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Abstract

In the course of a mineral exploration sponsored by the United Nations Development
Programme in two selected zones of Cuatemala, o stream sediment reconnaissance was
carried out, and graphical methods of interpretation were attempted in the search for a

simplified statistical treatment of about 25,000 g¢cochemical results.

The data were

grouped by drainage and lithological units, and the frequency distributions of the abun-
dance of Cu, Pb, Zn and Mo were studied in the form of cumulative frequency curves.

The four elements appear to be approximately lognormally distributed.

Background,

coetlicients of deviation and threshold levels were graphically estimated.  Examples are

given of simple and complex populations.
tion diagrams.
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Introduction

Tre United Nations Mineral Ixploration Pro-
gramme in Guatemala relied heavily on geozhemical
prospecting.  During one year (1967) 60 percent
of the total Project area was covered systematically
by a geochemical reconnaissance carried out in the
drainage systems. Nine thousand stream sediment
saniples were collected over about 12,000 km?
(rounded figures). All the samples were analyzced
for copper and zine, and the total number thint d
out to approximately 4,000 before being run or
leadd and molybdenum.  Finally about 25,000 gco-
chemical results were available for compilation and
intcrpretation.  As they accumulated, it became ¢ p-
parent that high-contrast anomalies which are obi-

1 T'his article is published with the authorization of he

United Nations. The opinions expressed are not necessaiily
endorsed by this Organization.

Mineral associations were studied by correla-

ous largets for follow-up operations would not be
encountered but rather more subtle features not so
easy to pinpoint and interpret.

The interpretation phase of the survey was char-
acterized by two essential features: the great amount
of data to be analyzed and the lack of precision of
these data.

Sampling and analytical methods must sacrifice
precision for speed due to the nature of geochemical
prospecting, and the first consequence of this fact
is that an isolated result has little meaning in geo-
chemistry. It must be part of a population as
numerous and homogeneous as possible. Indeed in
all kinds of phenomena, individual inaccuracies shade
off progressively when observation is extended to
larger and larger populations.

The first phase of geochemical interpretation is to
condense large masses of numerical data and ex
tract from them the essential information. The mos:
objective and reliable way to do it (and sometime
the only one) is statistically. TLarge sets of num
bers, cumbersome and difficult to interpret, may D
reduced to a useful form by the use of descriptive
statistics. This is best done by the graphical repre-
sentation of the frequency distribution of a given
set of data; then the average value, an expression
of the degree of variation around the average, and
the limit above which the anomalies start are ini-
mediately and precisely determined as well as the
existence of one or several populations in the sur-
veved area.

This treatinent of the data also simplifies the com-
parison of the geochemical behavior of an element
in various geological surroundings or of several
clements in the same lithological unit.

I' am grateful to Mr. Henry H. Meyer, Project
Manager of the Guatemala and El Salvador Mineral
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Surveys, and to Mr. Stephen S, Steinhanser for
technical criticism and much elpful discussion.

Difficulty of Statistical Approach in Stream
Sediment Surveys

A reliable statistical interpretation requires that
a great quantity of data be treated and that these
data be homogencous.

In drainage reconnaissance surveys, the first con-
dition is ecasily filled but not the second.  As a
matter of fact, the importance of sampling technique
is sometimes overlooked in this type of prospecting.
But even if given the appropriate attention, too
many tvpes of rivers and too many lithological units
are generally sampled to result in a homogeneous
collection of samples.  The hest way to limit the
mconvenience of the heterogeneity of the samples
(particularly pH, organic content and grain size) is
to split the survey area into drainages and lithological
units, when possible, and 10 make the -tatistical
interpretation for each of them separately. How-
ever, even if this is done, the same degre: of pre-
cision cannot be achieved as in the case of a soil
survey where good homogeneity is possible.

Adjustment to a Lognormal Distribution
Definitions

When dealing with a large mass of genchemical
data, the first step is to find what sort of distribution
pattern best fits the various sets of obscrvations.
And, thus far, the lognormal distribution pattern
appears to be the one most applicable to the results
of most geochemical surveys (Ahrens, 1957).

In geochemical prospecting, we study the content
of trace elements in various natural materials, and
to say that the values are lognormally cistributed
means that the logarithms of these value. are dis-
tributed following a normal law (or Gauss’ law)
well known as the bell-shaped curve (2 lonjallon,
1963).

Many natural or economic phenomenit can be
expressed by a value varying between zero and
infinity, represented by a skewed distribution curve.
If, instead of the actual value of the variable itself,
we plot its logarithm in abscissae, the irequency
curve takes a symmetrical, hell-shaped form, typical
of the normal distribution. This happens when a
phenomenon is subject to a proportional cffect, that
is to say when independent initial causes of variations
of the studied value take effect in a multiplicative
way. It is the case, for instance, for the distribution
of trace elements in rocks, for the area of the dif-
ferent countrics of the world, for the income of
individuals in a country, for the grain size in samples
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of sedimentary rocks, and others (Coulomb, 1939;
Cousins, 1930).

In all these examples, the character studicd 1ol-
lows the lognormal law, which is probably more
common than the normal one.

It is interesting to note here that the lognormal
law fits very well in the case of low-grade deposits
like gold but for high-grade deposits, iron tor in-
stance, the experimental distributions are generally
negatively skewed hecause of the limitation towards
the high values. G. Matheron gives a thermo-
dynamic interpretation of the proportional ecflfect in
the case of ore deposits und relates it to the Mass
Action Law (Matheron, 1962). To the extent in
which geochemical anomalies are extrapolations of
ore deposits this theory should apply to geocliemical
prospecting.

Construction of the Cumudative Frequency Curve

A lognormal distribution curve is definced Hy two
parameters: one dependent on the mean vilue, and
the other dependent on the character of valuc-distri-
bution. This latter parameter is a measure of the
range of distribution of values, that is whether the
distribution covers a wide or narrow range of values.
The two parameters can be determined graphically
as will be explained on following pages. Ior prac-
tical purposes, we work on cumulative frequency
curves, and their construction shall be explained by
means of a concrete example.

The various steps of this construction are the
following :

(a) Selection of a precise set of data (“popula-
tion”) as large and homogeneous as possible.

(b) Grouping of the values into an adequate num-
ber of classes.

(c) Calculating the frequency of occurrence in
each class and plotting it against the class limits;
this gives a diagram called the “histogram.”

(d) Smoothing the histogram to get the fre-
quency curve.

(¢) Plotting the cumulated frequencies
nates gives the cumulative frequency curve, which
is the integral of the frequency curve.

(f) By replacing the arithmetic ordinate scale
with a probability scale the cumulative frequency
curve is represented by one or more straight lines.
Examples of lognormal frequency curves are shown
m Figure 1.

as ordi-

Some brief comments on the different steps follow :
(a) The larger the population to be analyzed, the
more precise and reliable the results.  If nccessary,
as few as 50 values may be treated statistically but
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Ilgure 1. Logno mal distribution curves
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the confidence limits must be calculated to sce if
the analysis is meaningful.

(b) A correct grouping of the values is mandatory
if some precision is to be achieved in the statistical
interpretation ; too few classes will result in shading
out important features of the curve; too mary in
losing significant details amidst a cloud of erratic
ones. The results are distributed in classes. the
modulus of which should be proportional to the pre-
cision of the analyses: the niore precise the analyses,
the smaller the modulus. The logarithmic interval
must be adapted to the variation amplitude of the
values and to the precision of the analytical merliods
( Miesh, 1967).

In statistics, working with 15 to 25 intervals (or
classes) is recommended. As a rule, the width of
a class, expressed logarithmically, must be kept cqual
to or smaller than half of standard deviation (Shaw,
1964).

FFor geochemical purposes, it is convenient to work
with 10 to 20 points on the cumulative frequency
line, that is to say with 9 to 19 intervals or clisses.
There are three variables to consider: the number

of points (n) necessary to coustruct a correct line;
the range of distribution of the values (R), ex-
pressed as the ratio of the highest to the Jowest
value of the population; and the width of the classes
expressed logarithmically (log. int.) which has to
be selected in function of the two first parameters.
These three variables are linked by the relation :
’ log R
log. int. = -
n

In most of the cases R varies from 6 to 300 (experi-
mental average values), then, with (n) varying
from 10 to 20, log R from 0.78 to 2.48, the extreme
values for the logarithmic interval will be:

log. int. = s 0.039
og. mt. = T R 3

log. int i 0.25
g. int. = = (0.25
- 10

The 0.10 was selected as the best suited logarithmic
mterval for the classes because it suits most distri-



A STMPLEIRNEL: STSTISTIC AL, TIRE:
bution, giving reasonable number of classes and @
good delimition of the curve. i case of very reduced
dispersion of the values around the mean, 1t may
be necessary to use 0.03, and i the dispersion is
When  the
logarithmic interval is sclected, it is casy to caleulate
The only

spectally l;l'rgc. 0.2 will be  chosen.

a table giving the class hmits i ppm.
precaution is to avoid starting with a round value
so that no analvtical results will fall on the hmit of
two classes.  The most useful and commonly em-
ployed in geochemical work is the 0.1 log. int. classs
table, a part of which is given helow :

0.07, 0.17, 0.27, 0.37, 0.47
1.17, 148, 1.80, 2.34, 2.95,

5 Uo7
3.72

class limit (log)
class limit (ppm)

[t can De extended in both directions as far as

necessary.

(c-d) After selecting the class table, the values
are grouped and the frequency calculated for each
class (in percentage); then the {requencies are
plotted against the class limits (the latter being
logarithmically calculated, ordinary arithmetic-arith-
metic paper must be used), giving a histogram
which is smoothed to a frequency curve. But histo-
grams are often misleading, heing strongly affected
by slight changes in class intervals, and frequency
curves are dithicult to draw and handle: for mstance,
it is necessary to determine the inflexion points of
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Practically, the histogram-irequency curve siep 1s
kipped and the cumulative frequency directly con-
structed.  Ilowever, note here an advantage of the
histogram: it clearly illustrates the effect of the
sensitivity of the analytical method and more pre-
cisely the bias brought to the low values hy the use
of colorimetric scales of stundards.
fact, experience shows that there is an inevitable
concentration of the readings, whoever the analyst,

As a matter of

on the values actually represented in the colorimetric
scale.  Ifor instance, in the case of copper, the lower
part of the standard colorimetric scale reads 0,247
. . . ppm.  Usually this results in an excess of 2,
+ and 7 values, and a conspicuous lack of 1. 3,
ppm values. This is of importance for a correct
construction of the frequency curve, and the raw
values must often be corrected by extrapolating the
veneral shape of the curve.

(e-f) By plotting the cumulated frequencies as
ordinates instead of the frequencies, one obtains the
integral curve of the preceding. It has the form of
a straight line when using the appropriate graphpaper
(probabilitv-log), and it is the one used in geo-
chemical presentation and interpretation of the re-
sults.  Then two questions have to be answered:
where to start accumulating the frequencies, and
where to plot the cumulated frequencies?

As for the first point, the normal procedure fol-
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the curve in order to evaluate the standard deviation.  lowed by many authors is to start cumulating the
P, 2, S
Figure 2 - Cumulative Frequency Distribution for Zn and Cu
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Figure 3. Confidence limits (PI, P) at 0.05 probability lev I
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irequencies from the lowest values toward the high-
est (Fig. 1) (IMubaux, 1961; Tennant and \White,
1959). Iowever, one has to consider a property
f the probability scale used as ordinates: the values
zero and 1009% are rejected at the infinite; it does
not matter for zero because zcro% never occurs,
hut in each case the last cumulated frequercy is
100%, and this value is impossible to plot lost
for the curve. Then considering the lack of pre-
cision in the low values and the importance of the
high ones for the determination of the threshold
level, T consider it much better to cunudate the fre-
quencies from the highest to the lowest values,; thus,
the 100% will correspond to the lowest class and be
climinated.

As for the sccond point, the curve heing «n in-
tegral one, the ordinates must be plotted at class
limits and not at class center; then, since one
cumulates the irequencies from the highest values
t0 the lowest, cumulated frequencies are to be 1lotted

CLAUNE LEPEILTIER

against the lower class limits.  Using the class center
will entail an error of excess on the central tendency
parameters (background and threshold) but not on
the dispersion parameter (cocfficient of deviation).
This error, or difference, varies with the type of
classes used and is easily calculated (6% for the
0.05 logarithmic class interval, 12% for the 0.1 log.
int. and 269% for the 0.2 log. int.). If the class
limit is used, curves constructed from different log.
int. classes can be directly compared without cor-
rection.

et us take a concrete example: the distribution
of Zn in the quaternary alluvial deposits of Blocl I
(FFig. 2). There are 989 results ranging from 10
to 230 ppm.
230

range: R = — = 23

population: NV = 989
10

The Dbest class interval is selected as explaimed
above:

log R 1.36
no

log. int. = = 0.097

A 0.1 log. interval will give 14 intervals, which is
acceptable.  Usually, the histogram-frequency curve
step is skipped and the cumulative frequency dia-
gram directly constructed.

In Figure 2, the points fit fairly well along a
struight line, suggesting a lognormal distribution of
zinc in the alluvial deposits. Actually, the points
never fit the line exactly, but this does not matter
provided they stay in a channel delimited by the
confidence limits usually taken at the 5% prob-
ability level. This confidence interval has been
drawn on Figure 2 by using a graph (Fig. 3), which
avoids fastidious calculation and gives a fairly good
precision for the cumulative frequency values be-
tween 5% and 95%. The widith of the confidence
channel is inversely proportional to the importance
of the population considered: the bigger the popula-
tion, the narrower the confidence interval. To
cheek that a distribution fits a lognormal pattern,
onc should use the Pearson’s test (Rodionov, 1965;
Vistelius, 1960), but this longer operation is gen-
erally not warranted in this type of interpretation
and, for practical purposes, the graphical control
described above is satisfactory.

Comparison with Histograms

I‘or comparison purposes the cumulative frequency
curve for Cu in the Motagua drainage (Fig. 2)
wis also constructed, then, in Iiigure 4, the cor-
responding histograms and frequency curves for Cu
and Zn.  Figures 2 and 4 present the same data in
two different ways. Before enumerating and com-
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Flgure 4, Histogram and frequency curve for Zn and Cu
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menting on the advantages of the former presenta-
tion over the latter, an interesting featurc of the
histogram should be mentioned: in the case of
colorimetric determinations miade in the lower range
of sensitivity of the analytical method, the histogram
shows clearly the bias introduced in the readings by
the human factor and by the accuracy and s-nsitivity
limits of the method. This effect is illust ated for
copper in Figure 4, where the classes including a
colorimetric standard are shaded and the value of

the standard itself is given as a larger figure (1, 2,
4 ... ppm) : the cumulation of the frequenc reduces

this effect, particularly if it is started from the high
but it may be necessary to bring some cor-
rections to the low value frequencies in order to
construct a precise distribution curve.

Comparing Figures 2 and 4, one sees im nediately
that it is easier to compare two straight lines than
two overlapping bell-shaped curves; many more

values,

populations can be presented on the samc diagram
by using cumulative frequency curves than by using
histograms. ~ Cumulative
casier construction and more precise than ordinary
it is simpler to draw a line that

frequency curves are of
frequency curves;
fits a set of points than to draw a bell-shaped curve
with inflexion points.

Information Given by Cumulative
Frequency Curves

The main purpose in constructing the cumulative
frequency curve for a given population is to check
if it fits a lognormal distribution, and if it does, to
estimate graphically its basic parameters: background
(), coefticients of deviation (s, s, s”) and threshold
level (t).

(b) gives an idea of the average concentration
level of the elements in a given surrounding.

(s) expresses the scatter of the values
(D) : it corresponds to the spread of the values and
their range, from the lowest to the highest.

(¢) is a complex notion which might be termed
“conditional”: statistically it depends on the prob-
ability level chosen; geologically, and for practical
purposes, it is supposed to be the upper limit of the
fluctuations of (0): it depends on (b) and (s).
The values equal to or higher than (t) are considered
anomalous.

Adjustment to the lognormal law is generally the
case when soil samples are considered: in the drain-
in Guatemala, we found
stream

around

age reconnaissance survey
that trace element contents
appear also to be lognormally distributed.

n sediments
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Background

\ straight line denotes a single population og-
wrmally distributed.  In this simple case, the back-
sround value (0) is given by the intersection of
he dine with the 50% ordinate.  In the examples
dven in Iigure 2, we have:

ackground value for copper
ackground value for zince

b (Cu) =92 ppm
b (Zn) = 48 ppm

Of course, these values must he rounded off ; it
will be illusory to imply a precision far out of rcach
of the analytical methods.  In the illustrated exan ple,
10 and 50 ppm are taken as reasonably good ap-
proximations of the background levels.

In the case of a perfect frequency distribu ion
curve, the background thus calculated correspcnds
to the mode (most frequent) and median (509 of
the values above, 509 below it) values, and is the
geometric mean of the results.  This geometric n can
1s @ more significant value that the arithmetic meoan.
[t 1s also a more stable statistic, less subject to
change with the addition of new data and less affected
by high values.

Deviation

Before explaining how to determine graphically
the deviation coethicient, an essential property of the
normal distribution (i.e., fitting the “bell-shajcd”
curve) must be recalled here:

(0) being the median value and (s) the stancard
deviation then:

68.26% of the population falls between b — s
and b + s

95.44% of the population falls between b -~ 2s
and b + 2s

99.74% of the population falls between b - 3s
and b + 3s

This holds truc in the case of the lognormal dis-
tribution since the logarithms of the values are
normally distributed. Then, rounding off the above-
mentioned percentages and taking (0) as the bick-
ground, we can siay that 683% of the population alls
between b —s and b+ s or that 329% 1is outside
these limits.  The distribution curve being symetiical
around an axis of abscissa (0) (Iig. 4), 169 of
the values will fall above b + s and 169% below b - s.
In Tigure 2, the values b+ s and b —s will be
obtained by projecting the interscction of the lis-
tribution line with the ordinates 16 and 4% on
the abscissa axis.  Working with logarithms, one
has to consider the ratios and not the absolute va ues
thus established. Taking the same example of Cu
(1ig. 2), one determines the points P (at the 10%
ordinate) and A. OA is the geometrical expres.ion

CLAUE LEPELTTER

of the deviation: it is inverscly proportional to e
slope of the line. \We call it the geometric deviation
(s") o1t has no dimension: it s « factor obtained
by dividing the value read in o hy the value read
IROL

Then multiplying or dividing the background value
by the geometric deviation will give the upper and
lower Iimits of a range including 68% of the popula-
tion (from b —s to b+ s, or A'A on the figure).
Multiplying or dividing by the square of the geo-
metric deviation gives a range including about 93¢
of the values (0 — 2sto b + 2s).

Because all the reasoning is made on logarithins,
it 1s also necessary to express the deviation by a
logarithm: the coefficient of deviation (s) is the
logarithm (base 10) of the geometric deviation (s').

s" = 2.28
s = log s’ = 0.36

[t will be scen later that it might be interesting
to consider a third deviation index: the relative
deviation (s") sometimes called coefficient of vari-

ation. It is expressed as a percentage:
o ‘ s
s =100 —
b
0.36

.\‘” = 100 TZ = 3()(/6

Threshold

After the background and the coefficient of devi-
ation, the third important parameter is the threshold
level (¢), which is a function of the two former. It
has been seen that in the case of symmetrical dis-

tribution (either normal or lognormal) 93% of the
individual values fall between b + 2s and b — 2s,

that is to say that only 2.5% of the population
exceeds the upper limit & 4+ 25, This upper limit
is conventionally taken as the threshold level (1)
above which the values are considered as anomalies:

log t = (log b) + 2s
or to avoid using logarithms :
=0 X 5%
t=9.2X52 =478 ppm
Practically, (¢) as well as (). is read directly
on the graph as the abscissa of the intersection of
the distribution line with the 2.5% ordinate. 1In

this example one reads 47 ppm, and the slight dif-
ference is due to the rounding off of the exact



o SIMPLIELED STATISTIC

Fi

1L TREATMENT OF GEOCHEMICAL DATA

gure 5. Cumulitive frequency diatribution of Cu, 2Zn and Mo - Complex populatlons
Pt e = 290 = LA

g
(o]

[ IEE

L |

] o el N

N

_______ B (T A

B O -

‘ H

(I S

, I |

— S R A

| } . i
| ‘

. —

3 R

| B D S

0.1

0.01

0.1 0.2 0.5

ordinate 2.28% to 2.5%. This shows the importance
of the deviation in the estimation of the tlreshold;
two populations may have the same background but,
‘nevertheless, different thresholds if their coefficients
of deviation are different. In [Figure 2, the threshold
is five times the background for Cu and only 2.7
times for Zn.

In all the foregoing, I have considered the sim-
plest case: a single lognormil population, the dia-
grammatic expression of which is a straicht line.
However, when constructing cumulative frequency
curves, a broken line is frequently obtained sug-
gesting that the set of data considered consists of a
complex population or of different ones.  Whenever
possible in practice, the interpretation is made on
sets of data selected so as not to mclude more than
two different distributions; for instance, a litho-
logical unit may include two types of mineralization
showing up in soil or sediment samples; one repre-
sentative of the normal or background content of
the material sampled, and the other, a superimposed
mineralization related to ore.

Lvamples
The three main cases of non-homogencous dis-
tribution that are the most likely to occur are, in
decreasing frequency order:
a. an excess of high values in the considered
population ;

10

b. a mixture of two populations in a given set of
data ; and

c. an excess of low values in the considered popu-
lation.

These three cases are represented graphically in
[Figures 5. They correspond to real distributions
encounetred in the Guatemalan drainage survey and
appear as solid lines with slope breaks on the dia-
eram. Some indications are given below showing
how to interpret such lines.

Copper Distribution (in a lithological unit). The
cumulative frequency line (Fig. 5) shows a break
to a flatter slope at the 30% level.  This is the
case when there is an excess of high values i the
population ; the histogram will give a frequency curve
skewed to the right, in the direction of the high
values (positive skewness). If the population was
lognormally distributed, the main branch O.r should
extend as a straight line in Oz whereas, in this case,

2 1s lifted to Oy which means that instead of having
2.5% of the values 30 ppm or greater, there are 17
of them. The abscissa of the breaking point, O,
(in this case 18 ppm) indicates the limit above
whicli there is a departure from the norm (i.e., from
the lognormal distribution), an excess of high values.
In this case, background and coefficients of deviation
are calculated with the main branch Owa. The
abscissa of the breaking point may be conveniently
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tal enas threshold value 1f the Dreak occurs above
the normal threshold level of 2.59% . i, however,
the break occurs below 2.5% level (at point p for
mstance) the threshold should be taken as usual
(abscissa of point ). Positively broken distr bu-
tion lines are the more interesting hecause they in-
dicate an excess over the background mineralization.

olvbdenum Distribution (in a lithological unit).
The cumulative distribution line shows two brecks:
mr a positive, then a negative one.  Such a graph

the expression of a dual distribution, sugges ing
Llu existence of two distinet populations in the set
of data counsidered. It gives a double-peaked histo-
eran. We shall consider here only the most ire-
quent case of a main “background” population mixed
witl a smaller one of higher average value, the wo
of them being lognormally distributed. On the lia-
eram (Fig. 5), branch A corresponds to the nain
or normal population, branch B to the anomalous
population and the central branch 1 4+ B to a nix-
ture of the two. By splitting the data at a vilue
talen around the middle of 4 + 72 (at 4 ppm for
mstance ), it is possible to separate the total pop ila-
tion into two clementary ones appearing as e nd
O on the diagram. The general background wil' be
tal.en with branch 4 and the threshold as the abscissa
ot the middle of branch 4 + B, though the threslold
of population ¢ may also be considered, but we Lave
not enough examples of such complex distributions
to make definite recommendations, and we lacked
computing facilitics to calculate theoretical distr hu-
tions. The coefficients of deviation must be cal-
culated separately for distributions a and b.

Zinc  Distribution (in a drainage unit). The
nezatively broken line on Figure 5 is the expres:ion
of an excess of low values in an essentially lognor nal
distribution; in this case, the histogram is skeved
to the left, toward these low values (negative sk w-
ne-s).  Provided their proportion is not too high
(20% or less or instance), they do not interiere
1 the interpretation, which is done on the niain
branch of the distribution line in the usual wvay.
Tlis excess of low values may be due to the in-lu-
sion in the population of a low-background lithologi-
cal unit or, more often, to poor sampling (for in-
stance, collecting an important set of sediment sim-
ples that are too coarse).

\When the results do not fit a lognormal distribhu-
ticn, an explanation may generally be found aming
three factors: (1) lack of homogeneity in
swupling, (2) complex geology (imprecision in the
lithological boundaries), and (3) analytical errors.

[t should also be kept in mind that some elemcnts
in some surroundings may not be lognormally
trihuted.

these

lis-
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Advantages of Cumulative Frequency Curves

Plotting the distribution of an clement in a selected
unit as cumulative frequency curve on probability
graph paper is the easiest and most precise way to
present a great amount of data (for instance, pre-
senting Figure 5 as histograms and frequency curves
will result in an overloaded and illegible diagram ).
All the characteristic parameters of the distribution
can be estimated without cumbersome calculations.
Comparison between various populations are easy
and complex distributions are clearly identified. IFur-
thermore, the adjustment to a lognormal distribution
can he checked graphically.

Comparing the geochemical features of the various
units of a survey area is important in assessing their
mincral potential.  This is conveniently done Dby
plotting the corresponding distributions on the same
diagram—ifor instance Cu distribution in three or
four different drainages in the case of a stream
sediment reconnaissance. Distribution heterogenc:-
ties will be spotted and the corresponding units
selected for further investigations. On a broader
scale, the geochemical behavior of trace elements in
a given geological environment from different coun-
tries or metallogenic provinces can be readily coni-
pared. This is an approach to a better understanding
of the distribution laws of trace clements in naturally
occurring materials.

The Coefficients of Deviation

A lognormal distribution is completely determined
by two parameters: the geometric mean (0) and
the coefficient of deviation (s). It has been seen
that the absolute deviation can be expressed as a
geonetric factor s” or, more commonly, as a logarith-
mic coefficient 5.  The term “deviation” is preferred

“dispersion” which might he more expressive,
hecause there 1s no genetic implication in the concept
of statistical dispersion whereas there is one in the
notion of geochemical dispersion; however, many
people use the term “dispersion” in statistical inter-
pretation of geochemical data.

The coetheient of deviation is a dispersion index
specitic for the distribution of a given element in a
given environment and expresses the degree of
homogeneity of this distribution.  \When rocks are
considered, a similarity in the coefficient of deviation,
together with similar average values, may indicate
similar geochemical processes in their formation.

It is possible that a given value of s corresponds
to cach type of mineralization in a lithological unit.
Confirming this assumption would require very ex-
tensive geological-statistical studies encompassing all
metallogenic cases.

There is also a relationship between the bacl\-
ground (0) and the coefficient of deviations (s)
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which is the expression of the ¢cochemical lav which
states that the dispersion of an clement is 1 versely
proportional to its abundance.  This is expressed
very clearly Dy the relative dispersion §” (or rela-
tive deviation), a percentage related to b and s as
follows :

o s
s =100 h

The higher the background, the lower the relative
deviation.  This 1s best shown on a log/log correla-
tion diagram by plotting s” as abscissa and b as
ordinate. Iigure 6, for instance, shows the \ariation
of s” in function of b in the different lithological units
of Blocks I and II, for Cu, Zn, Pb and M. The
diagram has Dbeen constructed by taking, for each
element, the extreme values for 0 and §”, tht s deter-
mining parallelograms including all the in lividual
values. One sees immediately that there i1 an in-
verse linear relationship between 0 and s” (which
is evident from the definition of s”) and hat the
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werage absolute deviation - (graphically cstimated
n Fig. 6) also decreases wlien the abundance of the
clement increases.

The weighted mean values of b, s and §” for each
clement have heen calculated separately for Blocks
[and IT:

Block 1 b § s" Block 11 b s s
Zn 55 0.23  0.42 7n 70. 0.17 0.24
Cu 8. 0.34 4.2 Cu 8. 0.30 3.8
Ph 0.8 0.32 4.7 Pb 5.8 0.30 5.2
Mo 0.38 0.37 97.5 Mo 0.35 040 125.

The fact that the absolute deviation for Pb is equal
to or slightly lower than that for copper is due to
two factors: (1) the sensitivity limit of the analytical
method for lead, which entailed a number of assump-
tions and extrapolations in the interpretation—de-
termination of b and s, and (2) the existence of
some Pb mineralized zones in the survey arca where
/rwas high and s low.

Flgure 6. Co: relation diagrem b/s" for blocks | and Il
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Figure 7. Correlation diagram Cu/Zn
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In Tigure ¢, it is also interesting to note the
variations of the dispersion of the same elen ent in
different lithological units which is particularly
noticeable for copper; the widith of each parallelo-
oram indicates the range of variation of s for each
clement.

The cocfficient of deviation 1s @ very important
character the distribution of an element in a
given surrounding ; it is probably related to the type
of geochemical dispersion, mechanical or chemical,
and conscquently might give an indication of the
type of anomaly encountered: syngenetic or epi-
genetic. It appears that @ higher cocfficient of devi-
ation indicates a preponderautly mechanical disper-
sion, but this has not been proved. Much remains
to be done in this field.

()f

Correlation Diagrams
[n the case of a polymetallic mineralization, with
two or more clements lognormally distributed, there
is generally a positive correlation between thein; for
instance between lead and zine, a sample high in Pb

is commonly also high in Zn. This geologic concept
of a relationship between two types of mineralization
(only qualitative and rather vague) may be substi-
tuted by a precise factor, the coefficient of correla-
tion p, which gives a rigorous measure of their de-
gree of dependency. In the case of geochemical
prospecting, p measures the degree of dependency of
two lognormal variables namely the tenors of two
clements in a sample population ( Matheron, 1962).

The coefficient p always falls hetween —1 and +1.
p =0 means a complete independence between the
two elements, p = #1 indicates a functional relation-
ship, direct or inverse, between them (it is a linear
relationship between the logarithms of the tenors).

Simplified Calculation of p.—"There is a graphical
way to estimate p, slightly less precise bhut much
faster than the complete statistical calculation: con-
structing a correlation cloud in full log. coordinates
(Fig. 7, 8). Ifach sample of the population under
study is plotted following its two coordinates: its
tenor in element A and its tenor in element 5 and
the total population appears as a cloud of points.
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Practically, this presentation o the data is
convenient because it gives a geometric imaze of
the distribution laws.  The axes passing by the
gravity center (b4, by), that is to say by the point
whose coordinates are the background values for the
two considered clements, are then drawn.  In Ifigure
7. the axes will pass through the point (bey = 5.3
ppmy, bz =75 ppm).  The points falling in each
quadrant are summed up and counted as follows:

very

Ny = number of points in first and third quadrants
N, = number of points in second and fourth (uad-
rants.

hen p is given by the formula:

| Ny — N
p = sin |: SN 4 .\'-_'ZI

Practically, p is never equal to =1 (which would
he the case if all the points were on a straight line)
and the points form an elliptical cloud.
may happen:

Two cases
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(1) either pis equal or near to zero: the cllipical
cloud has its axes parallel to the coordinate axes
and the two variables are independent,

(2) or p is clearly different from zero and the
cloud is an ellipse whose axes are inclined relative
to the coordinates.  The slope of the main axis has
the same sign as p (if p > 0 the two elements vary
in the same direction; if p <0 the two elements
vary iversely ).

The correlation cloud is in fact a two dimensional
histogram; it is the hest and simplest way to cstab-
lish whether a population is homogeneous or hetero-
ccneous: in the first case, the points tend to group
in a single elliptical cloud; in the second, they split
into 2 or several attraction centers and form several
elliptical clouds more or less overlapping.  G.
Matheron points out that the relation expressed by
p is an expression of the Mass Action Law if p = =1
(or of the order of =0.95) (Matheron, 1962) ; then
it is likely that a geologically based chemical cqui-
librium exists hetween the two elements considered.

In geochemical prospecting, correlation coefficients

Figure 8. Correlation diagram Pb/Zn
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v be used to assess mineral aooctations of le-

nts in natural samples. The correlation diag un
slows whether two elements are spatially associated
aud if one may be used as a pathfinder for the other.

Let us consider two examples: the relationship of
Cu/Zn in the drainage of the Suchiate River (I7g.

and the relationship of Pb/Zn in the Rio Grinde
drainage (g, 8).

The first example, in Figure 7, is intended only to
llustrate the lack of relationship hetween two tvpes
o mineralization. The cloud of points has no definite
<Lape, but it can be divided into three zones: one
vound the intersection point of the axes, including
tle majority of the points which are spread 1iore
o1 less equally among the four quadrants; an elliptical
one, marked Cu, in the range high-Cu/background-
/1 values; and a third one, including only a few
I eh-Zn/background-Cu points. This shows that, in
the Suchiate drainage, there is no relationship what-
soever between the Cu and Zn mineralization, that
the Cu anomaly is more important than that for Zn
and that the two anomalies are well separated
spatially.  All this is expressed by the coefficie 1t of
correlation :

p=—0.11

Its low absolute value indicates a nearly coniplete
independence of the two mineralizations, with a
tendency to inverse relationship (negative velue).

On the contrary, FFigure 8 shows an example of
direct relationship between two types of miner liza-
tion. In the Rio Grande drainage, Pb and Z) are
associated: the correlation cloud is an elonuated
cllipse whose nuain axis has a 45° slope and the
correlation coeflicient p = +0.87. In this dranage,
‘cad and zinc anomalies will have the same puttern
md will be spatially related. In similar geological
conditions, one element may be used as a pathinder
for the other.

Conclusion

In the Guatemalan geochemical reconnaissance, the
statistical analysis of the data, although elementary,

CLAUPE LEPELTIER

wits useful in outlining subdued anomalous patter s
o complex seochemical surrounding, but much
more information can certainly be extracted from the
analytical results by a more thorough, computer-
oricited, treatment,

The graphical methods described above have the
great advantage of being quick, cheap and easy to
use i the field without any special mathematical
knowledge. 1t is a convenient and synthetic way
to present a great amount of geochemical data, and
[ think it might be useful to any geologist involved
in geochemical prospecting.

UNITED NATIONS MINERAL SURVEY,
GuATEMALA CiTy, GUATEMALA,
January 20; March 28, 1909
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