUR.DINCHDAT 380
1,FACTI,FACTZ OAT 390
READ (R,490) NPER,KTH,ERR,EROR,SS, QET,ETDIST,LENGTH,HMAX,FACTX,FACDAT 400
ITY
DAT 410
IF (ETDIST.LE.O.) ETDISTEl. DAT 420
WRITE (P,520) NPER,KTH,ERR,EROR,SS,QET,ETDIST,FACTX,FACTY OAT 430
URE DAT 440
- \(\quad\) READ CUMULATIVE MASS BALANCE PARAMETERS-.

READ (R,600) SUM, SUMP,PUMPT,CFLUXT, QRET,CHST,CHDT,FLUXT,STORT,ETFLDAT 460
IXT,FLXNT DAT 470
IF (IDKI.EG.CHK (14)) GO TO 20 DAT 480
IF (SUM.EQ.O.O) GO TO 40 DAT 490
WRITE (P,480) SUM DAT 500
    ---HEAD DATA TO CONTINUE PREVIOUS COMPUTATIONS READ HERE--- DAT 530
    --ー-ー-FROM CAFDS: DAT 540
    DO \(10 \mathrm{I}=1\) DIML DAT 550
    READ (R,540) (PHI(I,J), J=1,DIMW) DAT 560
    10 WRITE (P,530) I,(PHI (I,J):J=1,DIMW) DAT 570
    GO TO 40 DAT 580
    C
20 READ (4) PHI,SUM,SUMP, PUMPT, CFLUXT, QRET, CHST, CHDT,FLUXT,STORT,ETFLDAT 600
    IXT,FLXNT DAT G10
    WRITE (P.480) SUM DAT 620
    DO \(30 I=1 . D I M L \quad\) UAT 630
    30 WFITE (P.530) I, (PHI(I,J).J=1,DIMW) DAT 640
    REWIND 4 DAY 650

40 READ (R,490) FACT,IVAR,IPRN.IRECS,IRECD OAT K70
    IF (IRECS.EQ.1) READ (2'1) STRT DAT GEO
    IF ((IVAR.EQ.I.OR.IRECS.EQ.1).AND.IPRN.NE.1) WRITE (P.470) DAT GSO
    DO \(80 \mathrm{I}=1.0 I M L \quad\) DAT 700
    IF (IVAR.EQ.I) READ (R.540) (STRT(I.J).J=I.OIMW) DAT 710
    DO \(70 \mathrm{~J}=1.0 I M W \quad\) DAT 720
    IF (IRECS.EQ.I) GO TO 60 DAT 730
    IF (IVAR.NE.I) GO TO 50 DAT 740
    STRT (I,J)=STRT (I,J) \#FACT DAT 7EO
    GO TO 60 DAT 760
50 STRT \((I, J)=\) FACT DAT 770
EO SURI(I•J)=STRT(I.J) DAT 7EO
    \(T(I, J)=0\). DAT 785
\begin{tabular}{|c|c|c|}
\hline & \(T L(I, J)=0\). & DAT 750 \\
\hline & SLI（I，J）\(=0\) 。 & DAT 800 \\
\hline & \(T R(I, J)=0\). & DAT 810 \\
\hline & \(T C(1, J)=0\) 。 & OAT 820 \\
\hline & WELL \((1, J)=0.0\) & DAT 830 \\
\hline & QRE（I．J）\(=0\) 。 & DAT 840 \\
\hline 70 & IF（SUM．EG．0．0．AND．IDKI．NE．CHK（14））PHI（I，J）＝STRT（I，J） & DAT 850 \\
\hline & IF（IVAR．EQ．O．ANO．IRECS．EQ．O．OR．IPRN．EQ．1）GO TO 80 & DAT 860 \\
\hline & WFITE（P，530）I，（STRT（I，J），J＝1，DIMW） & DAT 870 \\
\hline eo & CCNTINUE & DAT 880 \\
\hline & IF（IVAR．NE．I．AND．IRECS．NE．1）WRITE（P，420）FACT & DAT 890 \\
\hline & IF（IRECU．EG．l）WRITE（2＇l）STRT & DAT 900 \\
\hline & RETURN & DAT 910 \\
\hline c & & DAT 920 \\
\hline c & －－－read remaining arrays from caros or disk ias specified in the & DAT 930 \\
\hline c & OPTIONS）AND WFITE THEM ON DISK IF SPECIFIED IN THE OPTIONS－－－ & DAT 940 \\
\hline c & ＊＊＊＊＊\＃\＃\＃\＃\＃\＃\＃\＃＊ & DAT 950 \\
\hline & ENTRY ARRAY（A，IFMT，IN，IRN） & DAT 960 \\
\hline c & \＃\＃\＃＊＊＊＊＊\＃\＃＊＊＊＊＊ & DAT 970 \\
\hline & READ（R，490）FACT，IVAR，IPRN，IRECS，IRECD & DAT 980 \\
\hline & IK \(=4\)＊IRECS +2 \＃IVAR＋IPRN＋1 & OAT 990 \\
\hline & GO TO（ \(90,90,110,110,140,140)\) ，IK & DAT1000 \\
\hline 90 & DO 100 I＝1．0IML & DAT1010 \\
\hline & DO \(100 \mathrm{~J}=1.0 \mathrm{IMW}\) & DAT1020 \\
\hline 100 & A（I，J） FFACT & DAT1030 \\
\hline & WRITE（P，430）IN，FACT & DAT1040 \\
\hline & GO TO 160 & DAT1050 \\
\hline 110 & IF（IK．EQ．3）WRITE（P．440）IN & DAT1060 \\
\hline & DO \(130 \mathrm{I}=1, \mathrm{CIML}\) & DAT1070 \\
\hline & READ（R，510）（A（I，J），J＝1，DIMW） & DAT1080 \\
\hline & DO \(120 \mathrm{~J}=1\) ，DIMW & DAT1090 \\
\hline 120 & \(A(I \cdot J)=A(I, j)=F A C T\) & DAT1100 \\
\hline 130 & IF（IK．EQ．3）WRITE（P，IFMT）I，（A（I，J），J＝I，DIMW） & DAT1110 \\
\hline & GO TO 160 & DAT1120 \\
\hline 140 & READ（2IIRN）A & DAT1130 \\
\hline & IF（IK．EQ．6）GO TO 160 & DAT1140 \\
\hline & WRITE（P，440）IN & OAT1150 \\
\hline & DO \(150 \mathrm{I}=1, \mathrm{DIML}\) & DAT1160 \\
\hline 150 & WRITE（P，IFMT）I，（A（I，J），J＝1，DIMW） & DAT1170 \\
\hline 160 & IF（IRECD．EO．1）WRITE（2ITRN）A & DAT1180 \\
\hline & RETURN & DAT1190 \\
\hline c & & DAT1200 \\
\hline c & －－－insert zero values in the t or perm matrix around the & DAT1210 \\
\hline c & BORDER OF THE MODEL－－－ & DAT1220 \\
\hline C &  & CAT1230 \\
\hline & ENTRY MDAT & DAT1240 \\
\hline C & ＊＊＊＊＊＊＊＊＊＊＊＊＊＊ & DAT1250 \\
\hline & \(00180 \mathrm{I}=1\) ， 01 ML & OAT1260 \\
\hline & DO 180 JEI ， 0 IMW & DAT1270 \\
\hline & IF（WATER．EQ．CHK（2））GO TO 170 & DAT1280 \\
\hline & IF（I．EQ．1．OR．I．EQ．DIML．OR．J．EQ．1．OR．J．EQ．DIMW）T（I．J）\(=0\) ． & DAT1290 \\
\hline & GO TO 180 & DAT1300 \\
\hline 170 & IF（I．EG．1．OR．I．EG．DIML．OR．J．EQ．I．OR．J．EQ．DIMW）PERM（I，J）＝0． & DAT1310 \\
\hline 180 & CONTINUE & DAT1320 \\
\hline c & ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．DELX，DELY ．．．．．．．．．．．．．．．．．．．．．．．．．． & DAT1330 \\
\hline & READ（R，490）FACT，IVAR，IPRN，IRECS．IRECD & DAT1340 \\
\hline & IF（IRECS．EG．1）GO TO 210 & DAT1350 \\
\hline & IF（IVAR．EQ．1）READ（R，490）DELX & DAT1360 \\
\hline & DO \(200 \mathrm{~J}=1.01 \mathrm{MW}\) & DAT1370 \\
\hline & IF（IVAR．NE．1）GO TO 190 & DAT1380 \\
\hline & DELX（J）\(=\) DELX（J）＊FACT & DAT1390 \\
\hline
\end{tabular}

\section*{Program listing-Continued}

```

 DT=CDLT*DT DAT2010
 TM#TM*OT DAT2020
 IF (TM.GE.TMAX) GO TO 320 DATZO30
 310 CONTINUE
 GO TO 330
 320 DELT*TMAX/TM*DELT
 NUMT = I
 330 WRITE (P,570) KP,TMAX,NUMT,DELT,CDLT
 DELT=DELT*3600.
 TMAX=TMAX*86400.
 C
---INITIALIZE SUMP, STRT, SL, WELL AND WR---
WRITE (P,580) NWEL
IF (KP.GT.KPM2) SUMP=0.
00 350 I=1,0IML
00 350 J=1,0IMW
IF (KP.EG.KPMI) GO TO 340
STRT(I,J)=PHI(I,J)
340 1F (LEAK.NE.CHK(9)) GO TO 350
IF (M(I.J).EQ.O.) GO TO 350
SL(I|J)=RATE(I,J)/M(I;J)*(RIVER(I|J)-STRT(I;J))
350 WELL(I,J)=0.
IF (NW.EQ.0) GO TO 370
DO 360 I=1,NW
360 WR(I)=0
370 IF (NWEL.EQ.O) GO TO 410
C
---READ AND Write wElL pumpING RatES aND WELL RADII---
KW=0
DO400 IIEI,NWEL
READ (R,490) I,J,WELL(I.J),RADIUS
IF (RADIUS.EO.O.) GO TO 380
KW=KW+1
IF (KW.GT.NW) GO TO 380
NWR(KW,1)=1
NWR(KW,2)=J
WR(KW)=RADIUS
WRITE (P,590) I.J.WELL(I.J),WR(KW)
GO TO 390
380 WRITE (P,590) I,J,WELL(I,J)
390 WELL(I,J)=WELL(I.J)/(DELX(J)\#DELY(%)) DAT2410
400 CONTINUE (
410 RETURN (0)
C
420 FORMAT ('0..63X.'STARTING HEAD =0.G15.7)
430 FORMAT ('00.41X,9A4,'=0,G15,7)
440 FORMAT ('1',49X,9A4,/,65X,'MATRIX',/,50X,36('-1))) DAT2530
450 FORMAT ('0',72X.'DELX =.,G15.7) DAT2540
460 FORMAT ('01,72X,'DELY =0,G15.7)
DAT2550
470 FORMAT ('11,60X,ISTARTING HEAD MATRIX'/61X,20(1-1))
DAT2560
4B0 FORMAT ('1,'40X.' CONTINUATION - HEAD AFTER ',G20.T.' SEC PUMPING DAT25TO
1,/42x.5日('-'))
DAT2570
490 FORMAT (8G10.0)
DAT2590
500 FORMAT (A4,6X,5G10.0,A8) DAT2600
510 FORMAT (2OF4.0)
OAT2610

```


SUBROUTINE STEP PPHI,KEEP,STRT,SURI,T,WELL,PERM,BOTTOM,TOP,DELX,DDNSTP 10
1.DELY,WR,NWF,TEST3)

STP 20
INITIALIZE CATA FOR TIME STEP, CHECK FOR STEADY STATE, STP

PRINT AND PUNCH RESULTS STP 50

SPECIFICATIONS\&
SPECIFICATIONS: STP 80
REAL 8PHI,DBLE,DABS,TESTZ.DMAXI,XLABEL,YLABEL,XNI,MESUR,TITLE STP 90 REAL *MMNS,M,KEEP STP 100
INTEGER R,P,PU,DIML,DIMW,CHK,WATER,CONVRT,EVAP, CHCK,PNCH,NUM,HEAD,STP 110
ICONTR,LEAK,FECH,SIP,AOI STP 120
STP 130
DIMENSION PHI(IZ, JZ), KEEP(IZ,JZ), STRT(IZ,JZ), SURI(IZ.JZ), T(IZ,STP 140 1JZ), BOTTOM(IP,JP), WELL(IZ,JZ), PEPM(IP,JP), TOP(IC,JC), DELX(JZ)STP 150 2. DDN(JZ), CELY(IZ), WR(IH), NWR(IH,2), ITTO(200), TEST3(IMXI) STP 160

COMMON /SARRAY/ VF4(11).CHK(15) STP 180
COMMON /SPARAM/ WATER, CONVRT,EVAP,CHCK,PNCH,NUM,HEAD,CONTR,EROR,LESTP 190 IAK, RECH,SIP,U,SS,TT,TMIN,ETDIST, OET,ERR,TMAX,CDLY,HMAX,YDIM,WIDTH,STP 200 2NUMS,LSOR,ADI, DELT,SUM,SUMP,SUBS,STORE,TEST,ETQB,ETQD,FACTX,FACTY,STP 210 3IERR,KOUNT, IFINAL,NUMT, KT,KP, NPER,KTH,ITMAX,LENGTH,NWEL,NW\&DIML•DISTP 220 4 MW, JNOI, INOI,R,P,PU,I,J,IDKI,IOK2 STP 230 COMMON /CK/ ETFLXT,STORT,QRET,CHST, CHOT,FLUXT,PUMPT,CFLUXT,FLXNT STP 240 COMMON /ARSIZE/ IZ,JZ,IP,JP,IR,JR,IC,JC,ILIJL•IS,JS,IH,IMAX,IMXI STP 250
COMMON /PR/ XLABEL (3), YLABEL (6), TITLE (5), XNI, MESUR,PRNT (122):BLANKSTP 260 \(1(60)\), DIGIT (122) ,VF1 (6), VFZ (6), VF 3(7), XSCALE,DINCH,SYM(17),XN(100), STP 270 2YN(13),NA(4),N1,N2,N3,YSCALE,FACTI,FACTZ STP 280

DATA PIE/3.141593/.YYY/Z00000000/
RETURN STP 310
C
C

Program listing-Continued
```

C --~START A NEW TIME STEP-WO STP 340
C ***********\#\#\#\#\#\#\#\#\#\#
C
C
C
C
10 KEEP(I,J)=PHI(I,N)
OELT=COLT*OELT
SUM=SUM+DELT
SUMPISSUMP + OELT
DAYSP=SUMP/86400.
YRSP=DAYSP/365.
HRS=SUM/3600.
MINS=HRS*60.
DAYS=HRS/24.
YRS=DAYS/365.
RE TURN STP 520
@MP}54
\#--CHECK FOR STEADY STATE--- STP 550
\#*)
ENTAY STEAOY

TEST2=0.
00 20 I=2.INOI
DO 20 JE2.JNOI
20 TEST2mDNAXI(TEST2,DABS(DBLE(KEEP(I,U))-PHI(I,J))) STP 620
IF (TESTZ.GE.EROR) GO TO 30 STP 630
WRITE (P.330) KT STP 640
IFINAL=1
STP }65
OO TO 40 STP 660
30 IF (KT.EQ.NUMT) IFINAL=1 STP 670
---ENTRY FOR TERMINATING COMPUTATIONS IF MAXIMUM ITERATIONS STP 680
EXCEEDED=-- STP }70
********************** STP 710
ENTRY TERM1 STP }72

```

```

 40 IF (KT.GT.200) WRITE (P,400) STP 740
 ITTO(KT)=KOUNT STP 750
 IF (KOUNT.LE.ITMAX) GO TO 80 STP 760
 IERR=2 STP 770
 KOUNT=KOUNT-1 STP 780
 ITTO(KT)=KOUNT STP 790
 IF (KT.EO.1) GO TO 60 STP 800
 ONDISK OR PUNCH CARDS AS SPECIFIED SN THE OPTIONSEESTP BIO
 ---WRITE ON DISK OR PUNCH CARDS AS SPECIFIED IN THE OPTIONS-F= STP BZ̃O
 XXX=SUM=DELT STP 830
 IF (IOK2.EQ.CHK(15))WRITE (4) ((KEEP(I,J),YYY,IEI,DIML),V=1,DIMW)STP 840
 1. XXX,SUMP,PUMPT,CFLUXT,QRET,CHST,CHDT,FLUXT,STORT,ETFLXT,FLXNT STP 850
 IF (PNCH.NE,CHK(1)) GO TO 80
 WRITE (PU,360) XXX,SUMP,PUMPT,CFLUXT,QRET,CHST,CHDT,FLUXT,STORT,ETSTP 870
 LFLXT,FLXNT STP 880
 DO 50I=1.DIML STP 890
 50 WRITE (PU,350) (KEEP(I,J):J=1,DIMW) STP 900
GOTO 80 STP 910
60 IF IIDKZ.EQ,CHK(15)) WRITE (4) PHI,SUM,SUMP,PUMPT,CFLUXT,QRET,CHSTSTP 920
1,CHDT,FLUXT,STORT,ETFLXT,FLXNT STP 930
IF (PNCH.NE.CHK(1)) GO TO 80 STP 940

```
```

 WRITE (PU,360) SUM,SUMP,PUMPT,CFLUXT,GRET,CHST,CHOT,FLUXT,STORT,ETSTP 950
 IFLXT,FLXNT STP 960
 DO 70 IEI,OIML STP 970
 70 WRITE (PU.350) (PHI(I.J).J=1.DIMW) STP 980
 C
80 IF (CHCK.EQ.CHK(5)) CALL CHECK STP1000
IF (IERR.EQ.2) GO TO 90 STPIO10
C
C -m-PRINT OUTPUT AT DESIGNATED TIME STEPS.-.
IF (MOD(KT,KTH).NE.O.AND.IFINAL.NE.1) RETURN STPIO4O

```

```

 90 WRITE (P,340) KT,DELT,SUM,MINS,HRS,DAYS,YRS,DAYSP,YRSP STM, STP1050
 IF (TT.NE.0.1 WRITE (P,320) TMIN,TT STPIOTO
 M KOUNT=KOUNT+1 (TEST3(N),J=1,KOUNT)
 WRITE (P.300) (TEST3(J),J=1,KOUNT) STPIO90
 WRITE (P.290) TEST2
 13=1
 15=0
 100 15=15*40
 I4=MINO(KT,I5)
 WRITE (P,390) (I,I=I3,14)
 WRITE (P,380)
 WRITE (P,380) (ITTO(I),I=13.14) STME (P,370) STP1160
 WRITE (P,380) STPII80
 IF (KT.LE.IS) GO TO 110
 13=13+40
 GO TO 100
 C
---PRINT ALPHAMERIC MAPS--- STPI220
110 IF (CONTR.NE.CHK(3)) GO TO 120
110 IF (CONTR.NE.CHK(3)) GO TO 120
IF (FACTZ.NE.O.) CALL PRNTA(2)
120 IF (HEAD.NE.CHK(8)) GO TO 140 STP1270
C
C ---PRINT HEAD MATRIX=-- STPI290
WRITE (P.310)
DO 130 I=1.CIML
130 WRITE (P,VF4)I:(PHI(I,J):J=1,DIMW) STP1320
140 IF (NUM.NE.CHK(4)) GO TO 170 STP1330
C
C ---PRINT DRAWOOWN---
WRITE (F,280)
C ********************
ENTRY DRON
C *********************
DO 160 1=1.DIML
DO 150 J=1,OIMW
150 DDN(J)=SURI(I,J)-PHI(I,J)
160 WRITE (F,VF4)I, (ODN(J),J=1,DIMW) STP1430

```

```

c
C ---COMPUTE APPROXIMATE HEAD FOR PUMPING WELLS---

```

```

 -STP1450
 WRITE (P.260)
 DO 220 kW=1,NW
 DO 220 KW=1,NW SOS TO 220 STP1490
 I=NWH(KW,1)
 J=NHR(KW,Z)
 C
C
STP1020
STP1030
STP1080
STP1090
STP1100
STP1110
STP1120
OMSTM130
URTTE (P,3,15) STP1140
STP1140
WRITE (P,380) STP1150
STP1180
I3=13+40
STP1190
STP1200
GO TO 100 STP1210
c
M-PRINT ALPHAMERIC MAPS--- STP1220
STP1240
-STP1250
IF (FACT2.NE.O.) CALL PRNTA(2) STP1260
STP1240
STP1270
STP1280
STP1290
STP1300
STP1310
STP1330
STP1340
STP1350
\#
STP1380
STP1390
STP1400
00 150 J=1,0IMW STP1410
150 DONTE =SNI(S) STP1420

```

```

 STP1430
 STP1460
STP1470
STP1480
I=NWH(KW,l)
STP1490
STP1510
C COMPUTE EFFECTIVE RADIUS OF WELL IN MODEL--- STP15300
STP1520
C
RE=(DELX(J) +DELY(I))/9.62
STP1540
STP1540

```

\section*{Program listing-Continued}
```

 IF (WATER.NE.CHK(2)) GO TO 180 STP1560
 IF (CONVRT.NE.CHK(7)) GO TO 190 STP1570
 IF (PHI(I,J).LT.TOP(I,J)) GO TO 190
 STP1580
 c
C -=-COMPUTATION FOF WELL IN ARTESIAN AQUIFER--- STP1600
C -=-COMPUTATION FOF WELL IN ARTESIAN AQUIFER--- STP1600
STP15S0
180 HW=PHI(I,J)+WELL(I,J)*ALOG(RE/WR(KW))/(2.*PIE*T(I,J))*DELX(J)*DELYSTP1610
1(I)
GO TO 210
C
C ---COMPUTATION FOR WELL IN WATER TABLE AQUIFER
190 HED=PHI(I.J)-EOTTOM(I,J) STP1660
ARG=HEO*HED +WELL(I,J)*ALOG(RE/WR(KW))/(PIE\#PERM(I|J))*DELX(J)*OELYSTP1670
1(I)
IF (ARG.GT.O.) GO TO 200 STP1690
WRITE (P.270) 1.J STP1700
GO TO 220 STP1710
200HW=SORT(ARG)+EOTTOM(I,J) STPITEO
C STP1730
C -=-COMPUTE DRAWDOWN AT THE WELL AND PFINT RESULTS=-= STP1740
210 DRAW=SURI(1,J)-HW STP1750
WRITE (P.250) I,J,WR(KW).HW.DRAW STP1760
220 CONTINUE STP1770
230 IF (IERR.NE.2) RETURN STP1780
STOP STP1790
C STP1800
C=-DISK OUTPUT--= STP1810
C. \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
EATOY DISK STP1830
C \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# STP1840
WFITE (4) PHI,SUM.SUMP,PUMPT,CFLUXT,QRET,CHST,CHDT,FLUXT,STORT,ETFSTP1B5O
ILXT,FLXNT STP1860
RETURN STP1870

```

```

C STP1890
C ---PUNCHED OUTPUT=-- STP1900
C \#\#\#\#\#\&\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
ENTRY PUNCH STPI920

```

```

 WFITE (PU,360) SUM,SUMP,PUMPT,CFLUXT,GRET,CHST,CHDT,FLUXT,STORT,ETSTP194O
 IFLXT,FLXNT STP1950
 DC 240I=1.DIML STP1960
 240 WRITE (PU.350) (PHI(I.J).J=1,DIMW) STP1970
 RETURN STP1980
 C STP1990

```

```

C FORMATS: STP2010
C STP2030
STP2040
STP2050
STP2060
STP2070
250 FORMAT (* ..43X,2I5,3F11.2) STP2080
260 FORMAT ('E'.50X,'HEAD AND DRAWDOWN IN PUMPING WELLS'/5 2X.34 ('-1)///STP2090
148X,II J WELL RADIUS HEAD DRAWDOWN'//I) STP2100
270 FORMAT (" '.43X,2I5.' WELL IS DRY') STP2110
280 FORMAT (IH1.60X, DDRAWDOWN//6IX,8(%-1)) STP2120
290 FORMAT IOMAXIMUM CHANGE IN HEAD FOR THIS TIME STEP M.,F10.3/1. .5STP2130
13(1-1)) STP2140
300 FORMAT ('OMAXIMUM HEAD CHANGE FOR EACH ITERATIONI'/' % 39('*')/(%OSTP2150
1.10F12.4))}\mathrm{ STP2160

```
```

 310 FORMAT ('1',60X,'HEAD MATRIX'/61X.11('-1)) STP2170
 320 FORMAT ('ODIMENSIONLESS TIME FOR THIS STEP RANGES FROM'.G15.7.' TSTP2180
 10'.G15.7)
    ```


```

340 FORMAT (1HI,44X,57(1-1)/45X;'|',14X,'TIME STEP NUMBER E',I9.14X,IISTPZ210
1'/45X,57('-')//50X,29HSIZE OF TIME STEP IN SECONDS=,F14.2//55X,ITOSTP2220
2TAL SIMULATION TIME IN SECONDS=',F14, 2/80X,BHMINUTES=,F14.2/82X,6HSTP2230
3HOURS=,F14.2/83X,5HDAYS\#,F14.2/82X, 'YEARS=I,F14.2///45X, IDURATION STP2240
4OF CURRENT PUMPING PERIOD IN DAYS=1,F14.2/82X,'YEARS=1,F14.2/1) STP2250
350 FORMAT (BF10.4)
STP2260
360 FORMAT (4G20.10) STP2270
370 FORMAT ('OITERATIONS:-.40I3) STP2280
380 FORMAT (1 ',10('-1)) STP2290
390 FORMAT ('OTIME STEP 1.,40I3) STP2300
400 FORMAT ('0',10(1*1), THE NUMBER OF TIME STEPS EXCEEDS THE DIMENSIOSTP2310
IN OF THE VECTOR ITTO AND MAY CAUSE UNEXPECTED RESULTS IN ADDITIONASTPZ32O
2LI/IOCONPUTATION. AVOIO PROBLEMS EY INCREASING THE DIMENSION OF TSTP2330
3HE VECTOR ITTO IN STEPI,LO('\#!))
END STPZ350%
SUBROUTINE SOLVEIIPHI,BE,G,TEMP,KEEP,PHE,STRT,T,S,QRE,WELL,TL,SL,DSIP 10
IEL,ETA,V,XI, DELX,BET,DELY,ALF,TEST3,TR,TC,GRND,SY,TOP,RATE,M\&RIVERSIP 2O
2) SIP
3 0

```

```

 SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE SIP SO
    ```

```

 SIP }7
 SPECIFICATIONS: SIP 80
 REAL GPHI,OBLE,RHOP(20),G,BE,TEMP,DABS,W,TEST2,DMAXI,RHO,B,D,F,H,SIP GO
 1BI,E,CH,GH,BH,DH,EH,FH,HH,ALFA,BETA,GAMA,RES SIP 100
 REAL GKEEP,M SIP 110
 INTEGER R,P,PU,DIML,DIMW,CHK,WATER,CONVRT,EVAP,CHCK,PNCH,NUM,HEAD,SIP 120
 ICONTR,LEAK,RECH,SIP,IORDER(21),ADI SIP 130
 SIP 140
 DIMENSION PHI(1): BE(1). G(1), TEMP(1), KEEP(1), PHE(1), STRT(1), SIP 150
 1T(1), S(1): GRE(l), WELL(1), TL(1), SL(l), DEL(l), ETA(1), Vil), xSIP 160
 2I(1), DELX(1), EET(1), DELY(1), ALF(1), TEST3(1), TR(1), TCII), GRSIP 170
 3ND(1), SY(1), TOP(1), RATE(1), M(1), RIVER(1) SIP 180
 COMMON /SARRAY/ VF4(11),CHK(15) SIP 200
 COMMON /SPARAM/ WATER,CONVRT,EVAP,CHCK,PNCH,NUM,HEAD,CONTR,EROR,LESIP 21O
 IAK,RECH,SIP,U,SS,TT,TMIN,ETDIST,QET,ERR,TMAX,CDLT,HMAX,YDIM,WIDTH,SIP 2ZO
 ZNUMS,LSOR,ADI,DELT,SUM,SUMP,SUBS,STORE,TEST,ETQB,ETQD,FACTX,FACTY,SIP 230
 3IERR,KOUNT,IFINAL,NUMT,KT,KP,NPER,KTH,ITMAX,LENGTH,NWEL,NW,DIML,DISIP 240
 4MW,JNOL,INOI,R,P,PU,I,J,IDKI,IDK2 SIP 250
 RETURN SIP 260
 SIP 280
 ---COMPUTE AND PRINT ITERATION PARAMETERS=-- SIP 290
 ******################
 ENTRY ITERI SIP 310
    ```

```

 ---INITIALIZE ORDER OF ITERATION PARAMETERS IOR REPLACE WITH A SIP 330
 READ STATEMENT)=-- SIP 340
 DATA IORDER/1,2,3,4,5,1,2,3.4.5,11*1/ SIP 350
 I2=INO1-1
 SIP 360
 JZ=JNO1-1
 L2=LENGTH/2 SIP 380
 SIP 370
 PL2=L2-1. SIP 390
 W=0. SIP400
    ```

\section*{Program listing-Continued}
```

 PI=0. SIP 410
 C SIP 420
C ---COMPUTE AVERAGE MAXIMUM PARAMETER FOR PROBLEM--- SIP 430
DO 10 I=2.1NOI
SIP440
SIP 450
DO 10 J=2,JNO1
N=I*DIML*(J-1) SIP 460
IF (T(N).EQ.O.) GO TO 10 SIP 470
PI=PI*I* SIP 480
DX=OELX(J)/WIDTH SIP 490
DY=DELY(I)/YOIM SIP 500
W=W*1.-AMIN1 (2.*DX*DX/(1.*FACTY*DX*DX/(FACTX*DY*DY)) 2.*DY*DY/(1.*SIP 510
IFACTX*DY*DY/(FACTY*DX*DXI)) SIP 520
10 CONTINUE SIP 530
W=W/PI SIP 540
C
C--COMPUTE PARAMETERS IN GEOMETRIC SEQUENCE-m- SJ=-1. SIP SOO
DO20IF1.L2 SIP 580
PJ=PJ\&1. SIP 590
20 TEMP(I)*1.-(1.-w)*(PJ/PL2) SIP 600
C
C -=-ORDER SEQUENCE OF PARAMETERS-\infty
DO 30 J=1.LENGTH
30 RHOP(J) =TEMP(IORDER(J))
WRITE (P.370) HMAX
WRTTE (P.380) LENGTH,(RHOP(J) JEl-LENGTH)
SIP670
C
C
40 KOUNT=KOUNT +1
IF (KOUNT LE.ITMAX) GO TO 50
IMAXJ GO-10.50
CALL TERMI

```


```

 ENTRY NEWITA
    ```

```

 6 0 ~ N T H = 0
 7 0 ~ N T H = N T H * 1
 W=RHOP (NTH)
 TEST3(KOUNT*1)=0.
 TEST=0.
 N=DIMLODIMW
 DO 80 IEI,N
 PHE (I) =PHI(I)
 DEL(I)=0.
 ETA(I)=0.
 V(I)=0.
 80 XI(I)=0.
 BIGI=0.0
 ---COMPUTE TRANSMISSIVITY AND T COEFFICIENTS IN WATER TABLE
 OR WATER TABLE-ARTESIAN SIMUATION--*
 IF (WATER.NE,CHK(Z)) GO TO }9
 CALL TRANS
 C
C
SIP 9G
C-mORDFR EQUATIONS WITH ROW I FIRST - 3X3 EXAMPLE: SIPIOIO

```
\begin{tabular}{|c|c|c|}
\hline C & 123 & SIP1020 \\
\hline C & 456 & SIP1030 \\
\hline C & 789 & SIP1040 \\
\hline C & & SIP1050 \\
\hline 100 & DO 210 I=2,INOI & SIP1060 \\
\hline & DO \(210 \mathrm{~J}=2 \cdot \mathrm{JNOL}\) & SIP1070 \\
\hline & \(N=1+\operatorname{IML}(\mathrm{l}=1)\) & SIPI080 \\
\hline & \(N L=N-D I M L\) & SIP1090 \\
\hline & NR=N•DINL & SIP1100 \\
\hline & \(N A=N-1\) & SIP1110 \\
\hline & \(N B=N+1\) & SIP1120 \\
\hline c & & SIP1130 \\
\hline C & ---SKIP COMPUTATIONS IF NODE IS OUTSIDE AQUIFER BOUNDARY-. & SIP1140 \\
\hline & IF (T) N ).EQ.O..OR.S(N).LT.O.) GO TO 210 & SIP1150 \\
\hline \({ }^{\text {c }}\) & & SIP1160 \\
\hline c & --COMPUTE COEFFICIENTS--- & SIP1170 \\
\hline & DxTR(NL)/DELX(J) & SIP1180 \\
\hline & \(F \pm T R(N) / D E L X(J)\) & SIP1190 \\
\hline & \(\mathrm{B}=\mathrm{TC}(\mathrm{NA}) / \mathrm{DELY}(\mathrm{I})\) & SIP1200 \\
\hline & \(\mathrm{HETC}(N) / D E L Y(I)\) & SIP1210 \\
\hline & IF (EVAP.NE.CHK(6)) GO TO 120 & SIP1220 \\
\hline c & & SIP1230 \\
\hline c & ---COMPUTE EXPLICIT AND IMPLICIT PARTS OF ET RATE-m- & SIP1240 \\
\hline & ETQB=O. & SIP1250 \\
\hline & \(E T O D=0.0\) & SIP1260 \\
\hline & IF (PHE (N).LE.GRND (N)-ETDIST) GO TO 120 & SIP1270 \\
\hline & IF (PHE (N).GT.GRND (N)) GO TO 110 & SIP1280 \\
\hline & ETOB=GET/ETOIST & SIPI290 \\
\hline & ETOD=ETOB* (ETDIST-GRND (N)) & SIP1300 \\
\hline & GO TO 120 & SIP1310 \\
\hline 110 & \(E T Q D=Q E T\) & SIP1320 \\
\hline \(c\) & & SIP1330 \\
\hline c & ---COMPUTE STORAGE TERM--- & SIP1340 \\
\hline 120 & & SIP1350 \\
\hline & \[
\text { RHO =S }(N) / D E L T
\] & SIP1360 \\
\hline & IF (WATER.EQ.CHK (2)) RHOESY(N)/OELT & SIP1370 \\
\hline & GO TO 200 & SIP1380 \\
\hline & & SIP1390 \\
\hline c & ---COMPUTE STORAGE COEFFICIENT FOR CONVERSION PROBLEM--- & SIP1400 \\
\hline 130 & SUBS \(=0.0\) & SIP1410 \\
\hline & IF (KEEP(N).GE.TOP(N).AND.PHE (N).GE. TOP(N)) GO TO 170 & SIPI420 \\
\hline & IF (KEEP(N).LT.TOP (N).AND.PHE (N).LT.TOP(N)) GO TO 160 & SIP1430 \\
\hline & IF (KEEP (N)-PHE (N)) 140,150,150 & SIP1440 \\
\hline 140 & SUBS \(=(S Y(N)-S(N)) / D E L T *(K E E P(N)-T O P(N))\) & SIP1450 \\
\hline & GO TO 170 & SIP1460 \\
\hline 150 & SUBS \(=(S(N)-S Y(N)) / D E L T *(K E E P(N)-T O P(N))\) & SIP1470 \\
\hline 160 & RHO \(=\) SY (N)/DELT & SIP1480 \\
\hline & GO TO 180 & SIP1490 \\
\hline 170 & RHO=S(N)/DELT & SIP1500 \\
\hline 180 & If (LEAK.NE.CHK(9)) GO TO 200 & SIP1510 \\
\hline C & & SIP1520 \\
\hline c & ---COMPUTE NET LEAKAGE TERM FOR CONVERSION SIMULATION--- & SIP1530 \\
\hline & IF (RATE (N).EQ.O..OR.M(N).EQ.O.) GO TO 200 & SIP1540 \\
\hline & HEDI=AMAXI (STRT(N), TOP(N)) & SIP1550 \\
\hline & \(U=1\). & SIP1560 \\
\hline & HED2 \(=0\) 。 & SIP1570 \\
\hline & IF (PHE (N).GE.TOP(N)) GO TO 190 & SIP1580 \\
\hline & HED2 \(=\) TOP (N) & SIP1590 \\
\hline & \(\mathrm{U}=0\). & SIP1600 \\
\hline 190 & \(\operatorname{SL}(N)=R A T E(N) / M(N) *(R I V E R(N)-H E D 1) * T L(N) *(H E D I-H E D 2-S T R T(N))\) & SIP1610 \\
\hline 200 & CONTINUE & SIP1620 \\
\hline
\end{tabular}


Program listing-Continued


\section*{Program listing-Continued}
```

 V(N)=(HMAX*RES-ALFA*V(NB)-BETA*V(NL))/GAMA SIP2850
 340 CONTINUE SIP2860
 C
C
---BACK SUBSTITUTE FOR VECTOR XI--.-
DO 350 [3=2,INO1
DO 350 J=1.J2
J3=0IMW-J
N=13+DIML*(J3-1)
IF (T(N).EQ.O..OR.S(N).LT.O.) GO TO 350
XI(N)=V(N)-DEL(N)*XI(N+OIML)-ETA(N)*XI(N-1)
---COMPARE MAGNITUDE OF CHANGE WITH CLOSURE CRITERION--
TCHK=ABS(XI(N))
IF (TCHK.GT.BIGI) BIGI=TCHK
PHI(N)=PHI(N)+XI(N)
350 CONTINUE
IF (BIGI.GT.ERR) TEST=I.
TEST3(KOUNT+1)=BIGI
IF (TEST.EQ.1.) GO TO 40
RE TURN
---FORMATS-O- SIP3080
SIP3100
SIP3110
SIP3120
360 FORMAT ('OEXCEEDED PERMITTED NUMBER OF ITERATIONS'/' '.39('*')) SIP3130
370 FORMAT ('-1,44X,"SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE'/45X,SIP3140
143('-'),//.61X,'日ETAE',F5.2) SIP3150
380 FORMAT (1HO.15,22H ITERATION PARAMETERS:,6015.7/(/28X,6015.7/)) SIP3160
END
SIP3160

```
SUBROUTINE SOLVEZ(PHI,BE,G,TEMP,KEEP,PHE,STRT,T,S,QRE,WELL,TL,SL,OSOR ..... 10
```IEL,ETA,V,XI, DELX,BETA,DELY,ALFA,TESTB,TR,TC,GRND,SY,TOP,RATE,M,RIVSOR
```

2ER) ..... SOR
2ER)

```2040
```

SOLUTION BY LINE SUCCESSIVE OVERRELAXATION

SOLUTION BY LINE SUCCESSIVE OVERRELAXATION .....  ..... SOR .....  ..... SOR
-

- ..... 50 ..... 50
c
c

```SOR 70
```

SPECIFICATICNS: SOR ..... 80
REAL BPHI,DBLE,RHOP (20),G,BE,TEMP,IMK,DABS,W,PARAM,TESTZ,DMAXI, RZSOR
I,A,C,BI,E,O,RHO,B,D,F,H ..... SOR 100
REAL \#KKEEP,M ..... SOR 110
INTEGER R,P,PU, DIML, DIMW, CHK, WATER, CONVRT, EVAP, CHCK, PNCH, NUM, HEAD, SOR ..... 120
1 CONTR,LEAK,RECH,SIP,ADI ..... SOR 130

```SOR 140
```

DIMENSION PHI(1), $\operatorname{BE}(1), G(1), \operatorname{TEMP}(1), \operatorname{KEEP}(1), \operatorname{PHE}(1), \operatorname{STRT}(1), ~ S O R$ ..... 150
1T(1), S(1), QRE(1), WELL(1), TL(1), SL(1), DEL(l), ETA(1), V(1), XSOR ..... 160
21(1), DELX(1), BETA(1), DELY(1), ALFA(1), TEST3(1), TR(1), TC(1), SOR ..... 170
3GRND(1), SY(1), TOP(1), RATE(1), M(1), RIVER(1) ..... SOR 180

```COMMON /SARFAY/ VF4(11).CHK(15)SOR 200
```

COMMON /SPARAM/ WATER,CONVRT,EVAP,CHCK,PNCH, NUM,HEAD, CONTR,EROR,LESOR ..... 210
IAK,RECH,SIP,U,SS,TT,TMIN,ETDIST, OET,ERR,TMAX,CDLT,HMAX,YDIM,WIDTH,SOR ..... 220
2NUMS.LSCR,ADI, DELT,SUM, SUMP, SUBS, STORE,TEST, ETQB, ETOD,FACTX,FACTY, SOR ..... 230
3IERR,KOUNT, IFINAL,NUMT,KT,KP, NPER,KTH,ITMAX,LENGTH,NWEL,NW,DIML•OISOR ..... 240
4 MW, JNOI,INOI,R,P,PU,I,J,IDKI,IDK2 ..... SOR 250
RETURN ..... SOR 260

## Program listing—Continued

$\stackrel{c}{c}$ SOR 27
SOR 280
--WWITE ACCELERATION PARAMETER-*- ..... SOR 290
 ..... SOR 300
ENTRY ITERZ ..... SOR 310
******************* ..... SOR 320
WRITE (P.490) ..... SOR 330
WRITE (P,500) HMAX,LENGTH ..... SOR 340
RETURN ..... SOR 350
$C$
$c$
$c$ ..... SOR 370
--IINITIALIZE DATA FOR A NEW ITERATION-* ---INITIALIZE DATA FOR A NEW ITERATION--* ..... SOR 380
10 KOUNT=KOUNT + 1 ..... SOR 390
IF (KOUNT.LE.ITMAX) GO TO 20 ..... SOR 400
WRITE (P,510) ..... SOR 410
CALL TEAM1 ..... SOR 420
c SOR 430
ENTRY NEWITB
********************* ..... 450

```SOR 440
```

20 TEST3(KOUNT+1)=0.
TEST=0. ..... SOR 470
N=DIML*OIMW ..... SOR 480
DO 30 I $=1, N$ ..... SOR 490
30 PHE(I)=PHI(I) ..... SOR 500
BIGI=0.0 ..... SOR 510
SOR 520

```---COMPUTE TRANSMISSIVITY AND T COEFFICIENTS IN WATER TABLE
```

```OR WATER TABLE AARTESIAN SIMUATION-DSOR 540
```

IF (WATER.NE.CHK (Z)) GO TO 40 ..... SOR 550
CALL TRANS ..... SOR 560
$c$ ..... SOR 570
SOR 580
---SOLUTION BY LSOR--- ..... SOR 590
-------------------------- ..... SOR 600
40 NO3zDIMm-2 ..... SOR 610
TEMP (DIMW) $=0.0$ ..... SOR 620
DO 170 I=2.INOI ..... SOR 630
DO 150 J=2.JNOl ..... SOR 640
$N=I+D I M L *(J-1)$ ..... SOR 650
$N A=N-1$ ..... SOR 660
$N B=N+1$ ..... SOR 670
$N L=N-D I M L$ ..... SOR 680
$N R=N+D I M L$ ..... SOR 690
$B E(J)=0.0$ ..... SOR 700
$G(J)=0.0$ ..... SOR 710
SOR 720
---SKIP COMPUTATIONS IF NODE IS OUTSIDE AGUIFER BCUNDARY--- ..... SOR 730
IF (T(N).EQ.O..OR.S(N).LT.O.) GO TO 150 ..... SOR 740

```SOR 750
```

C ---COMPUTE COEFFICIENTS--- ..... SOR 760
D=TR(N-DIML)/DELX(J) ..... SOR 770
$F=T R(N) / D E L X(J)$ ..... SOR 780
$B=T C(N-1) / D E L Y(I)$ ..... SOR 790
$H=T C(N) / D E L Y(I)$ ..... SOR 800
IF (EVAP.NE.CHK(6)) GO 1060

```SOR 810
```

SOR 820

```ETOB=0SOR 830
```

```SOR 840
```

$E T Q D=0.0$ ..... SOR 850
IF (PHE(N).LE.GRNO(N)-ETDIST) GO TO 60 ..... SOR 860
IF (PHE(N).GT.GRND(N)) GO TO 50 ..... SOR 870

```
 ETQB=OET/ETDIST SOR 880
 ETQD=ETGB*(ETDIST-GRND(N))
 SOR 890
 GO TO 60
 SO ETOD=QET
C
 ---COMPUTE STORAGE TERM=--
 60 IF (CONVRT.EQ.CHK(7)) GO TO 70
 RHO=S(N)/DELT
 IF (WATER,EO.CHK(Z)) RHO=SY(N)/DELT
 GO TO 140
C
 ---COMPUTE STORAGE COEFFICIENT FOR CONVERSION PROBLEM---
 70 SUBS=0.0
 IF (KEEP(N).GE.TOP(N).AND.PHE (N).GE.TOP(N)) GO TO 110
 IF (KEEP(N).LT.TOP(N).AND.PHE(N).LT.TOP(N)) GO TO 100
 IF (KEEP(N)-PHE(N)) 80,90,90
 80 SUBSE(SY(N)-S(N))/DELT*(KEEP(N)-TOP(N))
 GO TO 110
 90 SUBS=(S(N)-SY(N))/DELT*(KEEP(N)-TOP(N))
 100 RHO=SY(N)/DELT
 GO TO 120
 110 RHO=S(N)/DELT
 120 IF (LEAK.NE.CHK(9)) GO TO 140
C
C ---COMPUTE NET LEAKAGE TERM FOR CONVERSION SIMULATION---
 IF (RATE(N).EQ.O..OR.M(N).EQ.O.) GO TO 140
 HEDI=AMAXI(STRT(N),TOP(N))
 U=1.
 HED2=0.
 IF (PHE(N).GE.TOP(N)) GO TO 130
 HEO2=TOP(N)
 U=0.
 130 SL(N)=RATE(N)/M(N)*(RIVER(N)-HEDI)*TL(N)*(HEDI-HEDZ-STRT(N))
 140 CONTINUE
C --~FORWARD SUBSTITUTE, COMPUTING INTERMEDIATE VECTOR G-O-
 E=-O-F-B-H-FHO-TL(N)*U-ETQB
 W=E-D*EE(J-1)
 SOR1250
 BE(J)=F/W SOR1260
 O=-B*PHI(NA)-H*PHI(NB)-RHO*KEEP(N)-SL(N)-QRE(N)-WELL(N) +ETQD-SUBS-SOR1270
 1TL(N)*STRT(N)=D*PHI(NL)-F*PHI NR)-E*PHI(N) SOR1280
 G(J)=(0-D*G(J-1))/W SORI290
 150 CONTINUE SORI300
C
C ---BACK SUBSTITUTE FOR TEMP---
 DO 160 KNO4=1,NO3
 NO4=DIMW-KNO4
 TEMP(NO4)=G(NO4)-BE(NO4)*TEMP(NO4*1)
 160 CONTINUE
C
C ---EXTRAPOLATED VALUE OF PHI---
 DO 170 J=2.JNOL
 N=I+OIML* (J-1)
 PHI(N)=PHI(N) + HMAX*TEMP(J)
C
 ---COMPARE DIFFERENCE WITH CLOSURE CRITERION--
 TCHK=DABS(TEMP(J))
 IF (TCHK.GT.BIGI) BIGI=TCHK
 170 CONTINUE
 IF (BIGI.GT.ERR) TEST=1.
 TEST3(KOUNT + 1) =BIGI
```


## Program listing-Continued

	IF (KOUNT.EQ.O) GO TO 10   IF (TEST.EQ.O.) RETURN	$\begin{aligned} & \text { SOR1490 } \\ & \text { SOR1500 } \end{aligned}$
c$C$		SOR1510
	---TEST FOR TWO DIMENSIONAL CORRECTION---	SOR1520
	IF (MOD(KOUNT,LENGYH).NE.O) GO TO 10	SOR1530
	GO TO 200	SOR1540
180	DO 190 I=2.INO1	SOR1550
	DO $190 \mathrm{~J}=2, \mathrm{JNOL}$	SOR1560
	$N=I * D I M L *(J=1)$	SOR1570
	IF (T) N$)$ EQ.O.) GO TO 190	SOR1580
	PHI (N) =PHI (N) \& ALFA $I$ ) \& BETA(J)	SOR1590
190	CONTINUE	SOR1600
	GO TO 10	SOR1610
c	........	.SOR1620
c		SOR1630
c	---TWO OIMENSIONAL CORRECTION TO LSOR---	S0R1640
C		SOR1650
C		SOR1660
C 200	---COMPUTE ALFA CORRECTION FOR ROWS---	SOR1670
	$00210 \quad I=1 . D I M L$	SOR1680
200	$\text { ALFA }(I)=0 \text {. }$	SOR1690
	BE (I) $=0.0$	SOR1700
210	$G(1)=0.0$	SOR1710
	DO $330182.1 N 01$	SOR1720
	$A=0$ 。	SOR1730
	B2=0.	SOR1740
	$\mathrm{C}=0$ 。	SOR1750
	$Q=0$.	SOR1760
c		SOR1770
	---SUMMATION OF CCEFFICIENTS FOR EACH ROW---	SOR1780
	DO 320 J=2.JNOI	SOR1790
	N=I+DIML*(J-1)	SOR1800
	NA=N-1	SOR1810
	$N B=N+1$	SOR1820
	$N L=N-D I M L$	SOR1830
	NR $=$ N+DIML	SOR1840
	IF (S $N$ ).LT.O.) GO TO 330	SOR1850
	IF (T(N).EQ.O.) GO TO 320	SOR1860
c		SOR1870
c	---COMPUTE COEFFICIENTS---	SOR1890
	D=TR(N-DIML) DEL $^{\text {(J) }}$ )	SOR1890
	$F=T R(N) / D E L X(J)$	SOR1900
	B=TC ( $N=1$ ) $\operatorname{DELY}(1)$	SOR1910
	HxTC (N)/DELY(I)	SOR1920
	IF (EVAP.NE, CHK (6)) GO TO 230	SOR1930
c		SOR1940
	---COMPUTE EXPLICIT AND IMPLICIT PARTS OF ET RATE-*-	SOR1950
	ETOBAO.	SOR1960
	ETED=0.0	SOR1970
	IF (PHE (N).LE.GRNO (N)-ETDIST) GO TO 230	SOR1980
	IF (PHE (N).GT.GRNO(N)) GO TO 220	SOR1990
	ETQB=OET/ETOIST	SOR2000
	```ETOD=ETOB*(ETDIST-GRND(N)) GO TO 230```	SOR2010   SOR2020
$c_{c} c^{220}$	ETOD=QET	SOR2030
		SOR2040
	---COMPUTE STORAGE TERM---	SOR2050
230	IF (CONVRT.EQ.CHK (7)) GO TO 240	SOR2060
	RHOES (N)/DELT	SOR2070
	IF (WATER.EG.CHK(2)) RHO=SY(N)/DELT	SOR2080
	GO TO 310	SOR2090

Program listing-Continued

```
    240 SUBS=0.0 SOR2100
        IF (KEEP(N).GE.TOP(N).AND.PHE(N).GE.TOP(N)) GO TO 280
    IF (KEEP(N).LT.TOP(N).AND.PHE(N).LT.TOP(N)) GO TO 270 SOR2120
    IF (KEEP(N)-PHE(N)) 250,260,260
SOR2110
    SOR2120
    SOR2130
    250 SUBS=(SY(N)-S(N))/DELT*(KEEP(N)-TOP(N))
    GO TO 280
    260 SUBS=(S(N)=SY(N))/DELT*(KEEP(N)-TOP(N))
    270 RHO=SY(N)/DELT
        GO TO 290
    200 RHO=S(N)/DELT
    290 IF (LEAK.NE.CHK(9)) GO TO 310
C
C ---COMPUTE NET LEAKAGE TERM FOR CONVERSION SIMULATION---
        IF (RATE(N).EQ.O..OR.M(N).EQ.O.) GO TO 310
        HEDI=AMAXI(STRT(N),TOP(N))
        U=1.
        HED2=0.
        IF (PHE(N).GE.TOP(N)) GO TO 300
        HED2=TOP(N)
        U:0.
    300 SL(N)=RATE(N)/M(N)*(RIVER(N)-HED1)*TL(N)*(HEDI-HED2-STRT(N)) SOR2300
    310 CONTINUE SOR2310
C
    A=A=B
        Bl=B+H*RHO*TL(N)*U&ETQB SOR234O
        B2*B2+B1 SOR2350
        C=C=H SOR2360
        Q=Q+(D*PHI (NL) +F*PHI (NR) & B*PHI (NA) +H*PHI (NB) &RHO*KEEP(N) & SL (N) & QRESOR2370
        I(N)*WELL(N)=ETOD*SUBS*TL(N)*STRT(N)= (D*F*B1)*PHI(N)))
    320 CONTINUE SOR2390
C
C ---COMPUTATION OF INTERMEDIATE VECTOR G---
        W=B2-A*BE(I-1)
        BE(I)=C/W
        G(I)=(O-A*G(I-I))/W
    330 CONTINUE
C
C ---BACK SUBSTITUTE FOR ALFA=--
        NO3=DIML-2
        DO 340 KNO4=1,NO3
        NO4=DIML KNO4
    340 ALFA(NO4)=G(NO4)-BE(NO4)*ALFA(NO4+1) SOR2510
C
c
C ---COMPUTE EETA CORRECTION FOR COLUMNS--- SOR254O
    DO 350 JE1,OIMW SOR2550
    BETA(J)=0. SOR2560
    BE(J)=0.0 SOR2570
    350G(J)=0.0 SOR2580
    DO 470 J=2.JNOL SOR2590
    A=0. SOR2600
    82=0. SOR2610
    C=0. SOR2620
    Q=0. SOR2630
    SOR2640
    ---SUMMATION OF COEFFICIENTS FOR EACH COLUMN--- SOR2650
    DO 460 I=2.INOI SOR2660
    N=I+DIML*(J-1) SOR2670
    NA=N-1 SOR2680
    NB=N+1 SOR2690
    NL=N-DIML SOR2700
```

Program listing-Continued

	$N R=N+D I M L$	SOR2710
	IF (SIN).LT.O.) GO TO 470	SOR2720
	IF (T(N).EG.O.) GO TO 460	SOR2730
	$D=T R(N-D I M L) / D E L X(J)$	SOR2740
	$F=T R(N) / O E L X(J)$	SOR2750
	$B=T C(N-1) / 0 E L Y(I)$	SOR2760
	$H=T C(N) / D E L Y(I)$	SOR2770
	IF (EVAP, NE.CHK (6)) GO TO 370	SOR2780
c		SOR2790
C	---COMPUTE EXPLICIT AND IMPLICIT Parts of et rate-o-	SOR2800
	$E T Q B=0$.	SOR2810
	ETOD=0.0	SOR2820
	IF (PHE(N).LE.GRND (N)-ETDIST) GO TO 370	SOR2830
	IF (PHE(N).GT.GRND(N)) GO TO 360	SOR2840
	ETQB=QET/ETOIST	SOR2850
	ETQD=ETOB* (ETOIST-GRNO (N))	SOR2860
	0010370	SOR2870
360	ETOD=QET	SOR2880
c		SOR2890
C	---COMPUTE StORAGE TERM---	SOR2900
370	IF (CONVRT.EQ.CHK (7)) GO TO 380	SOR2910
	RHO=S (N)/DELT	SOR2920
	IF (WATER.EQ.CHK (2)) RHO $=$ SY(N)/DELT	SOR2930
	GO TO 450	SOR2940
c		SOR2950
C	---COMPUTE STORAGE COEFFICIENT FOR CONVERSION PROBLEM---	SOR2960
380	SUBS $=0.0$	SOR2970
	IF (KEEP(N).,GE.TOP(N).AND.PHE(N).GE.TOP(N)) 60 TO 420	SOR2980
	IF (KEEP(N).LT. TOP (N).AND.PHE (N).LT.TOP(N)) 00 TO 410	SOR2990
	IF (KEEP (N)-PHE(N)) 390,400,400	SOR3000
390	SUBS=(SY(N)-S(N))/DELT* $\operatorname{CKEEP}(N)-T O P(N))$	SOR3010
	GO TO 420	SOR3020
400		SOR3030
410	RHOESY(N)/DELT	SCR3 040
	60 TO 430	SCR3050
420	RHOES(N)/DELT	SOR3060
430	IF (LEAK.NE.CHK(9)) GO 70450	SOR3070
c		SOR3080
C	---COMPUTE NET LEAKAGE TERM FOR CONVERSION SIMULATION---	SOR3090
	IF (RATE (N).EQ.O..OR.M(N).EQ.O.) GO TO 450	SOR3100
	HEDIFAMAXI(STRT(N), TOP (N))	SOR3110
	UE1.	SOR3120
	HED2=0.	SOR3130
	IF (PHE (N).GE.TOP(N)) GO TO 440	SOR3140
	HED2= TOP (N)	SOR3150
	U $=0$.	SCR3160
440	SL (N)=RATE (N)/M(N)*(RIVER(N)-HED 1) *TL (N)*(HEDI-HED2-STRT(N))	SOR3170
450	continue	SOR3180
C		SOR3190
	$A=A=D$	SOR3200
	$B 1=0 \bullet F \& R H O * T L(N) * U * E T O B$	SOR3210
	B2=82*81	SOR3220
	$C=C \sim F$	SOR3230
		SOR3240
	$1(N) * W E L L(N)-E T Q O * S U B S * T L(N) * S T R T(N) *(B * H * B 1) * P H I(N))$	SOR3250
460	CONTINUE	SCR3260
c		SOR3270
c	---COMPUTATION OF INTERMEDIATE VECTOR G---	SOR3280
	W=B2-A*BE(J-1)	SOR3290
	$B E(J)=C / W$	SOR3300
	$G(J)=(Q-A \otimes G(J-1)) / W$	SOR3310

Program listing-Continued

Program listing-Continued

	DO $10 \mathrm{~J}=2, \mathrm{JNO}$ $N=I+D I M L$ (J-1)	ADI	390 400
	IF (TIN).EQ.O.) GO TO 10	ADI	410
	XPART=XVAL*(1/11*DELX(J)**2*FACTY/DELY(I)**2*FACTX)	ADI	420
	YPARTEYVAL*(1/(l*DELY(I)**2*FACTX/DELX(J)**2*FACTY)	ADI	430
	HMIN二AMINI (HMIN, XPART, YPART)	ADI	440
10	CONTINUE	ADI	450
	ALPHAEEXP(ALOG(HMAX/HMIN)/(LENGTH-1))	ADI	460
	RHOP (1) =HMIN	ADI	470
	DO 20 NTIME®2,LENGTH	ADI	480
20	RHOP (NTIME) =RHOP (NTIME-1)*ALPHA	ADI	490
	WRITE (P,400)	ADI	500
	WRITE (P,410) LENGTH, (RHOP(J),J=1-LENGTH)	ADI	510
	RETURN	ADI	520
C	-•••••••••	ADI	530
c	ADI	540
C	---INITIALI2E DATA FOR A NEW ITERATION---	ADI	550
30	KOUNT=KOUNT•1	ADI	560
	IF (KOUNT.LE.ITMAX) GO TO 40	ADI	570
	WRITE (P,390)	ADI	580
	CALL TERM]	ADI	590
40	IF (MOD (KOUNT,LENGTH)) $50,50,60$	ADI	600
c	***********************	ADI	610
	ENTRY NEWITC	ADI	620
c	************************	ADI	630
50	NTHEO	ADI	640
60	NTHENTH+1	ADI	650
	PARAMERHOP (NTH)	ADI	660
	TEST3 (KOUNT + 1) $=0$ 。	ADI	670
	TESTEO.	ADI	680
	NEOIML*DIMW	ADI	690
	DO $70 \quad \mathrm{I}=1, \mathrm{~N}$	ADI	700
70	PHE(I) $=$ PHI (I)	ADI	710
	BIGI=0.0	ADI	720
		ADI	730
C	---COmpute transmissivity and t coefficients in water table	ADI	740
C	OR WATER TABLEARTESIAN SIMUATION-*-	ADI	750
	If (WATER.NE.CHK(Z)) GO TO 80	ADI	760
	call trans	AOI	770
C	-••••••••••••0..	ADI	780
c	$\bullet \cdot$ - $0 \cdot$	ADI	790
C	---SOLUTION BY ADI---	ADI	800
C	-----------	ADI	810
c	---COMPUTE IMPLICITLY ALONG ROWS---	ADI	820
80	NO3 = DIMW-2	401	830
	D0 $90 \mathrm{~J}=1 . \mathrm{DIMW}$	ADI	840
	N=1*DIML*(J-1)	ADI	850
90	TEMP (J) =PHI (N)	ADI	860
	DO 230 I=2,0IML	ADI	870
	DO 200 J=2.JNOI	ADI	880
	$N=I+D I M L *(J-1)$	ADI	890
	NAMN-1	ADI	900
	$\mathrm{NB}=\mathrm{N}+1$	ADI	910
	NL=N-DIML	ADI	920
	$N R=N * D I M L$	ADI	930
	$B E(J)=0.0$	AOI	940
	$G(J)=0.0$	ADI	950
c		ADI	960
c	---SKIP COMPUTATIONS IF NODE IS OUTSIDE AGUIFER BOUNDARY---	ADI	970
	IF (T(N).EQ.O..OR.S(N).LT.O.) GO TO 200	ADI	980
c		ADI	990


```
lolerlol
```


Program listing-Continued

Program listing-Continued

```
    300 RHO=SY(N)/DELT ADI2220
    GO TO 320
    310 RHO=S(N)/DELT
    320 IF (LEAK.NE.CHK(9)) GO TO 340
C
C -*-COMPUTE NET LEAKAGE TERM FOR CONVERSION SIMULATION---
    IF (RATE(N).EQ.O..OR.M(N).EQ.O.1 GO TO 34O
        HEDI=AMAXI(STRT(N),TOP(N))
        U=1.
        HEO2=0.
        IF (PHE(N).GE.TOP(N)) GO TO 330
        HED2=TOP(N)
        U=0.
    30 SL(N)=PATE (N)/M(N)*(RIVER(N)=HED1)*TL(N)*(HEO1-HED2-STRT(N))
    340 CONTINUE
C
C
C ---CALCULATE VALUES for parameters used in thomas algorithm
C AND FORWARD SUBSTITUTE TO COMPUTE INTERMEDIATE VECTOR G---
    IMK=(B*D*F*H)*PARAM
    E=-B-H-RHO-IMK-TL(N)*U-ETQB
    W=E-B*BE(I-1)
    BE(I)=H/W
```



```
    Q*-D*PHI(NL)*(D*F-IMK-E)*PHI (N)-F*PHI (NR)-RHO*KEEP(N)-SL(N)-QRE (N)ADI2440
    1-WELL(N)&ETGD-SUBS-TL(N)*STRT(N)-B*PHI(NA)-H*PHI(NB) ADI2450
    G(I)=(O-B*G(I-1))/W ADI2460
    350 CONTINUE ADI2470
C
C ---baCK SUBSTITUTE FOR HEAD VALUES AND PLACE THEM IN TEMP-m.
    XII(OIML) =0.00
    DO 370 KNO4=1,NO3
    NO4=DIML-KNO4
    N=NO4+DIML*(v-1)
    ---FIRST PLACE TEMP VALUES IN PHI(N~DIML)--...
    PHI(N-DIML)=TEMP(NO4)
    IF (T(N).NE.O..AND.S(N).GE.O.) GO TO 360
    XII(NO4)=0.00
        TEMP(NO4)=PHI(N)
        GO TO 370
    360 XII(NO4)=G(NO4)-DE(NO4)*XII(NO4*1)
    TEMP(NO4)=PHI(N)+XII(NO4)
C ---COMPARE CHANGE IN HEAD WITH CLOSURE CRITERION--
    TCHK=ABS(SNGL(TEMP(NO4))=PHE(N))
    IF (TCHK.GT.BIGI) BIGI=TCHK
    370 CONTINUE
    380 CONTINUE
    IF (BIGI.GT.ERR) TEST=1.
    TEST3(KOUNT•1)=BIGI
    IF (TEST.EG.1.) GO TO 30
    RETURN ADI2720
```



```
C ADI2740
C ---FORMATSN-= ADI2750
C ADI2760
C
```



```
ADI2780
Clal}\mathrm{ ADI2790
390 FORMAT ('OEXCEEDED PERMITTED NUMBER OF ITERATIONS'/' ',39('*')) AOI2800
400 FORMAT ('-',38X,'SOLUTION BY THE ALTERNATING DIRECTION IMPLICIT PRADI28IO
    10CEDURE'/39X.56('_'))
AOI2820
```


Program listing—Continued

410 END
ADI2830 ADI2840
SUBROUTINE COEF（PHI，KEEP，PHE，STRT，SURI，T，TR，TC，S，WELL，TL，SL，PERM，BCOF 10
IOTTOM，SY，RATE，RIVER，M，TOP，GRND，DELX，DELY） COF 20C
CCMPUTE COEFFICIENTSCOF
COF50SPECIFICATIONS：COF
REAL BPHI，DBLE，RHO，B，D，F，H COF
REAL＊ $4 K E E P, M$ COF 90
INTEGER R，P，PU，DIML，DIMW，CHK，WATER，CONVRT，EVAP，CHCK，PNCH，NUM，HEAD．COF 100
ICCNTR，LEAK，RECH，SIP，ADI COF 110COF 120
OIMENSION PHI（1），KEEP（1），PHE（1），STRT（1），SURI（1），T（1），TR（1），COF 130
ITC（1），S（1），WELL（1），TL（1），SL（1），PERM（1），BOTTOM（1），SY（l），RATCOF 1402E（1），RIVER（1）．M（1），TOP（1），GRND（1），DELX（1）．DELY（1）COF 150COF 160
COMMON／SARRAY／VF4（11）．CHK（15） COF 170
COMMON／SPARAM／WATER，CCNVRT，EVAP，CHCK，PNCH，NUM，HEAD，CONTR，EROR，LECOFIAK，RECH，SIP，U，SS，TT，TMIN，ETDIST，QET，ERR，TMAX，CDLT，HMAX，YDIM，WIDTH，COF 190ZNUMS，LSOR，ADI，DELT，SUM，SUMP，SURS，STORE，TEST，ETQB，ETOD，FACTX，FACTY，COF 200ЗIERF，KOUNT，IFINAL，NUMT，KT，KP，NPER，KTH，ITMAX，LENGTH，NWEL，NW，DIML，DICOF 210$4 \mathrm{MW}, \mathrm{JNOI}, I N O I, R, P, P U, I, J, I D K I, I D K 2$COF
COF 230
DATA PIE／3．141593／ COF 235
RETURN COF 240
CCOF 260
－－COMPUTE COEFFICIENTS FOR TRANSIENT PART OF LEAKAGE TERM－－－ COF 270
＊出\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃ COF 280
ENTRY CLAY COF 290
 COF 300
TMIN＝1．E30$T T=0.0$COF 320
PAATE＝0． COF 330
DC $50 \quad I=1, D I M L$ $\begin{array}{ll}\text { COF } \\ \text { COF } & 350\end{array}$DC $50 \mathrm{~J}=1$, DIMW
$N=I+D I M L *(J-1)$ COF 360
COF 370
－－SKIP COMPUTATICNS IF T，RATE OR M $=0$ ．OR IF CONSTANT COF 380

HEAD BOUNDARY＝－－ COF 390| IF |
| ---: | :--- |150COF 410

COF 420
－－－If Value for tlin，will eoual value for previous node． COF 430
SKIP PART OF COMPUTATIONS＝－－ COF 440
IF（RATE（N）\＃M（N）．EQ．PRATE）GO TO 40 COF 450
DIMT＝RATE（N）＊SUMP／（M（N）＊M（N）＊SS＊3） COF 460
IF（OIMT．GT．TT）TT＝DIMT COF 470
IF（DIMT．LT．TMIN）TMIN＝DIMT COF 480
PPT＝PIE＊PIE＊OIMT COF 490cC
－－- RECOMPUTE PPT IF DIMT WITHIN RANGE FOR SHORT TIME COMPUTATION－－COF 510
IF（DIMT．LT．1．OE－03）PPT＝1．0／DIMT COF 520
$C C=(2.3-P P T) /(2 . * P P T)$ COF 530－－COMPUTE SUM OF EXPONENTIALS～ーロCOF 540
COF 550
- - COMPUTE SUM OF EXPONENTIALS~ー-
COF 560

Program listing-Continued

	$\begin{aligned} & \text { DO } 20 K=1,200 \\ & \text { POWER=K*K*PPT } \end{aligned}$	COF	$\begin{aligned} & 570 \\ & 580 \end{aligned}$
	IF (POWER.LE.150.) GO TO 10	COF	590
	POWER $=150$	COF	600
10	PEX $=$ EXP (-POWER)	COF	610
	SUMN二SUMN+PEX	COF	620
	IF (PEX.GT.0.00009) G0 TO 20	COF	630
	IF (K.GT.CC) GO TO 30	COF	640
20	CONTINUE	COF	650
c		COF	660
c	---COMPUTE DENOMINATER DEPENDING ON VALUE OF DIMT---	COF	670
30	DENOM=1.0	COF	680
	IF (DIMT.LT.1.OE=03) DENOM=SQRT(PIENDIMT)	COF	690
c		COF	700
C	---head values are not included in computation of Q factor since	COF	710
C	LEAKAGE IS CONSIDERED IMPLICITLY---	COF	720
40	Q1=RATE (N)/(M(N)*DENOM)	COF	730
		COF	740
	PRATEFRATE (N)*M(N)	COF	750
50	CONTINUE	COF	760
	TMINETMIN*3.0	COF	770
	TTETT*3.0	COF	780
	RETURN	COF	790
c	-•••••••••••••••	COF	800
c		COF	810
C	--COMPUTE TRANSMISSIVITY IN WT OR WT-ARTESIAN CONVERSION PROBLEM	COF	820
C	******************	COF	830
	ENTRY TRANS	COF	840
C		COF	850
	$0060 I=1, D I M L$	COF	860
	DO $60 \mathrm{~J}=1,0 \mathrm{MMW}$	COF	870
	$N=1 * 01 M L *(J-1)$	COF	880
	IF (PERM(N).EQ.O.) GO TO 60	COF	890
	HED=PHI (N)	COF	900
	IF (CONVRT.EQ.CHK (T)) HED=AMINI(SNGL (PHI (N)), TOP(N))	COF	910
	T(N) \triangle PERM (N)*(HED-BOTTOM (N) $)$	COF	920
	IF (T(N).GT.O.) GO TO 60	COF	930
	IF (WELL(N).LT.O.) GO TO 70	COF	940
C		cof	950
C	---THE FOLLOWING STATEMENTS APPLY WHEN NODES (EXCEPT WELL NODES)		960
	GO DRY-=-		970
	$\operatorname{PERM}(\mathrm{N})=0$.		980
	$T(N)=0.0$		990
	$T R(N-D I M L)=0$.		1000
	$T R(N)=0$.	COF	1010
	$T C(N-1)=0$.		1020
	$T C(N)=0$.	COF	1030
	$\operatorname{PHI}(N)=\operatorname{SURI}(N)$		1040
	WRITE (P.150) I.J		1050
60	CONTINUE	COF	1060
	IF (KT.EQ.O) RETURN	COF	1070
	GO TO 90	COF	1080
c		COF	1090
c	--STTART PROGRAM TERMINATION WHEN A WELL GOES DRY---	COF	1100
70	WRITE (P,120) İJ	COF	1110
	WRITE (P,130)	COF	1120
	IERA $=1$	COF	1130
	CALL ORDN	COF	1140
	DO $80 \mathrm{I}=2, \mathrm{INO}$	COF	1150
	DO $80 \mathrm{~J}=2, \mathrm{JNO}$	COF	1160
	$N=I+D I M L *(J-1)$	COF	1170

Program listing-Continued

```
    80 PHI(N)=KEEP(N)
    SUM=SUM-DELT 
    SUM=SUM-DELT COF1190
    KT=KT-1 
    IF (KT.EQ.O) STOP
    IF (IOK2.EQ.CHK(15)) CALL DISK
    IF (PNCH.EQ,CHK(1)) CALL PUNCH COF1240
    IF (MOO(KT,KTH),EQ.O) STOP
    WRITE (P.140) KT,SUM
    CALL DRDN
    IF (CHCK.EQ.CHK(5)) CALL CWRITE
    STOP 
C
C
C
C
    9000 110 I=1.INO1 COFI350
    DO 110 J=1,JNOI COF1360
    N=I+DIML*(J-1)
    NR=N+DIML. COF1380
    NB=N+1 COF1390
    IF (T(N).EG.O.) GOTO 110 COF1400
    IF (T(NR).EQ.O.) GO TO 100
    TR(N)=(2.*T(NR)*T(N))/(T(N)#DELX(J+1)+T(NR)#DELX(J))#FACTX COF1420
    100 IF (T(NB).EQ.O.) GO TO 110
    TC(N)=(2.*T(NB)*T(N))/(T(N)*DELY(I*I)+T(NB)*DELY(I))*FACTY COF1440
    110 CONTINUE
    110 CONTINUE
C
C
C
C
C
```



```
130 FORMAT ('1',50X,'ORAWDOWN WHEN WELL WENT DRY')
140 FORMAT ('1',32X,'DRAWDOWN FOR TIME STEP',I3.': SIMULATION TIME =',COF1550
    11PE15.7.' SECONOS!)
150 FORMAT ('-1,20('*'),' NODE 1,I4,',',I4.' GOES DRY ',20('#'))
    END
    COF1210
    CO
    FIOK2.EQ.CHK(15) CALLDISK COFl230
COF1240
    COF1270
    COF1260
    U(COF1290
---COMPUTE T COEFFICIENTS---
    **********************
    COF1310
    CNTMY COF1320
    ENTRY TCOF COF1330
    ##****###############****)
    COF1370
    COF1400
    100 IF (T(NB).EQ.O.) GOTO 110 COF1430
COF1450
    RETURN COF1460
    COF
    -=-FORMATS=-* COF1480
    COF1490
```



```
    COF1500
    510
    COF1520
    COF1530
    COF1540
    11PE15.7.' SECONOS:I COF1560
    COF1580.
        SURROUTINE CHECKI (PHI,KEEP,PHE,STRT,T,TR,TC,S,QRE,WELL,TL,PERM,BOTCHK 10
    ITOM,SY,AATE,RIVER,M,TOP,GRND,DELX,DELY) CHK 20
    *)
    COMPUTE A MASS BALANCE CHK 40
```



```
    CHK 60
    SPECIFICATIONS: CHK 70
    REAL QPHI,OBLE CHK 8O
    REAL 4KEEP,M CHK 9O
    INTEGER R,P,PU,DIML,DIMW,CHK,WATER,CONVRT,EVAP,CHCK,PNCH,NUM,HEAD,CHK 100
    ICONTR,LEAK,RECHOSIP,ADI CHK 11O
                            CHK 120
```

```
    DIMENSION PHI(IZ,JZ), KEEP(IZ,JZ), PME(IZ,JZ):STRT(IZ,JZ):T(IZ.JCHK 130
    1Z), TR(IZ,JZ), TC(IZ,JZ), S(IZ,JZ), QRE(IZ,JZ), WELL(IZ,JZ), TLIIZCHK 140
    2.JZ). PERM(IZ,JZ). BOTTOM(IP,JP). SY(IP,JPI, RATE(IR,JR). RTVER(IRCHK ISO
    3.JR). M(IR,JR), TOP(IC.JC), GRND(IL,JL), DELX(JZ), DELY(IZ) CHK 160
    COMMON/SARRAY/ VF4(11).CHK(15)
CHK 170
CHK }18
```



```
    IF (WELL(I.J)) 130,150.140 CHK 800
    130 PUMP=PUMP+WELL (I,J)*AREA
        GO TO }15
    140 CFLUX=CFLUX+WELL(I,J)AREA
    150 IF (EVAP.NE.CHK(6)) GO TO }19
C
C ---COMPUTE ET RATE-**
    IF (PHI(I,J).GE.GRND(I,J)-ETDIST) GO TO 160
    ETQ=0.0
    GO TO 180
    160 IF (PHI(I.J).LE.GRND(I.J)) 60 TO 170
        ETQ=QET
        GO TO }18
    170 ETQ=QET/ETDIST*(PHI(I,J)+ETOIST-GRND(I.J))
    180 ETFLUX=ETFLUX-ETG*AREA
C
    -~-COMPUTE VOLUME FROM STORAGE-*-
    190 STOREES(I.J)
    IF (WATER.EQ.CHK(2)) STORE=SY(I.J)
        IF (CONVRT.NE.CHK(7)) GO TO 230
        X=KEEP(IOJ)-PHI(I,J)
        IF (x) 200.210,210
    200 HEDI=PHI(I.J)
    HED2=KEEP(I.J)
        x=ABS (x)
        GO TO 220
    210 HEDI=KEEP(I,J)
    HED2=PHI(I,J)
    220 STORE=S(I.J)
    IF (HEDI-TOF([!J).LE.O.) STORE=SY(I,J)
```



```
    IF ((HEDI-TOP(I,J))*(HED2-TOP(I,J)).LT.O.0) STORE=(HEDI-TOP(I,J))/CHK1100
    1x*S(I,J)*(TOP(I,J)-HED2)/X*SY(I,J)
    CHK1110
    230 STOR=STOR+STORE*(KEEP(I,J)-PHI(I,J))#AREA CHK1120
C
c ---COMPUTE lEAKAGE RATE---
    IF (LEAK.NE.CHK(9)) GO TO 240
    IF (M(I.J).EG.O.) GO TO 240
    HEDI=STRT(I,J)
    IF (CONVRT.EQ.CHK(T)) HEDIEAMAXI(STRT(I,J),TOP(I,J))
    HED2=PHI(1,N)
    IF (CONYRT EQ CHK(7)) HED2&AMAXI(SNGL(PHI(IOJI) TOP(IOJ))
    IF (CONVRT.EG.CHK(7)) HED2=AMAXI(SNGL(PHI(I.J)),TOP(I.J))
    XX=RATE (I,J)*(RIVER(I,J)-HEDI)*AREA/M(I,J)
    YY=TL(I,J)*(HEDI-HED2)*AREA
    FLUX=FLUX*XX
        XNET = XX +YY
        FLUXS=FLUXS*XNET
        IF (XNET.LT.O.) FLXN=FLXN-XNET CHK1260
    240 CONTINUE CHK1270
C
C
```

CFLUXT=CFLUXT*CFLUX*DELT CHK 1410
TOTLI $=$ STORT•QRET + CFLUXT $+C H S T+F L X P T$ CHK1420
TOTL $2=$ CHDT + PUMPT $+E T F L X T+F L X N T$ CHK1430
SUMR $=$ QREFLX $+C F L U X+C H D 2 * C H D 1 * P U M P * E T F L U X * F L U X S * S T O R$ CHK1440
DIFF=TOTL2-TOTLI CHK 1450
PERCNT $=0.0$ CHK 1460
IF (TOTLZ.EQ.O.) GO TO 250 CHK 1470
PERCNT=DIFF/TOTL2*100. CHK1480
250.. CHK1500
c
CHK 1510
---PRINT RESULTS--. CHK 1520

ENTRY CWRITE
CHK 1540
 CHK 1550CHK 1560
WRITE (P, 260) STOR,QREFLX,STORT, CFLUX, QRET, PUMP,CFLUXT,ETFLUX,CHSTCHK 1570
1,FLXPT,CHDZ,TOTLI, CHDI,FLUX,FLUXS,ETFLXT,CHDT,SUMR,PUMPT,FLXNT,TOTCHK1580
2L2.DIFF,PERCNT CHK 1590
RETURN CHK1600
---FORMATS--- CHK1620
CHK 1630
CHK 1640
CHK 1650
CHK1660
260 FORMAT ('0',10X.'CUMULATIVE MASS BALANCE:',16X,1L**30.23X,PRATES FCHK16702RCES: $9.69 \mathrm{X}, \mathrm{STORAGE}=1, F 20.4 / 20 \mathrm{x}, 8(1-1), 68 \mathrm{x}, \mathrm{P}$ RECHARGE $=1, F 20.4 / 27 \mathrm{XCHK} 1690$3.'STORAGE $=1, F 20.2,35 x$, 'CONSTANT FLUX $=1, F 20.4 / 26 x$, , RECHARGE $=1, F 2 C H K 1700$40.2.41X.'PUMPING =1,F20.4/21X.1CONSTANT FLUX =1,F20.2.30X,'EVAPOTRCHK17105ANSPIRATION $=1, F 20.4 / 21 X \cdot$. CONSTANT HEAD $=1, F 20.2,34 \times \cdot$ CONSTANT HEACHKIT2060:1/27X,'LEAKAGE $=1, F 20.2,46 \mathrm{X}, \mathrm{IIN}=1, F 20.4 / 21 \mathrm{X}, \mathrm{ITOTAL}$ SOURCES $=1, F C H K 1730$720.2.45x, 'OUT =',F20.4/96X,'LEAKAGE:'/20X.'OISCHARGES:'.45X,'FROM CHK1740GPREVIOUS PUMPING PERIOD $=1, F 20.4 / 20 X, 11(1-1), 68 \mathrm{X}, \mathrm{T}$ TOTAL $=1, F 20.4 / 1 \mathrm{CHK} 1750$SUM OF RATES =1,F20.4/19XPQUANTITY PUMPED =',F20.2/27X.'LEAKAGE =1,CHK1770SF20.2/19X.'TOTAL DISCHARGE =',F20.2/117X, DISCHARGE-SOURCES = 9 F20CHK1780s.2/15x, PPER CENT DIFFERENCE $=1, F 20.2 / 1)$CHK1790
END CHK1800
SUBROUTINE PRNTAI(PHI,SURI,T,S.WELL,DELX,DELY) PRN
PRINT MAPS CF DRAWDOWN AND HYDRAULIC HEAD PRN
PRN
PRN
SPECIFICATIONS: PRN
REAL GPHI,Z,XLABEL,YLABEL.TITLE,XNI,MESUR PRN
REAL * $4 K$ PRN
INTEGER R,P,PU,DIML,DIMW, CHK,WATER,CONVRT,EVAP,CHCK,PNCH,NUM,HEAD,PRN 9080
ICONTR,LEAK,RECH,SIP,ADI PRN 100IMENSION PHI (IZ.JZ), SURI(IZ.JZ), S(IZ.JZ), WELL(IZ.JZ), DELX(JZ)PRN
1, DELY(IZ), Y(IZ.JZ) PRNPRN
COMMON /SARRAY/ VF4(11), CHK(15) PRNCOMMON /SPARAM/ WATER,CONVRT, EVAP,CHCK, PNCH,NUM,HEAD, CONTR,EROR,LEPRNIAK, RECH,SIP,U,SS,TT,TMIN,ETDIST, QET, ERR, TMAX, CDLT,HMAX,YDIM,WIDTH, PRN2NUMS, LSOR, ADI, DELT, SUM, SUMP, SUBS, STORE, TEST,ETOB, ETGD,FACTX,FACTY, PRN3IERA,KOUNT, IFINAL,NUMT,KT,KP,NPER,KTH,ITMAX,LENGTH,NWEL,NW, DIML, DIPRN1020
3040
50
60$4 \mathrm{MW} \cdot \mathrm{JNOL}$. INOİ,R,P,PU,I,J,IDK1,IOK2PRN 200

Program listing—Continued


```
```

 IF (I.EQ.I.OR.I.EQ.N4) GO TO 50 PRN 820
    ```
```

 IF (I.EQ.I.OR.I.EQ.N4) GO TO 50 PRN 820
 PRNT(1)=SYM(12)
 PRNT(1)=SYM(12)
 PRNT(N8) =SYM(12)
 PRNT(N8) =SYM(12)
 IF ((I-1)/N1*NL.NE.I=1) GO TO 70
 IF ((I-1)/N1*NL.NE.I=1) GO TO 70
 PRNT(1)=SYM(14)
 PRNT(1)=SYM(14)
 PRNT (NB):SYM(14)
 PRNT (NB):SYM(14)
 GO TO }7
 GO TO }7
 C
C
C ---LOCATE Y AXES=--
C ---LOCATE Y AXES=--
500060 J=1,N8
500060 J=1,N8
IF ((J-1)/N2*N2.EQ.J-1) PRNT (J)=SYM(14)
IF ((J-1)/N2*N2.EQ.J-1) PRNT (J)=SYM(14)
60 IF ((J-1)/N2*N2.NE.J-1) PRNT(J)=SYM(13)
60 IF ((J-1)/N2*N2.NE.J-1) PRNT(J)=SYM(13)
C
C
C ---COMPUTEE LOCATION OF NODES AND DEYERMINE APPROPRIATE SYMBOL-=- PRN 950
C ---COMPUTEE LOCATION OF NODES AND DEYERMINE APPROPRIATE SYMBOL-=- PRN 950
70 IF (DIST.LT.O..OR.OIST.LT.Z-XNI*XSF) GO TO 220 PRN 960
70 IF (DIST.LT.O..OR.OIST.LT.Z-XNI*XSF) GO TO 220 PRN 960
YLEN=DELY(2)/Z.
YLEN=DELY(2)/Z.
DO 200 L=2.INO1
DO 200 L=2.INO1
J=YLEN*N2/YSF+1.5
J=YLEN*N2/YSF+1.5
IF (T(L.JJ).EQ.O.) GOTO 140 PRN1000
IF (T(L.JJ).EQ.O.) GOTO 140 PRN1000
IF (S(L.JJ).LT.O.) GO TO 190
IF (S(L.JJ).LT.O.) GO TO 190
INDX3=0
INDX3=0
GO TO (80.90), NG
GO TO (80.90), NG
80 K=(SURI(L,JJ)-PHI(LOJJ)) \#FACTI
80 K=(SURI(L,JJ)-PHI(LOJJ)) \#FACTI
C -TO CYCLE SYMBOLS FOR DRAWDOWN. REMOVE C FROM COL. I OF NEXT CARD-PRNIOSO
C -TO CYCLE SYMBOLS FOR DRAWDOWN. REMOVE C FROM COL. I OF NEXT CARD-PRNIOSO
C K=AMOD(K,10.) PRNIOEO
C K=AMOD(K,10.) PRNIOEO
GO TO 100
GO TO 100
90 K=PHI(L,JN)\#FACT2
90 K=PHI(L,JN)\#FACT2
100 IF (K) 110.140.120
100 IF (K) 110.140.120
110 IF (J-2,GT.0) PRNT (J-2)=SYM(13)
110 IF (J-2,GT.0) PRNT (J-2)=SYM(13)
N==K
N==K
IF (N.LT.100) GO TO 130
IF (N.LT.100) GO TO 130
GO TO 170
GO TO 170
120 N=K
120 N=K
IF (N.LT.100) GO TO 130
IF (N.LT.100) GO TO 130
IF (N.GT.999) GO TO 170
IF (N.GT.999) GO TO 170
INDX3=N/100
INDX3=N/100
IF (J-2.GT,0) PRNT (J-2) =SYM(INDX3)
IF (J-2.GT,0) PRNT (J-2) =SYM(INDX3)
N=N-INDX3*100
N=N-INDX3*100
130INDXI=MOD(N,10)
130INDXI=MOD(N,10)
IF (INDXI.EQ.O) INDXI=10 PRN1210
IF (INDXI.EQ.O) INDXI=10 PRN1210
C -TO CYCLE SYMBOLS FOR DRAWDOWN. REMOVE C FROM COL. I OF NEXT CARD-PRNI2ZO
C -TO CYCLE SYMBOLS FOR DRAWDOWN. REMOVE C FROM COL. I OF NEXT CARD-PRNI2ZO
C IF (NG.EQ.1) GO TC 150
C IF (NG.EQ.1) GO TC 150
INDX2=N/10 PRN1240
INDX2=N/10 PRN1240
IF (INDX2.GT.0) GO TO 160 PRN1250
IF (INDX2.GT.0) GO TO 160 PRN1250
INDX2=10
INDX2=10
IF (INDX3.EQ.0) INDX2=15
IF (INDX3.EQ.0) INDX2=15
GO TO 160
GO TO 160
140 INDXI=15
140 INDXI=15
150 INDX2=15
150 INDX2=15
160 IF (J-1.GT.0) PRNT (J-1)=SYM(INDX2) PRN1310
160 IF (J-1.GT.0) PRNT (J-1)=SYM(INDX2) PRN1310
PRNT(J)=SYM(INDX1)
PRNT(J)=SYM(INDX1)
GO TO 200
GO TO 200
170 DO 180 II=1.3
170 DO 180 II=1.3
VI=J=3*II
VI=J=3*II
180 IF (JI.GT.O) PRNT(JI)=SYM(11) PRN1360
180 IF (JI.GT.O) PRNT(JI)=SYM(11) PRN1360
190 IF (S(L.JJ).LT.0.) PRNT(J)=SYM(16)
190 IF (S(L.JJ).LT.0.) PRNT(J)=SYM(16)
200 YLEN=YLEN*(DELY(L)*DELY(L+1))/Z.
200 YLEN=YLEN*(DELY(L)*DELY(L+1))/Z.
210 DIST=DIST-(DELX(JJ)*DELX(JJ-1))/2.
210 DIST=DIST-(DELX(JJ)*DELX(JJ-1))/2.
JJ=\J=1
JJ=\J=1
IF (JJ.EO.O) GO TO 220
IF (JJ.EO.O) GO TO 220
IF (DIST.GT.Z-XNI\&XSF) GO TO 210
IF (DIST.GT.Z-XNI\&XSF) GO TO 210
PRNT(1)=SYM(12)
PRNT(1)=SYM(12)
PRN 840
PRN 840
PRN 850
PRN 850
PRN 860
PRN 860
PRN 870
PRN 870
PRN 880
PRN 880
PRN 890
PRN 890
PRN 900
PRN 900
PRN 910
PRN 910
60 IF (J)
60 IF (J)
PRN 930
PRN 930
PRN 970
PRN 970
PRN 980
PRN 980
PPRN 990
PPRN 990
PRN1000
PRN1000
PRN1010
PRN1010
PRN1020
PRN1020
PRN1030
PRN1030
80 K=(SURI(LOJJ)-PHI(LOJJ))\#FACT1 PRN1040
80 K=(SURI(LOJJ)-PHI(LOJJ))\#FACT1 PRN1040
PRN1070
PRN1070
PRN1080
PRN1080
PRN1090
PRN1090
PRN1100
PRN1100
PRN1110

```
```

PRN1110

```
```



```
```

IF (N.LT.100) GO TO 130

```
```

IF (N.LT.100) GO TO 130
PRNII30
PRNII30
PRNN1140

```
PRNN1140
```

```
    PRN 920
```

 PRN 920
 PRN }94
 PRN }94
 PRN }95
PRN }95
PRN 960
PRN 960
PRN 990
PRN 990
PRN1150
PRN1150
PRN1160
PRN1160
PRN1170
PRN1170
PRN1180
PRN1180
PRN1190
PRN1190
PRN1200
PRN1200
PRN1230
PRN1230
PRN1260
PRN1260
X3.EQ.0) INDX2=15 PRN1270
X3.EQ.0) INDX2=15 PRN1270
PRNI280
PRNI280
PRN1290
PRN1290
IF (J-1.GT,0) PRNT(J-1)=SYM(INOX2)
IF (J-1.GT,0) PRNT(J-1)=SYM(INOX2)
PRN1300
PRN1300
PRN1310
PRN1310
PRN1320
PRN1320
PRN1330
PRN1330
PRN1340
PRN1340
180 IF (JI.GT.O) PRNT(JI)=SYM(11)
180 IF (JI.GT.O) PRNT(JI)=SYM(11)
PRN1350
PRN1350
PRN1360
PRN1360
PRN1370
PRN1370
PRN1380
PRN1380
PRN1390
PRN1390
PRN1400
PRN1400
PRN1400
PRN1400
PRN1420

```
PRN1420
```

Program listing-Continued

[^0]: ${ }^{1}$ Some of the methods for implicit treatment of evapotranspiration, storage, and leakage have been adapted from Prickett and Lonnquist (1971).

[^1]: ${ }^{1}$ Conversion also requires the arrays for the water table option.

