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Summary

1. Revegetation trends in abandoned peat workings indicate that peat cuttings are

generally too dry for spontaneous re-establishment of raised bog vegetation. The latter

was restricted to small flooded peat pits which had recolonised 'hydroserally' to

support floating rafts of bog vegetation.

2. The water storage capacity of cut-over bog surfaces is low compared with

undisturbed bog and blocking drains in a peat field at Thorne Moors, S. Yorks, was

insufficient to prevent water-table instability. Experiments suggest this may severely

inhibit Sphagnum growth. Lagoons may increase water storage on a bog surface and

facilitate development of raised bog vegetation as floating rafts. This 'hydroseral'

approach may be necessary to restore raised bog vegetation to some areas.

3. Hydrochemical conditions of cut-over sites may differ significantly from

undisturbed bogs with implications for Sphagnum growth. Water samples from a peat

field at Thorne Moors were comparatively acidic and contained comparatively high

concentrations of most major ions (particularly NH4 and SO4), except phosphorus.

Moderate nutrient enrichment is unlikely to adversely affect Sphagnum and additions

of phosphorus to flooded peat pits significantly increased its growth. In solution

culture, low pH (3.0-3.5) was sub-optimal for Sphagnum growth, but the use of

CaCO3 to reduce acidity in the field had a toxic effect.

4. Sphagnum recolonisation may be limited by availability of propagules in cut-over

areas. Experiments indicate that deliberate re-introduction encourages Sphagnum raft

development, which is pioneered by aquatic species that regenerate more prolifically

from fragments than intact gametophytes. Sphagnum rafts are encouraged in shallow

water (< 5 0cm) and pools of small area. Numerous management options exist

physically and chemically assisting raft development.
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Chapter 1

Introduction

1. 1 Raised bogs: their origins and development

Raised bogs are peatland ecosystems which develop primarily (but not exclusively) in

lowland areas such as basins, the head of estuaries and along river flood plains. In

such locations drainage may be impeded by a high groundwater table or by low-

permeability substrata, such as certain types of bedrock or layers of estuarine, glacial

or lacustrine clays. Waterlogging provides anaerobic conditions which retards

decomposition of dead plant material and facilitates the accumulation of peat.

Continued accrual of peat elevates the bog surface above regional groundwater levels

forming a shallow dome from which the term 'raised bog' is derived. As the height of

the peat dome increases, drainage continues to be impeded by low permeability of the

accumulating peat. The bog surface becomes separated from the influence of

groundwater water leading to a surface irrigated almost exclusively by precipitation, a

condition referred to as 'ombrotrophic'.

The 'classic' developmental sequence for a raised bog is given by Weber (1908). In

this scheme, initiation of ombrotrophic peat occurs from within a minerotrophic fen

which has developed over a pool as part of a terrestrialisation process. A distinct

cupola of ombrotrophic peat eventually forms occupying a discrete lowland site. In

fact, in Britain this type of raised bog is relatively uncommon. Many raised bogs are

thought not to have developed from hydroseral infilling of water bodies but from

paludification of land (Hesselmân, 1910). This includes the once extensive raised bogs
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of the Humberhead Levels (Smart, Wheeler & Willis, 1986). Thus starting points for

development of raised bog include such diverse habitats as reedswamp, woodland,

herbaceous fen and saltmarsh.

Most raised bogs have developed from a preceding phase of fen vegetation.

Examination of the peat stratigraphy often reveals the existence of layers of fen peat at

the base of the profile. Studies investigating the developmental sequence of raised

bogs in Britain only exist for a small number of sites (Walker, 1966; Dickinson, 1973;

Talus, 1973; Smart et a!, 1986). However, the occurrence of a preceding fen stage

has also been identified for bogs of NW Europe (Casparie, 1972).

1. 2 Size and shape of raised bogs

Raised bogs show considerable variation in size and shape. Confined to a small

topographic basin, a dome of ombrotrophic peat may reach less than 500m across.

Alternatively raised bogs may cover extensive areas. The largest example in NW

Europe had an estimated area of 1000 km2 (Barkman, 1992).

In Germany and the Netherlands, well developed raised bogs occur in areas with a high

effective humidity and a relatively high intensity of rainfall (700 to 1500 mm a)

(Streefkerk & Casparie, 1989). This corresponds with the range suggested by Rodwell

(1991) for British bogs (800 to 1200 mm ad). In North German and Irish bogs

Streefkerk & Casparie (1989) found rates of annual evaporative loss in the order of

450 to 550 mm a and suggested a critical precipitation limit of 600 to 700 mm a

below which permanent moisture shortage will occur. Rates of evaporative loss will

clearly vary between regions as will other potentially important variables such as

frequency of wet days; therefore these limits can not be applied universally.
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An important contribution to our understanding of raised bog hydrology and

development comes from the Groundwater Mound hypothesis elaborated by Ingram

(1982). In this model it is suggested that water accumulates due to impeded drainage

of precipitation inputs to form a hemi-elliptical mound supported by a growing mass of

peat (which has developed due to its presence). The surface of this mound determines

the shape and dimensions of the bog. It is dependent on (i) the size and shape of the

basal area (ii) precipitation to evaporation ratio (iii) hydraulic conductivity of the peat.

Whilst this model has been shown to generate quite close correspondence between

predicted and observed profiles of some raised bogs in Scotland, it does not account

adequately for the dimensions of all raised mires. Clymo (1991) points out that the

mean height of bogs in Niedersachsen are some 90m below their calculated

hydrological limit. He suggests these sites may have had insufficient time to grow to

their hydrological limit or alternatively further growth is limited by ongoing peat decay.

The 'classic' raised bog morphology as suggested by Weber (1908) is a hemi-elliptical

dome of peat. However, in Britain this shape is relatively uncommon and generally

restricted to small sites. In a review of Scottish bogs, Ratcliffe (1964), pointed out

that many were not strongly domed but formed extensive plateaus with steep edges, a

condition to which many UK sites conform. Streefkerk & Casparie (1989) classified

British bogs along with counterparts in the Netherlands, NW Germany and Ireland as

'plateau raised bogs' due to this morphological characteristic. Clymo (1991) suggests

that a small basal area enables peat growth to occur to approximate the hydrological

half ellipse but where bogs develop over a large area the margins may approach a half

ellipse but the centre does not due to 'decay limit'.

In some cases extensive bogs are formed by the fusion of several raised bogs which

have expanded beyond their original basins. The extensive bogs of the Netherlands are

thought to have developed in this way (Streefkerk & Casparie, 1989) as well as some

British sites (Walker, 1966; Taylor, 1983). Raised bogs may develop to encompass
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significant irregularities in the ground surface, a phenomenon thought to be widespread

in the UK, for example at Glasson Moss (Walker, 1966), and possibly at Wedholme

Flowe (Bragg, 1992). In some cases the topography of the peat dome may conform to

some degree to the shape of the underlying ground, for example at Flanders West

Moss (Scottish Peat Surveys, 1965) and Coom Rigg Moss (Taylor, 1983).

1. 3 Location of raised bogs

The European distribution of raised bogs is summarised by Moore & Bellamy (1974).

Once more widespread than they are today, raised bogs are still frequent in parts of

Northern Europe especially in lowland temperate and boreal regions. In Britain, raised

bogs are a particular feature of cooler, wetter regions in the north and west, but also

occur in some southern and eastern localities - for example Somerset and S.

Yorkshire. Although a particular feature of lowland areas they may also occur in

upland regions where conditions are suitable e.g. Tarn Moss, Maiham (west

Yorkshire) (Pigott & Pigott, 1963).

1. 4 Age of raised bogs

The date of origin for most raised bogs is not known. Streefkerk & Casparie (1989)

point out that conditions in the Netherlands have been suitable for raised bog

development for 7000 yrs. In the UK, the age of some bog peat dates back to the

Atlantic period. Others, however, are much younger in origin dated at post 3000 yrs

BC. For example, most of Thorne Moors (South Yorkshire) appears to be less than

4000 yrs old (Buckland, 1979).
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1. 5 Natural vegetation of raised bogs

In reality it is quite difficult to specify the 'natural' vegetation of raised bogs in Britain.

This is partly due to a lack of any comprehensive surveys. Furthermore, very few sites

have remained totally unmodified by the original or combined effects of drainage,

burning, grazing or peat cutting. There are rather few historical records in existence

that can be used to reconstruct the original character of raised bog sites and few

studies have aimed to collate such information. Furthermore, few attempts have been

made to reconstruct vegetation history from stratigraphical studies.

It is generally accepted that whilst shrubs (e.g ericoid species and Bog Myrtle - Myrica

gale) are typical constituents of British raised bogs, trees such as birches and pines are

not. Stratigraphical evidence for British sites suggest that trees were never a major

component of raised bog vegetation (Godwin & Mitchell, 1938; Moore, 1977;

Walker, 1966). This is in contrast to other continental mires and it is not clear whether

British raised mires are naturally treeless or if their character has been influenced by

some form of low intensity past management. Furthermore, the sloping edges of most

raised bogs appear drier than the rest of the ombrotrophic surface, a zone referred to

as the 'rand'. Typically it supports less Sphagnum and a greater abundance of

ericaceous shrubs. It is not always clear if this is a natural state or whether it is a

symptom of damage to the periphery of the bog, for example, by domestic peat cutting

or reclamation.

The 'natural' vegetation of raised bogs has not remained constant through time.

Stratigraphical evidence suggests that peat composition does not remain constant

vertically or horizontally but reflects temporal and spatial changes in vegetation type.

One of the most conspicuous stratigraphical discontinuities is the Grenzhorizont of

Weber (1908), found widely throughout European bogs but less clearly defined in

British bogs (Godwin, 1946). It represents an abrupt change between consolidated,
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well humified 'black peat' (in which Eriophorum vaginalum and remains of ericoid

species are particularly conspicuous) to a less dense, less humified 'white peat'

(comprised principally of Sphagnum remains). The change from deposition of tblack

peat' to 'white peat' is thought to reflect changes in surface conditions i.e. increased

wetness, possibly due to changes in climate. Several workers have identified recurrent

bands of highly humified peat within 'white peat' suggesting recurrent 'dry' periods

during bog development (Granlund, 1932; Godwin & Mitchell, 1938; Nilsson, 1935).

These two peat types are sometimes separated by a layer containing abundant

Sphagnum cuspidaizim and Scheuchzeria palustris indicative of very wet conditions

(Godwin, 1946).

The present day composition of raised bog vegetation is unlikely to be completely

stable. Instead it is probably undergoing a constant series of subtle changes, for

example shifts in dominance between 'wet' and 'dry' species. Dry phases may lead to

the suppression of Sphagnum and an increase in the abundance of ericaceous shrubs

and even localised tree invasion (Casparie, 1972). Stratigraphical records show that

Sphagnum inthricatum was once a major peat forming species of raised bogs

throughout the UK but around the Middle Ages it became largely replaced by

Sphagnum papillosum and Sphagnum magellanicum (Barber, Dumayne & Stoneman,

1993). A climatic shift towards wetter conditions is one of the proposed explanations.

Clearly there are many unknowns surrounding the 'natural' vegetation of raised bogs

and currently too little information exists to answer many of these questions.

However, despite these caveats, some broad generalisations can be made about the

character of the vegetation on a raised bog.

The central area of many bogs is a complex system of pools which may reach depths of

over im and are often colonised by aquatic species of Sphagnum such as S.

cuspidatum and S. recurvum. These pools are separated by lawns and hummocks or
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ridges composed largely of other Sphagnum species such as S. niagellanicum, S.

papillosum and S. capillfolium. This central zone may be surrounded by a patterned

surface of Sphagnum hummocks and hollows in which pools are largely absent. Away

from the bog centre the vegetation may remain based on a spongy layer of Sphagnum

mosses but there is a tendency for the surface to become drier with a loss of Sphagnum

and an increase in ericaceous shrubs (the 'rand' - see above). Around the edges of the

mire, there may exist the minerotrophic lagg often taking the form of poor fen or fen

woodland. Frequently, the lagg has been removed by peripheral damage to the mire

e.g. peat cutting.

Floristic differences between bog sites are often subtle, leading early studies to refer to

ombrotrophic vegetation broadly as Sphagneta (Tansley, 1939). Previous studies on

the vegetation of British raised bogs are few but recently with the development of the

National Vegetation Classification (NVC) (Rodwell, 1991) a systematic attempt has

been made to examine and classifj the vegetation of raised bog sites. The major bog

plant community types outlined by NVC are shown in Table 1-1. It must be

considered that in reality these groups are often not clearly distinct.

In an undisturbed bog pool vegetation is typically represented by the Sphagnum

cuspidatum / S. recurvum community (M2). The rest of the vegetation is broadly

defined as Erica tetralix - Sphagnum papillosum (Ml 8) which is divided into two

subcommunities. Sphagnum niagellanicum - Andromeda polfolia (Ml 8a) refers to

the hummock and lawns of Sphagnum occurring in amongst the pool complex.

Empetrum nigrun? - Cladonia sub-community (Ml 8b) refers to a drier vegetation with

a greater abundance of ericoid plants such as Calluna vulgaris which may occur

ftirther from the bog centre. The bog rand may support an Ml 8b community though

often it sustains a more heathy vegetation i.e. M15 or even Molinia grassland.
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Erica tetralix - Sphagnum papillosum (Ml 8) vegetation is considered to be

particularly characteristic of raised bogs. It is specific to ombrotrophic conditions and

is similar in composition to the underlying peat. Disturbance such as draining has led

to the expansion of community types M15, M25 and W4 at the expense of M18. Even

Eriophorum vaginalum dominated communities (M20) normally associated with

blanket bog have become a feature of some lowland sites degraded by factors such as

drainage, burning, grazing and atmospheric pollution (Rodwell, 1991).

8



Table 1-1 Major community-types of bogs identified by the National Vegetation Classification
(Rodwell, 1991). The main community-types of little-damaged raised bog are shown in
bold type.

COMMUNITY-TYPES LARGELY CONFINED TO OMBROTROPHIC MIRES

M17 Scirpus cespitosus - Eriophorum vaginatum blanket mire
(a) Drosera rolundifolia-Sphagnu,n sub-comm.
(b) Cladonia sub-comm.
(c) Juncus squarrosus-Rhylidiadelphus loreus sub-comm

M18 Erica tetralix - Sphagnum papillosum raised and blanket mire
(a) Sphagnum magellanicum-Andromeda sub-comm
(b) Empetrum nigrum-Cladonia sub-comm

M19 Calluna vulgaris - Eriophorum vaginatu,n blanket mire
(a) Erica fetralix sub-comm
(b) Empefrum nigrum sub-comm
(c) Vaccinium vitis-idaea-Hylocoinium splendens sub-comm

M20 Eriophorum vaginatum blanket and raised mire
(a) species-poor sub-comm
(b) C'alluna vulgaris-Cladonia sub-comm

CoMMUNITY-TYPES ALSO FOUND CHARACTERISTICALLY IN OTHER HABITATS (MAINLY POOR-FEN

AND WET IIEATII)

Ml Sphagnum auriculatum bog pool comm unity
M2 Sphagnum cuspidatum Irecurvum bog pool community

(a) Rhynchospora alba sub-comm
(b) Sphagnum recurvum sub-comm

M3 Eriophorum angustj[olium bog pool community
MiS Scirpus cespitosus - Erica tetralix wet heath

[(a) Carex panicea sub-comm - not strictly o,nbrotrophicJ
(b) typical sub-comm
(c) Cladonia sub-com,n
(d) Vacciniu,,z ,nyrtillus sub-co,n,,i

COMMUNITY-TYPES CIIARACTERISTIC OF NON-OMBROTROPHIC HABITATS BUT PRESENT ON
(USUALLY DAMAGED) OMBROTROPHIC BOGS.

These include:
M25 Molinia caerulea - Potentilla erecta mire

(a) Erica tetralix sub-com,n
(b)Anthoxanthum odoratum sub-com,n

W4 Betula pubescens - Molinia caerulea woodland
(a) Dryopteris dilatata sub-co,n,n
(c) Sphagnum sub-comm

H9 Calluna vulgaris - Deschampsiaflexuosa heath
Pteridiu,n aquilinumn stands
Various fen community-types may occur in laggs
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1. 6 Habitat conditions of undisturbed raised bog

1. 6. 1 Water levels and species distribution

The surface of an undisturbed raised mire is characteristically 'spongy' and wet

underfoot. The vegetation layer dominated by Sphagnum stores large amounts of

water and downward seepage is inhibited by low hydraulic conductivity of the

underlying peat. In an undamaged raised bog water-level fluctuations are very limited

(Beets 1992). Clymo & Hayward (1982) suggest vectica11 	 ext o€ t 'tc
on the order of 20cm and Schouwenaars & Vink (1992) point out that fluctuations are

typically confined to less than 30 - 40cm.

The bog surface is often extensively patterned by a complex of hummocks, lawns and

pools (1.5) and therefore demonstrates considerable microtopographical variation. It

has long been observed that certain bog plant species occupy certain zones in relation

to water table proximity. Tansley (1939) proposed a scheme for species distribution

within the hummock and hollow complex (Fig 1.1). He saw different zones as seral

stages in the hummock - hollow regeneration cycle following the theory of lenticular

regeneration first proposed by Osvald (1923). Subsequent stratigraphical studies have

provided little evidence that this process is important in raised mire development

(Barber, 1981; Moore, 1977) but this does not detract from the value of the

observations made on species distribution.

From studies on Silver Flowe in Scotland, Ratcliffe & Walker (1958) also suggest a

general sequence of species distribution in relation to water level. This is summarised

in Table 1-2 . It is important to recognise that these are only general trends and that

field distribution does not necessarily represent the limits of tolerance. Many species

can occupy a broad range with respect to water level and as a consequence there is

frequently overlap. This is often evident in the extensive Sphagnum lawn areas of
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some raised bogs, where hummock and pool species can be found growing together in

an intermediate water regime.

1. 6. 2 Water relations and Sphagnum growth

The vegetation of an undisturbed bog is characterised by a luxuriant cover of

Sphagnum . The growth of Sphagnum is in part responsible for creating the bog

environment itself. It provides the basis for peat formation, impeded drainage and

development towards ombrotrophy, stores large volumes of water at the bog surface

and is instrumental in creating strongly acidic conditions (sect 1.6.3). Sphagnum

growth is also largely responsible for the development of microtopography and

gradients in water regime. For these reasons, Sphagnum has received more study than

other bog species. Re-establishment of Sphagnum is considered fundamental to

restoration and consequently relationships between species of this genus and water

regime are given particular attention here.

The Genus Sphagnum is divided into sections. The taxa in these sections share

distinctive anatomy and ecology (Clymo & Hayward, 1982):

Sect. Cuspidata and Subsecunda are found with capitula at or slightly above or

below the free water surface. Sphagnum cuspidatum and S. subsecundum are found

in pools and slowly flowing water in ditches.

Sect. Sphagnum which includes S. papillosum and S. magellanicum are robust and

form carpets or low hummocks.

Sect. Acutifolia includes S. capillfolium and S. fuscum which grow in hummocks

some way above the water table.
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Fig 1.1 Diagram of the succession of species forming the peat in a typical "hollow-hummock" cycle
From Tansley (1939)
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Table 1-2

The approximate vertical range of bog species in relation to the water table
(from Ratcliffe & Walker, 1958, J Ecol, 46 (2), 407-445)

At or below water level
S. cuspida turn,	 S. pu/chrum,	 S. subsecundum,
Menyanthes trfoliata	 Eriophorurn angustfoiium 	 Rhynchospora a/ba

Low to medium height above water level
S. papillosun	 S. magellanicum,	 S. plumulosum [subnitens]
S. lenelluin	 Narthecium ossifragurn

	
Erica tetralix

Drosera rofundifolia

Medium to maximum height above water level
S. rube//urn	 Cal/una vulgaris

	
Eriophorum vaginat urn

Scirpus cespitosus 	 Rhaconzitriu,n lanuginosum
	

Cladonia .sylvatica
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There is a vertical distribution of Sphagnum species along a hummock-hollow

gradient. This has also been documented for North American mires (Vitt, Crum, &

Snider, 1975; Andrus, Wagner & Titus, 1983; Luken 1985; Andrus, 1986) and for

sites in southern Sweden (Wallén, Falkengren-Grerup & MaImer, 1988).

Water relations are considered important in determining this zonation and have been

the subject of detailed research. Early experiments showed this zonation was not

simply a product of desiccation tolerance. Clymo & Hayward (1982) found the pooi

species S. auriculatum survived desiccation better than the hummock species S.

capillfolium. Furthermore, Rydin & McDonald (1985a) found photosynthesis in

hollow species was no more sensitive to water stress than in hummock species.

However, numerous workers have observed that hummock species are able to maintain

a higher tissue moisture content at low water tables than pool species (Clymo, 1973;

Clymo & Hayward, 1982; Heikkilä & LOytOnen, 1987; Luken, 1985). At low water

tables hummock species appear better able to transport water up the stem and maintain

capitulum water content. Consequently, capillary water transport capability is

generally considered the main factor which differentiates hummock and lawn species

(Clymo, 1973; Clymo & Hayward, 1982; Hayward & Clymo 1983; Titus & Wagner,

1984; Rydin & McDonald, 1985a; 1985b; Wagner & Titus, 1984; Wallén ci al,

1988).

Lawn-forming species occupy an intermediate zone. This is a transitional area in which

the dominant producer changes from year to year depending on climatic conditions

(Wallén et a!, 1988). Under dry conditions S. magellanicum appears to be a superior

competitor for water than S. papillosum. It has better water transport ability and

maintains greater water content than S. papillosum, correlating with greater stem

diameter, greater pore number and smaller leaf size (Li, Glime & Liao, 1992). S.
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papillosum is able to occupy higher elevations when growing in association with S.

magellanicum. Protocooperation is thought to occur through lateral transport of

water along inter-connecting fascicular branches (Li, Glime & Liao, 1992). Most

movement of water up the stem occurs in the pendent branches rather like a wick. If

an area of damaged stem is encountered water can move sideways to adjacent plants to

be returned to the original plant higher up (Clymo & Hayward, 1982). Commensalism

has also been observed between S. fuscum and S. balticum (Rydin, 1985) and between

S. lenellum and S. capill?folium (Heikkilä & Loytonen, 1987).

Luken (1985) observed that a high stem density retards evaporative water loss from

Sphagnum growing some distance above the water table. Clymo, (1970) also noted

that stem dichotomies occurred more often among Sphagnum mosses growing in drier

habitats, and Lane (1977) found more dichotomous branching in S. fuscum and S.

magellanicum compared with species from wetter habitats. Therefore, in addition to a

high water transport capacity, at relatively high elevations hummock formers appear to

retain tissue moisture by growing in dense cushions.

Hollow species appear limited physiologically and morphologically at higher

elevations. However, conversely, hummock species are not intolerant of waterlogged

conditions which exist in pools. S. capillfolium grows better in pools than at low

water table even though it is a hummock former (Clymo & Reddaway, 1971).

Furthermore, measurements of photosynthetic capacity of Sphagnum transplants have

shown that hummock species can well survive the environmental conditions of hollows

(Rydin & McDonald, 1985b). However, where water does abound hollow species

grow much faster than hummock species. Clymo & Reddaway (1971) found S.

recurvum and S. cuspidaizim in pool habitats greatly out-produced S. papillosum and

S. niagellanicun;. In fact, numerous workers have observed in the field that pool

species consistently out compete hummock species in wet conditions (Andrus, 1986;
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Luken, 1985; Pakarinen, 1978; Pedersen, 1975). Therefore hummock species may

effectively be excluded from the pool environment by competition. The greater

productivity of pool species may be partly due to a longer growing period. At Silver

Flowe NNR in south-west Scotland S. cuspiáatum and S. auriculatum were found to

have a longer growing season than the lawn / hummock species S. magellanicum, S.

papillosum and S. capillfolium (Hulme & Blyth, 1982).

1. 6.3 Chemical conditions of undisturbed raised bog

Sphagnum bogs are naturally acid systems. This is largely attributable to the

physiology of the Genus Sphagnum itself (Clymo, 1963; Clymo, 1984; Clymo, 1987;

Clymo & Hayward, 1982; Andrus, 1986). Characteristics such as a high cation

exchange capacity gives Sphagnum the ability to acidify its environment. This is

illustrated well where Sphagnum has colonised minerotrophic fen systems. Islands of

Sphagnum fuscum in rich fen have been observed to cause pH shifts from 6.5 to 4.0

(Bellamy & Rieley, 1967). In the minerotrophic peatlands of central Alberta, Canada

pH's ranged up to 8.2 but in the Sphagnum layer pH was lowered to 3.9 (Karlin &

Bliss, 1984). Acidification and cation depletion are also features of Sphagnum areas

in the fens of the Norfolk Broads (Giller & Wheeler, 1988).

Typically bog water contains low concentrations of dissolved solutes reflecting the fact

that raised bogs are almost exclusively irrigated by rainwater. Consequently the

chemical constituents of bog water at a particular site tend to reflect local rainwater

quality (Proctor, 1992). Numerous published studies include measurements of bog

water quality from different sites. Values from a selection of these are collated by

Nilsson, Famous & Spencer (1990). Furthermore, an extensive survey of the chemical

composition of ombrogenous mire waters is reported for Britain and Ireland by
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Proctor (1992). Table 1-3 summarises some chemical conditions reported for little

disturbed raised bogs.

Table 1-3: Some chemical conditions in little disturbed raised bogs.
[Concentrations are in mg 1 ; blank cells indicate no data; SRP = Soluble Reactive
Phosphorusi

_____________________ Natural waters, U.K.	 Natural bog, Ireland 	 Natural Bog, Finland
Ca	 0.2 -3.0	 0.6 -0.9	 2.5
Mg	 0.1 -2.5	 0.7 - 1.5	 0.82
K	 .04 -2.0	 0.5 - 1.4	 0.59
Na	 2.3 -23.0	 4.0 -7.6	 0.52
Fe < 1.0	 ____________________ 	 0.26
SO42.4 - 10.0	 18.0	 ____________________
NO1 0.1 - 0.3	 _________________ _________________
NH4-N	 _____________________ _____________________ 	 3.47
SRP0.0 - 0.05	 _____________________	 0.039

pH	 3.7 -4.4	 3.8 -4.5	 3.75
Source	 Proctor (1992)	 Bellamy & Bellamy	 Tolonen & Seppanen

______________________	 Gorham (1956)	 (1966)	 (1976)

Low availability of nitrogen and phosphorus provide major constraints to plant growth

and bogs are generally considered infertile systems. In an environment characterised

by low nutrient availability it is advantageous to be well adapted to scavenge nutrients

from dilute solutions and recycle them to avoid loss of a scarce resource. This is a trait

clearly seen in Sphagnum mosses (Malmer, 1988) and which may also apply to other

bog species for example Eriophoruni vagina/urn (Goodman & Perkins, 1959). In a

fairly continuous Sphagnum carpet productivity is commonly in the range of 100 - 600

g m -2 yr -1 (Clymo & Hayward, 1982) and on British blanket bog productivity of

150, 500 and 800 g m -2 yr -1 has been recorded for hummocks, lawns and pools

respectively.

Relationships between plant species distribution and chemical conditions are difficult to

establish except in gross terms. Bog water chemistry may show considerable inter and

intra-site variation (Proctor, 1992) and it is often difficult to relate the localised
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occurrence of a particular species with a distinctive set of chemical conditions

(Gorham, 1956). This may reflect the fact that standard chemical analysis techniques

for mire waters bear only a limited relationship to what is actually experienced by the

plants. It is also likely that influences other than hydrochemistry determine distribution

of bog species.

The species composition of bog vegetation is generally considered to be related to

oceanicity. Maimer (1986) observed the tendency for oceanic bogs to support species

which in less oceanic situations are restricted to fens. Tansley (1939) reports the

occurrence of Schoenus nigricans and Gladium mariscus in the bogs of western

Ireland, species which in eastern Britain are restricted to rich-fen. Bogs in western

Scotland may support Carex panicea, Eleocharis multicaulis and Sphagnum

auriculalum all of which are restricted to minerotrophic mire in less oceanic parts of

Britain. Furthermore, species commonplace in British bogs may be restricted to fens

further east in Europe. For example, Narihecium ossfragum and Sphagnum

papilloszim are confined to fens in eastern Scandinavia. Similarly Eriophorum

angustfolium and Sphagnum inibricatum, absent from some continental bogs, may

grow in adjoining fens (Wheeler, 1993). These trends may be related to generally

higher pH and solute concentrations recorded from oceanic bogs reflecting inputs from

sea spray (Proctor, 1992) but it is not certain whether this is sufficient explanation

(Malmer, 1986).
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1. 7 Exploitation of raised bogs

1. 7. 1 Background

Until relatively recently, the extent of raised bogs in north-west Europe was much

greater than at present. Today peat extraction is generally viewed as the greatest

threat to remaining raised bog habitat but historically the greatest losses have come

through reclamation for agriculture and forestry. After 200 years of utilisation of bogs

in the north German lowlands, Blankenburg & Kuntze (1986) report that natural

'virgin' raised bog in Lower Saxony (which contains most of the raised bogs in the

Federal Republic) constitutes only 1% of its original area. Approximately two thirds

of raised bog has been reclaimed for agriculture (principally grassland) and a further

11% (approximately 259 Ha) are subject to industrial peat cutting.

Similarly, in the Netherlands bogs have been reclaimed and utilised for centuries as

arable land and as a source of fuel. In particular, industrial peat winning followed by

cultivation has resulted in only 5% (9000 ha) of original raised bog area remaining, all

of which is highly disturbed (Beets, 1992). The largest losses of U.K. bogs have also

been to agriculture and forestry (Ratcliffe, 1977; Lindsay, 1993). However, it is

difficult to quantify these losses as published historical studies are few. Smart,

Wheeler & Willis (1986) recount reclamation of peatland about Thorne Waste, S.

Yorks using a process called warping, whereby river sediments were deposited onto

peat fields to enhance fertility.

Bather & Miller (1991) suggest that since 1970 peat extraction in the UK has started

on just 347 hectares of peatland while losses to forestry were 95000 ha over the same

period. However, the umbrella term 'peatland' is misleading as it includes extensive

areas (principally upland blanket bog) which are not lowland raised bog. In fact, raised

bog is thought to constitute only a small percentage of total peatland area in the UK
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and whilst expansion of forestry has been primarily on blanket bog (Pyatt, 1993), new

peat production has occurred almost exclusively on raised bog.

Raised bogs have traditionally been exploited on a modest scale to provide domestic

fuel and this practice is still commonplace in Scotland and Ireland. Cutting of this type

is generally restricted to the bog periphery where the dark basal peats (which have a

higher calorific value than Sphagnum peat) are readily accessible. Consequently,

damage is generally only marginal though if cutting is sufficiently intensive, increased

drainage may affect the intact bog surface. The nineteenth century onwards saw more

elaborate drainage operations and widespread commercial exploitation of raised bog

sites for stable litter and fuel. In Ireland, modern peat extraction still occurs principally

for fuel to generate electricity in peat fired power stations. It is estimated that peat

provides 16% of Ireland's national energy requirements (Bather & Miller, 1991).

In the 1960's the potential use of peat as a medium for growing plants was thlly

realised. Peat high in Sphagnum content has several desirable qualities including: 1. a

high simultaneous water and air storage capacity, 2. high cation exchange capacity

which provides good nutrient storage potential and minimises losses by leaching, and

3. consistent and predictable hydrochemical behaviour on addition of lime and

fertiliser. It may be used in its pure form or as a component part of a medium for

growing plants or for improving the organic content of soils. In the UK, horticulture

revitalised peat extraction which now produces an estimated 1.76 million m 3 of

horticultural grade peat annually, 75% of which is used as a growing medium (Bather

& Miller, 1991).

There is a scarcity of information regarding the original extent of raised bog in the

U.K. Bather & Miller (1991) suggest a figure of 116000 ha but data subsequently

published from the National Peatland Resource Inventory (NPRI) put the figure at

nearer 92000 ha (Lindsay & Andrews, 1993; Plantlife, 1992). Further NPRT evidence
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suggests the total area of raised bog remaining even in a moribund state amounts to no

more than 10000 ha in Great Britain and the area of 'intact' bog amounts to just 3.3%

of its original area. However, controversy currently surrounds the accuracy of these

figures, partly because the distinction between raised bog and blanket bog is often not

well defined (Wheeler, pers conini). Nevertheless, there is general agreement that only

a very small area of raised bog in an intact or semi - intact state remains.

The Peat Producers Association (PPA) which represents 98% of peat production in the

U.K. and Ireland currently holds about 5212 ha of raised mire in the U.K.

Approximately 987 ha of this area has not been worked and only 513 ha are scheduled

for extraction. However, the majority of this latter area retains some 'virgin'

component (Bather & Miller, 1991). In Ireland, Cross (1992) suggests that only

11,700 - 19,600 ha of raised bog remains intact from an original area of 310,000 ha.

The PPA holds 88472 ha of raised bog in Ireland and of the 9245 ha of 'peatland'

(principally raised bog) brought into production between 1981 and 1991, 90% was

previously undisturbed (Bather & Miller, 1991). Currently, most peat production in

the UK takes place on sites already badly damaged. However, fears that this will

eventually extend into areas retaining conservation value has led to controversy

surrounding continued peat production.

1. 7.2 Methods of peat production

There are three main peat extraction techniques operational in the U.K. Common to

all three practices are drainage and removal of the vegetation layer to reveal the

underlying peat:
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1. 7. 2. 1 Block Cutting

Removal of peat turfs by hand is a traditional practice which was once much more

widespread (see above). Regeneration was aided by the process of 'shoeing' whereby

the surface vegetation is replaced after peat turfs have been removed. However,

organised removal even by hand can cause considerable peripheral damage. Machine

block cutting generally involves larger scale removal for commercial purposes. Peat is

removed in strips to leave a residual topography comprised of a regular system of

baulks, flats and trenches. A typical profile is shown in Fig 1-2.

1. 7. 2. 2 Extrusion

This method is used mostly for extraction of fuel peat both on a small domestic scale

and at a larger commercial scale. At Hatfield Moors, S. Yorks extrusion is used on a

very large scale for production of horticultural peat (dark basal peats are frequently

mixed with lighter Sphagnum peat to produce a blend). A rotating blade extracts peat

from approximately one metre below the surface before extruding it through nozzles as

'sausages' onto the surface to dry. The vegetation is usually removed to leave a surface

similar to milled bog (see below) with additional subsurface drainage channels left by

the blade. Even if the vegetation is not removed (as with smaller operations),

considerable damage occurs through compaction by machinery and personnel, cutting

of roots and deposition of peat onto the surface (Bayfield et a!, 1991; Meharg,

Montgomery & McFerran, 1992).

1. 7. 2. 3 Surface Milling

Milling involves the vacuuming or 'scraping off of thin layers of peat at a time (15 - 50

mm). The bog surface is prepared by drainage at 15 - 20 m intervals and the

vegetation is removed sometimes 5 - 10 years prior to extraction. Deep drains reduce
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the water content of the surface peat to 85 - 90%, this is further reduced to 55 - 65%

by the milling or harrowing operations which occur prior to picking up the peat.

Between 8 and 12 harvests can be made each season and extensive areas must be

worked to be economic. A consequence of this production method is the creation of

extensive areas of relatively flat or gently crowned bare peat (Fig 1-2). The most

modern and widespread method of peat extraction surface milling accounts for 65% of

U.K. production and 90% of extraction world-wide (Bather & Miller, 1991). It is

estimated that 3000 ha of raised bog in the U.K. is currently being milled and as these

areas begin to come out of production attention is increasingly being focused on how

to restore them.

Fig 1. 2: Topographical profile resulting from different methods of peat extraction.
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1. 8 Restoration of cut-over lowland raised mire

In the UK, the notion of restoring raised bogs damaged by peat extraction is a

relatively recent development - a fact reflected by the general scarcity of literature

published on the matter. Some general consideration is given to restoration measures

by Rowell (1988). Furthermore, restoration efforts at Danes Moss in Cheshire are

documented by Meade (1992). Only recently however, has attention been given to

restoration of much larger raised bog relics, prompted perhaps by the acquisition by

English Nature (statutory conservation organisation for England) of sites such as Fenns

and Whixall Mosses, Shropshire and Thorne Moors, S. Yorks.

By contrast, elsewhere in NW Europe, restoration of industrially cut-over peatland has

been the subject of investigation for many years. Eggelsmann & Schwaar (1979) give

preliminary results for restoration attempts at Lichtenmoor in Lower Saxony (NW

Germany). There is a statutory requirement in Germany that on cessation of peat

winning, areas must be given over to restoration. Eggelsmann (1987) suggests that in

the coming two or three decades in Lower Saxony cut-over raised bog to the sum of

30000 ha will be given back for restoration. Reviews of bog restoration in Germany

are given by Eggelsmann (1982) and Kuntze & Eggelsmann (1982).

Restoration of raised bogs is seen by workers on the Continent as a three-phased

process. The sequence, as outlined below, follows a scheme proposed by Kuntze &

Eggelsmann (1981):

1) Rewetting - establishment of surface wet conditions.

2) Renaturation - development of an ombrotrophic 'raised bog' vegetation.

3) Regeneration - re-establishment of self regulatory, actively growing bog.
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In reality no clear boundaries can be drawn between these stages as they are not

discrete but exist along a restoration continuum. Most work to date has been aimed at

achieving rewetting. This is seen as essential to provide conditions favourable for

establishment of an actively-growing Sphagnum layer. Rewetting projects have largely

entailed engineering measures such as the building of peat dams, blocking of ditches

and creation of polders to retain precipitated water. Such 'ecotechnical' aspects of bog

restoration are well documented by workers on the continent. Projects conducted in

NW Germany are summarised by Eggelsmann (1987), (1988a), (1988b), whilst

investigations in the Netherlands are reviewed by Schouwenaars (1982) and Joosten

(1992). Furthermore, Wheeler & Shaw (in press) review the various options for raised

bog 'rehabilitation' in the U.K. based on collated experiences of projects conducted

throughout NW Europe.

Restoration is defined by Joosten (1992) as "the complex of human activities aimed at

stimulation of bog regeneration" where regeneration is defined as "the process of

renewed development towards a bog after natural or cultural disturbance". He also

recognises that some key species of the genus Sphagnum, like Sphagnum

magellanicum, S. papillosum and S. rubellum are obligate for potential bog

formation. Eggelsmann (1987) states that the objective of rewetting measures taken in

Germany are to provide suitable ecological conditions which in the long term will

facilitate development of actively growing raised bog without further human

intervention.

W. Fojt of English Nature (in liii., 1992) shares the view that "management should be

directed towards achieving ombrotrophic mire vegetation which is part of a net

growing ombrotrophic peat bog". Furthermore, the creation of NYC community type

Er/ca teiralix - Sphagnum papillosum, Andromeda polfolia sub community Ml 8a)

(1.5) is considered a desirable end point to restoration. This suggestion has substantial

rational as M18 vegetation (especially M18a) is believed to be the vegetation type
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characteristic of British bogs, which due to its vulnerability to damage and the loss of

raised bogs, has become very limited in its distribution. Stratigraphical evidence

suggests that in many relict bog sites this vegetation was formerly widespread and

formed the basis of peat accumulation and bog development.

In practice strategies adopted for restoration will be site specific dependent on extent

of damage and conditions prevailing. Several possible scenarios are outlined below:

1. Comparatively intact sites damaged superficially by activities such as drainage,

peripheral cutting and burning.

2. Old abandoned peat workings (may be extensive in area) naturally revegetated with

communities not resembling an actively growing Sphagnum bog. Commercially block

cut areas at Thorne Moors, S. Yorks and Fenns and Whixall Mosses, Shropshire are

good examples of this.

3. Recently abandoned peat workings characterised by extensive milled peat fields

devoid of vegetation.

Most attempts at restoration in the U.K. have been concerned with the second

scenario. Remedial measures include: reducing water losses from the bog (e.g. by

ditch blocking) to elevate water levels and encourage Sphagnum growth, and the

physical removal of 'undesirable' species such as Molinia caerulea and Betula spp. It

must be considered that, as a consequence of site specific differences, restoration

objectives may also differ between sites. In some situations it may be unrealistic to

recreate Ml 8a vegetation and one may have to be satisfied with 'drier' vegetation types

such as heathland containing Erica letralix, Calluna vulgaris and Molinia caerulea. It

may not even be conservationally-desirable in some instances to recreate actively
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growing Sphagnum bog where the heathland vegetation which has spontaneously

recolonised is of importance in its own right as a habitat for birds and invertebrates.

Increasingly areas are now coming out of production from modern methods of peat

production such as surface milling. Sites may consist of numerous large peat fields

characteristically well drained, devoid of vegetation and with perhaps 50 - 100 cm of

peat remaining above the mineral layer. In the future most cut-over peatland world

wide made available for restoration will take this form and, consequently, this study is

particularly concerned with restoration of such areas. Unlike sites in scenario 2 (see

above) milled surfaces provide a 'clean slate' on which we can attempt to carefully

control and direct revegetation to achieve the desired end point.

1. 9 Objectives of this study

There seems to be an overall consensus among workers in NW Europe that the aim of

bog restoration is to re-establish ombrotrophic bog vegetation typical of undisturbed

systems which by definition involves redevelopment of an actively growing Sphagnum

layer. Therefore, this study was specifically concerned with examining in detail the

factors affecting colonisation of milled peat fields by Sphagnum mosses. Large

amounts of work conducted to date has focused on attempts to rewet cut-over sites

but few studies have concentrated on the individual requirements of different species of

Sphagnum, especially from the point of view of re-establishment.

The aims of this project were as follows

1. To investigate some of the habitat characteristics of milled peat fields and consider

their direct implications for Sphagnum recolonisation.

2. To assess the requirements for Sphagnum regrowth based on evidence from

spontaneously revegetated peat workings.
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3. To complement the afore-mentioned objectives with a series of laboratory and field

experiments aimed at investigating ways to facilitate and encourage growth of

Sphagnum in milled peat fields.

Field studies for this project were based at Thorne Moors, S. Yorkshire. It contains

examples of old commercial block cuttings which have spontaneously revegetated and

extensive areas of milled peat. The site is introduced in more detail below.

1. 10 Introduction to main study area - Thorne Moors

1. 10. 1 Background

Thorne Moors (or Thorne Waste) is located at the boundary of South Yorkshire and

South Humberside (NGR SE7215). It is an example of a lowland raised bog severely

modified and much exploited by man. It has been subject to partial agricultural

conversion and massive peat extraction, the latter of which still occurs intensively

today. Once part of a much larger wetland complex of bog, fen and saltmarsh which

existed at the head of the Humber estuary (an extensive area of flatland referred to as

the Humberhead levels), Thorne Moors represents the largest surviving raised bog

remnant covering an area of approximately 2630 ha.(Rogers & Bellamy, 1972).

The bog is situated above a bedrock of Bunter sandstone in the west, overlain by

Keuper Marl in the east, both capped by drift deposits of clay and silt below the peat

(Cory, 1972). The bog is almost completely surrounded by peatland reclaimed for

agriculture by the process of warping. The mean annual rainfall is fairly typical for

lowland eastern Britain at around 568 mm. Bog formation is thought to have been

initiated by the process of paludification. Wood peat (principally Be/u/a spp) found at

the base of cores probably represents paludified forest which covered the area prior to

the main period of peat formation which began 1000 B.C. (Buckland, 1979).
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Records of early botanists such as Casson (1869), Peacock (1920, 1921) and Bunker

(1898) recount that the natural surface of the bog was covered with several different

species of Sphagnum and patterned by a mosaic of curiously shaped pools. More

specifically, local records complemented by stratigraphical evidence (Smart et al,

1986) point to the former abundance of Sphagnum magellanicum, S. imbricatum, S.

cuspidatum and other mosses including Aulaconinium palustre. Ericaceous plants

were common i.e. Erica tetralix, Calluna vulgaris, Vaccinium oxycoccos and

Andromeda polfolia. Narthecium ossfragum was also frequent plus insectivorous

plants such as Drosera anglica, D. intermedia, D. rotund?folia and Pinguicula

vulgaris. Associated with the pools were Carex limosa, Eleocharis palustris,

Menyanthes trfoliata, Rhynchospora alba, Scheuchzeria palustris and Utricularia

minor. Finally, Myrica gale was common near the borders of the bog.

Unfortunately, none of the original bog surface remains undisturbed and peat has been

cut from virtually all of the site. Thorne Moors has a long and varied history of

exploitation which is relatively well documented and is reviewed by Smart et a! (1986).

Peat extraction has occurred since at least the 18th century but it became much more

important in the late Ninteenth century when the site was extensively drained. Records

of surveys conducted for commercial purposes suggest in 1871 the bog was still clearly

domed with a maximum peat depth of approximately 6.25 m. However, as a result of

drainage and cutting the peat depth today varies between 0.5 - 3.5 m (Smart el al,

1986).

As a consequence of cutting many of the original bog species have been lost from the

site and others have become severely deminished in abundance. The original bog

surface has been replaced by an extensive complex of peat cuttings, baulks, drains,

dikes, canals and tramways. These nevertheless sustain a rich botanical resource

providing a range of habitats that support some of the original bog species plus species

not normally associated with ombrotrophic bog i.e. grassland, woodland and fen

28



(Smart ci a!, 1986). In addition to botanical interest, entomological (Skidmore,

Limbert & Eversham, 1985), ornithological (Limbert, Mitchell & Rhodes, 1986) and

palaeoecological interests (Buckland, 1979) combine to justifj the sites designation as

a Site of Special Scientific Interest (SSSI). One series of reflooded, revegetated

cuttings (the Southern Dutch Canal System) is of particular importance as it retains the

greatest number of former bog species (Smart, Wheeler & Willis, 1989) and is

designated as a National Nature Reserve (NNR).

The majority of the northern half of the moors is currently being worked by Fisons plc

(Fig 1.3). The peat is won by surface milling which has created large areas of bare

peat. The southern half of Thorne consists largely of old block cuttings which have

naturally revegetated. Until recently some of these areas were to be reworked,

however they are now managed for conservation by English Nature under agreement

with Fisons.

1. 10. 2 Location and design of experimental pits

Experimental pits have been dug in two parts of Thorne Moors. The rationale

underlying their excavation was to provide a series of experimental microcosms which

can be used for introduction of selected bog plant species most notably Sphagnum

mosses. Two series of experimental pits were excavated in two contrasting sets of

conditions:

i. Crowle Moors Pits

These were situated in the triangle of land between the Swinefleet Warping Drain and

the Crowle Moors Nature Reserve (Fig 1.3). This is an area of long - abandoned peat

workings which has a relatively high water table and a reasonable depth (1.5 m +) of

residual peat (including 0.8 - 1.0 m of ombrotrophic peat). The residual topography is

one of cuttings separated by upstanding peat baulks. In some locations the cuttings are
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seasonally wet, but elsewhere many are quite dry all year round, the water table being

30 - 40 cm below the peat surface.

This site has been abandoned for several decades and the old cuttings have largely

revegetated with a heathy scrub including Betula pubescens, C'alluna vulgaris,

Eriophorum vagina/urn, E. angus/folium, Molinia caerulea, Pieridium aquilinum

and Polytrichum juniperinum. Some wetter cuttings contain E. angustfolium,

Sphagnum recurvum, S. fimbriatum and Drepanocladus fluitans. The cuttings in

which the experimental pits were dug have subsequently become colonised by prolific

Molinia and Betula spp. Peat baulks are characterised by a mature canopy of Betula

pubescens and B. pendula with an understory of P. aquilinum, G. vulgaris, E.

vagina/urn, M caerulea and bryophytes such as Campylopus introflexus, P.

junzperinurn and lichens, notably Cladonia spp.

Three main types of pit were excavated (Fig 1.4):

a) Swinefleet trenches (ST): These were arranged in two rows (A and B). The area

of each trench was 16 x 2 m 2 and had a bottom which slopes from 0 - 1 m

maximum depth. 31 examples of these trenches were dug separated by 2 m baulks

and arranged in two rows (STA 1 - 15, STB I - 16).

b) Swinefleet pits (SP): These were small, steep sided pits, area 4 x 2 m 2. 6 of them

were im depth, 6 were 0.5 m depth (SP 1 - 12).

c) Swinefleet pits (large): Two extensive pits of area 15 x 15 m 2, and 1 m depth (SP

13 - 14).
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Fig 1.3: Location and map of main study area, Thorne Moors, South Yorkshire (NGR SE7215). [The
site has been reclaimed at its edges to give an irregular boundaiy and is covered by an
intricate network of drains which divide the surface into numerous discrete peat fields.]

Key:
Shading represents areas currently or recently worked by Fisons plc.
A = Location of Crowle experimental pits
B = Location of Creykes experimental pits
NNR = Original area of the National Nature Reserve managed

by English Nature
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ii. Creykes Pits.

These were situated in a recently abandoned milled peat field which is considered to be

representative of the surface conditions that will prevail over much of the currently

worked areas of Thorne when peat extraction ultimately ceases (Fig 1.3). The peat

field covered an area of approximately 9.5 ha and had a severely disturbed and

completely devegetated surface. There was a relatively shallow depth of residual peat

(<1 m) much of which is brushwood peat, and the area has been intensively drained.

In the spring of 1990, around the same time that the pits were excavated, measures

were taken to block existing drains with peat dams. The arrangement of excavated pits

is shown in Fig 1-5 . They were of three types:

a) Small (2 x 4 m2) steep sided pits dug down to the level of the underlying clay.

b) Small (2 x 4 m2) steep sided pits shallower in depth, dug into the underlying fen

peat.

c) Groups of 4 trenches with sloping bottoms. Area of each trench approximately 16

x 2 m2, and maximum depth 0.8 m. There were 16 groups in total.

Unfortunately the pits at Creykes did not retain much water for the first two field

seasons of this project's duration (Chapter 3). Consequently, it was not possible to

utilise them for Sphagnum growth experiments. Such trials had to be restricted to the

Crowle site where permanent water could be guaranteed. The Creykes site has

however, proved a useful source of data on water quality and water table stability in a

severely damaged system.
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1. 10. 3 Sources of Sphagnum for experiments

Experiments with Sphagnum, conducted during this study, utilised a range of species

typical of raised bog and raised bog lagg (1.5). Most of these species can no longer be

found growing at Thorne Moors (Chapter 2); therefore material had to be imported

from other, mostly damaged bog sites. Permisson was sought from the relevant land-

owners and material was collected with care, causing as little disturbence as possible.

A list of donor sites is given in Tablel-4. Sphagnum was transported to Thorne and

stored in the Crowle study area in experimental trenches STA 1 - STA 11 (Fig 1.4).

Material was then removed when necessary for field and laboratory experiments.

Table 1-4 : Sites visited for collection of Sphagnunz donor material

Site: Solway Moss	 GR: NY 3469
Owner: Richardsons Moss Litter Company
Species collected: S. capi1lfolium, S. niagellanicum, S. recurvum

Site: Lochar Moss	 GR: NY 0468
Owner: Forestry Commission
Species collected: S. capillifolium, S. cusp/datum, S. magellanicum

Site: Lotus Hill	 GR: NX 9068
Owner: David Goss, Broomrigg House, Holywood, Dumfries DG2 ORJ
Species collected: S. auriculatun,, S. palustre

Site: Glen Carron
	

GR: NH 1254
Owner: Not Known
Species collected: S. cusp/datum, S. capillfoiiuni, S. papillosum

Site: Thorne Moors	 GR: SE 7215
Owner: Fisons plc / English Nature
Species collected: S. finzbriatunz
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Chapter 2

Spontaneous recolonisation of cut-over bog

2.1 Background

Abandoned peat workings occur widely at bog sites throughout the U.K. and Ireland,

ranging from small scale domestic cuttings, through to larger commercial operations.

Many of these areas have revegetated naturally and the distribution of bog species,

particularly Sphagnum mosses, in old peat cuttings may provide valuable information

on the conditions required for successful re-establishment of those species to peatland

coming out of production today. The vegetation resource of abandoned peat cuttings

has not been extensively studied. Detailed investigations are few but some notable

exceptions are reviewed briefly below.

Domestic turf cuttings were studied in some detail by White (1930) for the mosses

(bogs) of northern county Armagh. He found that depth of cutting determined the

type of vegetation that recolonised. When Calluna dominated vegetation was cut to

depths up to 45cm Callunetum became re-established. If depths between 67.5 and

112.5cm were removed Sphagnetum became established. An Eriophorelum

community was also observed as an intermediate. This was one of the earliest

documented accounts of factors influencing peatland rehabilitation. White had

identified the crucial role of water regime in influencing recolonisation. Sphagnum

became established only in deeper cuttings which were significantly wetter due to

closer proximity to the water table.
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A consultant's report for the cut-over area at Fenns and Whixall Mosses on the border

of Clwyd and Shropshire (Betts, 1990), concluded the water table was too low to

support vigorous growth of Sphagnum and prevent invasion by Molinia, Pleridium

aquilinum and Betula spp. Drainage ditches and peat diggings were the only places

where notable fragments of wet bog communities could be found. Similarly at Danes

Moss, east of the Cheshire plain, where peat cutting ceased in the early 1960's, prior to

restoration measures the site had revegetated with a dense cover of Molinia. Birch

had also become widely established and Sphagnum was confined to grips bearing water

and wet hollows in between them (Meade, 1992). At Thorne Moors, S.Yorks, the

NNR comprises a series of cutting bays separated by peat baulks. On abandonment

and reflooding in 1920 the cuttings became inundated but peat baulks maintained a

strongly subsurface water table. Sphagnum re-establishment has been largely confined

to the wet cuttings, often floating, while the baulks have revegetated with Betula and

P. aquilinum plus a range of bryophytes normally associated with heathland (Smart,

Wheeler & Willis, 1986, 1989).

Most commercial cuttings, except those most recently abandoned, usually consist of

block-cut peat fields. This type of cutting complex exists over large areas of Thorne

Moors, exhibiting a residual topography of dry ridges and wet trenches (1.7.2). Where

there is a high water table, trenches appear to provide a suitable micro-habitat for

Sphagnum. However, water tables remain far below the baulk surfaces, which support

growth of trees and ericaceous shrubs but lack Sphagnum.

These trends have also been identified for damaged bog sites in North America

(Nilsson, Famous & Spencer, 1990) and elsewhere in NW Europe natural

recolonisation by heathland instead of bog is commonplace. In the Lichtenmoor region

of NW Germany, Eggelsmann & Schwaar (1979) recount that cut-over bog was

dominated by Calluna vulgaris, Erica tetralix and Eriophorum species prior to

attempts at rewetting. Notably Sphagnum was totally absent. In the Groote Peel area
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of the Netherlands, cut-over bog is dominated by stands of Molinia caerulea and

Betula pubescens (Joosten & Bakker, 1987). Similar trends were observed by

Schouwenaars (1992) for the Engbertsdijksvenen.

Patterns of revegetation for modern milled peat fields are even more poorly

documented. Poschlod (1992) observed colonisation of bare peat fields in the foothills

of the Alps and concluded these areas would not be readily colonised by peat fonning

mosses. Frequently water tables were too low and areas became dominated by

Calluna vulgaris. At Wainfleet bog, Southern Ontario, a vacuum harvested peatland

had revegetated after 24 yrs with shrubland and thick bush. Regeneration of

Sphagnum mosses was extremely limited (Jonsson-Ninnis & Middleton, 1991).

Finally, informal observations made during this project suggest that milled surfaces at

Thorne Moors become colonised initially by weedy species such as Rumex acetosella

and Epilobium angustfolium which are then superseded by Eriophorum spp., Calluna

vulgaris and Betula shrubs with Sphagnum remaining absent. Therefore, what limited

evidence exists suggests modern cut-over surfaces are also characterised by

establishment of dry vegetation lacking Sphagnum.

2. 2 Vegetation survey of abandoned peat workings

2. 2. 1 Methods

In 1992, an extensive survey was undertaken of revegetated peat workings throughout

the UK and Ireland. The aim was to complement existing knowledge of revegetation

with a more systematic and comprehensive survey of cut-over sites. A list of sites that

were visited is given in Table 2-1. Vegetation was recorded in 4 m 2 quadrats and

species abundance quantified using the Domin scale. A record was made of substratum

conditions including peat type and water regime, and pH and conductivity of
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Table 2 - 1: Sites of revegetated cuttings visited during survey

England and Wales

Astley Moss, Lancashire

Cors Caron (Tregaron Bog), Dyfed

Cors Fochno (Borth Bog), Dyfed

Crowle Moors, Lincoinshire / S. Yorkshire

Danes Moss, Cheshire

White Moss, Cumbria

Fenns, Whixall and Bettisfield Mosses, Shropshire / Clywd

Glasson Moss, Cumbria

Risley Moss, Cheshire

Thorne Waste, S. Yorkshire / Humberside

Wedholme Flowe, Cumbria

Scotland

Bankhead Moss, Fife

Gardrum Moss, Falkirk

Moss of Achnacree, Argyll

SJ 692975

SN 686629

SN 633910

SE 755150

SJ 908704

SD 225855

5J43/53

NY 238603

SJ 665918

SE 730160

NY 220530

NT 445101

NS 882754

NM 917360

Northern Ireland

Peatlands Park / Annagarriff/ Mullenakill Nature Reserve, Co. Armagh H 8961

Ballynahone Bog, Co. Londonderry 	 C 8598

Irish Republic

Killaun Bog, Co. Offaly
	

M 210 205
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the peat were measured for a sample of quadrats from each site, using a 1:1 volume

mix of peat and deionised water. In total, 463 quadrats were recorded. Data were

classified using Two Way Indicator Species Analysis (TWINSPAN) (Hill, 1979).

Nomenclature follows Smith (1978) for mosses, Clapham, Tutin & Warburg (1981)

for vascular plants and Purvis eta! (1992) for lichens.

2. 2. 2 Results

Classification of the data using TWINSPAN is illustrated as a dendrogram in Fig 2.1.

Major community types derived from this classification are shown on the far right-

hand-side of the dendrogram, underlined and written in bold. Several problems were

encountered interpreting the TWINSPAN output:

1. After S divisions, several end groups contained a disproportionately high number of

samples. In these instances there was a tendency for samples to contain many of the

same species but in different proportions and TWINSPAN was insufficiently sensitive

to differentiate between them. Therefore, the end groups were further divided

subjectively from study of the raw data.

2. It was also evident from the raw data, that beyond certain levels of division, some

TWINSPAN groups were divided into end groups which did not show any fioristic

differences. In these instances such divisions were ignored. Consequently, it is evident

in Fig. 2.1 that end groups occur at different levels of classification.
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Despite these problems, TWINSPAN results showed that the abandoned peat cuttings

surveyed in this study have been recolonised by a large range of vegetation types. The

end groups were given informal names by the author as most did not adequately match

recognised NVC groups (Rodwell, 1991). Each of the community types given in Fig

2.1 are described in detail in Table 2-2. Appropriate NVC codes are given in

parentheses where a suitable match was obtained. Information is also presented on

substratum conditions and sites in which each community type was observed.

Conductivity values given are corrected for pH (Golterman, Clymo, & Ohnstad,

1978).

Table 2-3 lists the species recorded in abandoned peat workings during this study.

Many species characteristic of undamaged raised bog (1.5) were also recorded in peat

cuttings, indicating that peat cuttings are not intrinsically unsuitable for the growth of

most, if not all, typical bog species. However, most of the cuttings supporting a rich

assemblage of bog species were relatively small excavations which provided a suitable

water and chemical regime (refer to Section 2.2.3). Many cuttings supported a range

of species atypical of undisturbed raised bog vegetation and typical of fen, heathland

and woodland vegetation. This is considered in more detail below.

By far the most widespread communities were those resembling dry heathiand,

represented by the Caihina vzilgaris and Molinia caerulea communities (Table 2-2).

These were typical of the very dry peat surfaces which characterised upstanding peat

baulks and well drained cuttings, supporting little if any Sphagnum regeneration. On

damper peat, where growth of Molinia was less dense, limited Sphagnum regeneration

was evident at the base of tussocks (e.g. in the Molinia caerulea. - Calluna vulgaris

sub-community). Even greater Sphagnum regeneration was observed on damp peat

beneath a Galluna canopy (e.g. C'alluna vulgaris - Sphagnum capillifolium sub-

community).
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Dry heath communities frequently contained an abundance of Betula scrub. In some

locations, notably at Thorne and Crowle Moors, this vegetation has been succeeded by

a mature canopy of birch with an understory consisting of a mixture of heathland and

woodland species. The occurrence of birch woodland is represented by the Betula

spp.- Pteridium aguilinum community and was restricted almost exclusively to dry

peat surfaces notably on peat baulks. At Thorne Moors, it was also observed that dry

peat may become vigorously colonised by a dense monoculture of Rhododendron

pontidum.

Despite the predominance of dry vegetation, spontaneous regeneration by Sphagnum

had occurred in numerous locations (Table 2-2). It was restricted to where the

substrate was at least damp, though more commonly where the peat was wet and soft

or inundated. For example, the Eriophorzim vagina/urn - Sphagnum timbrialum

community was a widespread feature of vegetation at Thorne Moors occurring in

cuttings and on moist peat baulks. It supported a significant Sphagnum cover but as

part of a wet heath mix i.e. hummocks of Sphagnum, predominantly S. fimbriatum,

were frequently found 'nestling' between 'tussock' forming species such as Molinia,

Eriophorum vaginalum, Polytrichum juniperinum and Juncus effusus. Slightly drier

areas supported a greater cover of Molinia, Betula and ericaceous shrubs, wetter areas

more Juncus and Sphagnum. It was notable that typical raised bog Sphagna i.e. S.

magellanicum and S. papillosum, were largely absent. Instead, Sphagnum cover was

dominated by a species not of great importance in the surface vegetation of intact

raised bogs i.e. S. finthriatum.

The Eriophorurn czngzistifolizirn - Erica tetralix community was another example of

wet heath vegetation that supported Sphagnum growth. However, unlike the

£ikhorum vaginaturn - Sphagnum fimbriatum community, it was dominated by an

open, low growing lawn of ericaceous species, with only scattered hummocks of E.

vagina/urn and Molinia. Total Sphagnum cover was less than for the Eriophorum
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vaginatum - Sphagnum fimbrialum community but bog species notably S.

magellanicum, S. papillosum, S. lend/urn and S. capillfolium were often present.

This community was developed generally on damp peat which often showed signs of

disturbance. In some locations the vegetation appeared to be recovering from a fire,

and other surfaces appeared to be relatively young in age.

Still greater abundance of Sphagnum was observed on wet or inundated peat surfaces.

For example at Thorne Moors, prolific Sphagnum growth was observed in the Juncus

eflusus - Sphagnum recurvum community, almost exclusive to cuttings and ditches.

However, once again, raised bog Sphagna were largely absent (except S. cuspidalum)

and species typical of weakly minerotrophic conditions predominated i.e. S. recurvurn,

S. fimbrialum, S. palustre and, S. squarrosum. Wet peat and inundated cuttings

were also frequently colonised by the Sphagnum cuspidatum - Eriophorum

angustifolium community indicating more ombrotrophic conditions. Sphagnum

cusp/datum readily colonised open water in flooded cuttings and ditches to form a

floating raft. E. angustfoliurn did not appear to be a primary raft building species.

It often remained rooted in the submerged peat surface with leaves standing proud of

the water. In depths over 50 cm it appeared to grow across existing rafts of

Sphagnum and its presence appeared to provide physical support, giving a more robust

structure to the Sphagnum raft. In some locations this community was observed

growing between tussocks of Mo/in/a Mo/inia caerulea sub-community). This was

typical of dry heath areas which had become subsequently flooded as a product of

rewetting measures.

Of great significance, Erica tetralix - Sphagnum papi/losum vegetation was recorded

in some locations. Dominated by a thick layer of raised bog Sphagna and supporting a

large range of vascular bog species, this community closely resembled that of

undisturbed bog vegetation and would be considered a desirable endpoint to

restoration. It occurred on very wet soft peat but principally as a floating raft in small
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flooded peat pits up to approximately 100 m2 in area and up to 5 m deep. A 'drier'

version of this community represented by the Calluna vulgaris sub-community was

also observed, supporting a full range of bog and heath species and occurring on wet

peat in cuttings.

Several unusual communities, atypical of raised bog, were recorded exclusively at

Thorne Moors, and were suggestive of base-enrichment. Often these occurred as small

pockets in Eriophorum vagina/urn - Sphagnum fimbriatum vegetation, represented by

the Phragmi/es australis sub-community, or in the Juncus effusus - Sphagnum

recurvum vegetation, by the Hydrocolyle vulgaris sub-community. The source of this

enrichment is not certain. However, these communities occurred in the vicinity of the

NNR where an abandoned system of clay lined canals once used for transporting peat

off the moors still persist (Smart, Wheeler, & Willis, 1989). It is possible that previous

overspill from these canals has caused localised pockets of enrichment.

On other parts of Thorne, the source of enrichment is clearly identifiable. These areas

consist of abandoned, drained warpland (refer to sect. 1.7.1), colonised by fen and

grassland and represented by the Phraginites australis - Holcus lana/us and Elymus

repens - Calamagrostis canescens communities. Furthermore, some cuttings adjacent

to warped areas exhibited elements of this vegetation, suggesting contamination

perhaps from run off. The Betuila spp - Solanum dulcarnara community and its Salix

atrocinerea sub-community represent carr woodland type vegetation developed on

abandoned warp. It consisted of a canopy of Be/u/a and Salix with an understory

consisting of a mixture of woodland and fen plants. Clearings in the woodland were

characterised by çjyceria maxima - Galium aparine and Epilobiurn hirsutum - Carex

acutiformis communities.
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Table 2-3: Species list of plants recorded growing in abandoned peat cuttings at sites listed in Table
2-1 [List includes species recorded in 'warped' areas of Thorne Moors]

Vascular Plants

Agrostis stolon(fera

Alisma plantago aquatica

Andromeda polifolia

Angelica syh'estris

Betula pendula

Betula pubescens

Calamagrostis canescens

Calluna vulgaris

Carex acutiformis

Carex curta

Carex hirta

Carex olrubae

Cirsium arvense

Cirsiu,n palustre

Crataegus mnonogyna

Dactylorhiza purpurella

Descha,npsia cespitosa

Deschamnpsiaflexuosa

Deschamnpsia setacea

Dipsacusfullonum

Drosera anglica

Drosera intermedia

Drosera rotundifolia

Dryopteris carthusiana

Eleocharis multijiora

Elymus repens

Empetrumn nigruni

Epilobium angustfolium

Epilobiumn hirsutu,n

Erica tetralix

Eriophorumn angus1fo/iu,n

Eriophorum vaginatumn

Festuca rubra

Filipendula u/maria

Galium aparine

Galium palustre

Glyceria maxima

Heracleun sphondyliu,n

Hieraciu,n maculatum

Holcus lanatus

Hydrocotyle vulgaris

Hypericumn elodes

Impatiens glandulfera

Juncus art iculatus

Juncus bulbosus

Juncus effusus

Juncus subnodulosus

Lycopus europaeus

Menyanthes trifoliata

)vuilium effusum

Molinia caerulea

Myrica gale

Nartheciu,n ossfragumn

Phalaris arundinacea

Phrag,nites australis

Polygala serpyllifolia

Polygonumn persicaria

Potamnogeton polygonifolius

Potentilla erecta

Potentilla palustris

Pteridium aquilinum

Quercus robur

Ran unculus repens

Rhododendron ponticuin

Rhynchospora a/ba

Rhynchosporafusca
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Table 2-3: continued

Rubusfruticosus

Rumex acetosa

Rumex acetosella

Rumex sanguineus

Salix atrocinerea

Sa/ix caprea

Sa/ixfragi/is

Sa/ix pentan dra

Sa/ix viminalis

Sambucus nigra

Scirpus cespitosus

Scrophularia auriculata

Bryophytes and Lichens

A ulacomniu,n pa/ustre

Campy/opus paradoxus

Campy/opus introfiexus

Campy/opus pyrfor,nis

C/adonia bacillaris.

Cladonia chlorophaea

Cladoniafloerkeana

C/adonia portentosa

Cladonia uncia/is

Dicranel/a heterornalla

Drepanoc/adusfluitans

Drepanocladus revo/vens

Eurhynchiu,n praelongum

Hypnum cupressforme

Leptobryu,n pyrforme

Leucobryu,n g/aucum

My/ia spp.

Pleurozium schreberi

Poh/ia nutans

Scutellaria minor

Solanun dulcamara

Sonchus oleraceus

Sorb us aucuparia

Typha latifolia

Ulex europaeus

Urtica dioica

Utricularia minor

Vaccinium myrti/lus

Vaccinium oxycoccos

Valeriana officina/is

P0/yin chum alpestre

Polytnichum commune

Polytrichum formosum

Po/ytrichuni juniperinum

Sphagnum capi//zfo/ium

Sphagnum compactu!n

Sphagnum cuspidatum

Sphagnum fimbriatum

Sphagnu,n magellanicum

Sphagnum pa/ustre

Sphagnu,n papillosum

Sphagnum pu/chrum

Sphagnum recurvum

Sphagnum squarrosum

Sphagnum subnitens

Sphagnum subsecundum

Sphagnum tenellum
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2. 2. 3 Discussion - factors influencing Spliagnuni recolonisation

2. 2. 3. 1 Water Regime

Water regime appeared to be the factor most frequently limiting Sphagnum

recolonisation in the sites visited. Sphagnum growth was restricted to damp, wet and

inundated peat occurring generally in ditches and cuttings. At many sites conditions

are too dry on both baulks and in cuttings, leading to growth of Molinia/Calluna

heathland and ultimately Betula woodland. The most luxuriant growth of Sphagnum

occurred in the form of floating rafts in flooded peat pits and ditches, represented by

the Erica tetralix - Syhaynim papillosiim community (Table 2-2). A similar pattern of

revegetation has been observed elsewhere in NW Europe. Eggelsmann (1988a)

reports that turf cuttings (dug for domestic fuel during both world wars) have become

overgrown over several decades by floating vegetation (referred to as 'schwingmoor')

which today provide valuable reftigia for raised bog flora and fauna. Adjacent peat

baulks, however, remained dry and carried birches and conifers. In the Netherlands,

the Groote Peel exhibits typical examples of intensively drained and mined bog

remnants. Cut surfaces are dominated by stands of Molinia and Betula but bog plant

communities may be found occurring as floating mats in old flooded peat pits (Joosten

& Bakker, 1987). A raft of bog vegetation is able to move vertically with the water

table so that the two are never separated and permanent saturation of the Sphagnum

layer is guaranteed. This provides conditions suitable for the continued growth of bog

species but which limit growth of heathiand species such as Calluna, Molinia,

Eriophorum vaginatum and shrubs of Betula.

Although the best Sphagnum vegetation occurred as floating rafts, results suggest

Sphagnum will readily colonise solid peat where the surface is persistently damp.

However, growth frequently occurred in combination with an abundance of heathland

plants, for example in the Eriophorum vaginaluni -Sphagnum fimbriatum community
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(see above), and the vegetation did not resemble that of undisturbed raised bog.

Tussocks of E. vaginatum and Molinia may actually help growth of Sphagnum in

these situations by providing a more conducive microclimate than exposed peat (3.3).

In the Calluna vulgaris, Sphagnum capillfolium sub-community, improved

microclimate beneath the Calluna canopy may have also have facilitated Sphagnum

growth. However, dense growth of Molinia did not appear to facilitate Sphagnum

growth on peat. High evapotranspirative losses associated with Molinia may

exacerbate water table fluctuation, further limiting Sphagnum regeneration

(Schouwenaars & Vink, 1992). Sphagnum growth between tussocks may also be

inhibited due to smothering by the large amounts of litter produced by Molinia.

It is interesting to note that Molinia monocultures and wet heath vegetation supporting

Sphagnum were both recorded on damp ombrotrophic peat. Why the vegetation

should develop differently is not known. It is possible that subtle differences in water

regime exist on average over the course of a year, a fact not detectable on a single site

visit, for example growth of Molinia is often considered to be favoured by fluctuating

water tables. Furthermore, the present conditions may not exactly reflect those in

which vegetation previously developed. Molinia is thought to be favoured at sites in

oceanic climates which receive more nutrients in the form of sea spray (1.6.3). Growth

of Molinia may also be encouraged by increased N-deposition from anthropogenic

sources such as fossil fuel combustion and animal husbandry. In the Netherlands,

studies suggest that N-enrichment may favour growth of Molinia in wet heathiands at

the expense of Erica tetralix (Aerts & Berendse, 1988).

Greatest cover of Sphagnum on peat was observed where the peat substratum was

wettest, for example in the Juncus effusus - Sphagnum recurvum community and the

Erica tetralix - Sphagnum papillosum, Galluna vulgaris sub-community. The latter

represents the 'most desirable' bog vegetation observed to have recolonised solid peat

as abundant raised bog Sphagna occurred in combination with a range of vascular bog
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species typical of both undisturbed bog and heathiand. This community was observed

rarely, requiring a wetter peat surface than the vegetation previously described.

Although it cannot be determined from a single site visit, it is probable the peat

surface supporting this community remained perennially saturated (rather like a

floating raft) limiting the growth of heath species. Such precise conditions were

uncommon, particularly in severely disturbed bogs, and were restricted to discrete,

fortuitous areas such as the shoulder of flooded cuttings, where the water table was

level or fractionally above the peat surface.

2. 2. 3. 2 Peat Depth

An important effect of peat depth is to alter water regime. In block-cut peat fields, wet

conditions suitable for Sphagnum growth generally occurred in cuttings where the

lower residual peat depth brought the peat surface closer to the water table.

Depth of cutting may also determine the type of peat exposed, which may influence

recolonisation. Peat composition does not remain constant with depth (1.5).

Frequently, lower peats are more humified and compact than upper layers.

Schouwenaars (1992) and Poschlod (1988) both observed that Sphagnum

recolonisation, directly on peat, occurred exclusively on less humified peat layers.

Similarly, Buttler, Grosvernier & Matthey (in prep) suggest that surface peat is better

for Sphagnum regeneration. The reason for this is not clear. It is often considered

that dark peats have a lower water storage capacity and are consequently more prone

to drought, however, consistent evidence for this is lacking (refer to sect. 3.1.4). Most

cuttings surveyed in this study retained a depth of light Sphagnum peat so it was not

possible to make such comparisons. The relevance of this to modem peat fields is

anyway limited, as only the very basal peat is left remaining.
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Finally, where extraction leaves only a thin layer of bog peat or where the fen peat or

mineral subsoil is directly exposed, there is a greater chance of nutrient and base-

enrichment. This is considered in more detail below.

2. 2. 3. 3 Enrichment

Communities developed on 'warped' peat at Thorne Moors clearly demonstrate how

mineral contamination may influence revegetation. Vegetation was characterised by

grassland, and fen and carr woodland, in stark contrast to the acid heathiand recorded

elsewhere on Thorne (Table 2-2). Conductivity of warped peat was not greater than

non-warped peat but pH was markedly higher in the former at around pH 8 (Table 2-

2). Therefore, the growth of fen vegetation at Thorne appeared to be an effect of

base-enrichment rather than nutrient-enrichment.

The warping process involves application of alluvial silts to the bog surface. However,

enrichment may also come from the base of the peat. Many raised bogs are

characterised by an underlying layer of fen peat. Where peat cutting exposes the fen

peat conditions may exhibit higher pH and elevated concentrations of base elements.

The chemical environment will then be more conducive to the development of fen

rather than bog vegetation. In Somerset, inundated cuttings are typically colonised by

species as Typha lai(folia, Phragmiles australis, Alisma plantago-aquatica, Carex

pseudocyperus and Juncus effusus. White (1930) also observed that deep cuttings

which penetrated fen peat were recolonised by Menyanthes trfoliata, Iris

pseudacorus and Lysimachia vulgaris.

Where peat cutting exposes the mineral subsoil, if it is a base-rich marl or clay then

recolonisation will be similar to that outlined above for fen peat. This is hard to

predict for peat cutting sites in the UK as the base status of underlying substrata is

little documented. Nilsson et a! (1990) found sites in North America, mined down to
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the clay substrate, were colonised by Typha lat?folia, Scirpus, Carex spp, Eleocharis

spp., and Sparganium spp. In the Somerset levels deep flooding of such substrata has

lead to colonisation by Typha latfolia, Phragmiles ausiralis, Alisma plantago

aquatica, Carex pseudocyperus and Glyceria maxima. However, in some cases the

base status of underlying mineral soils may not differ significantly from overlying peats.

For example at Hatfield Moors, S. Yorkshire, the subsoil is an impoverished sand with

pH values < 4.5. In these situations Sphagnum may directly recolonise base-poor

sands and gravels quite readily (Andreas & Host, 1983; B.D. Wheeler, unpubi.).

Survey results show that cuttings were frequently characterised by the growth of poor-

fen species such as Juncus effusus, Sphagnum fimbriatum, S. recurvum, S.

squarrosum and S. palustre. In some cases occurrence of these species could be

related to exposure of the mineral subsoil or of fen peat. In peat from uncut parts of

Killaun, Cors Fochno and Cors Caron conductivity values ranged from 395 to 650 jiS

cm 1 . Conductivity values recorded for communities in which poor-fen species

occurred, often exceeded this range suggesting mild basal enrichment. This is evident

when comparing the .Juncus effusus - Sphagnum recurvum community with the

Eriophorum anguslifolium - Sphagnum cuspidatum community in Table 2-2.

However, growth of poor fen species also occurred on seemingly ombrotrophic peat

with low conductivity and no obvious source of mineral contamination (Table 2-2).

This was a particular feature of the vegetation at Thorne Moors, and has been reported

by other workers (Smart et a!, 1989). The Junczis effusus - Sphagnum reciirvum

community was occasionally observed under these conditions but most widespread

was the Eriophorum vaginatum - Sphagmim fimbriatum community. This suggests

that any enrichment must be very subtle. Despite this, the vegetation contrasts

strongly with communities developed elsewhere on damp ombrotrophic peat which

lacked the growth of Juncus and minerotrophic Sphagna. The source of contamination

is not known. Possible explanations include wind-throw from old limestone tow paths
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and the main limestone road that cross the site, anthropogenic nitrogen inputs and

mineralisation of the peat substrate. These are considered in more detail in Chapter 4.

The highest conductivity values were recorded for the 'dry' communities; Betula spp. -

Pieridium aguilinum, and Molinia caeruiea. This vegetation is unlikely to have

developed in response to the nutrient regime but rather the dry conditions. High

conductivity is probably a by-product of the low water table causing mineralisation of

the peat. However, if this was the sole cause then higher conductivity values would

have been expected in the dry Calinna viilgaris and Rhododendron ponticum

communities. It is possible that conductivity values were highest in peat from the

Beizila spp. - Pleridium aguilinzim, and Molinia caerzilea communities because they

produce large amounts of leaf-litter thus returning more nutrients to the peat.

However, for reasons that are not clear, high conductivity was not always recorded in

peat from these communities and furthermore, Rhododendron ponticum also produces

large amounts of litter but was not characterised by such high conductivity (Table 2-2).

The source of this apparent enrichment is therefore unclear.

Communities resembling undisturbed bog i.e. Sphagnum papillosum - Erica tetralix

and Sphagnum cuspidatum - Eriophorum angustifolium. occurred across a large range

of conductivity values sometimes significantly exceeding those recorded for intact bog

(Table 2-2). This suggests that whilst mild enrichment appeared to encourage the

growth of poor-fen species, if conditions are suitably wet then it does not directly

prevent development of a raised bog flora.

2. 2. 3. 4 Availability of propagules

Cuttings recolonised with M18-type vegetation (1.5), and supporting a full range of

bog species, occurred at sites where a local source of propagules persisted (Table 2-2).

Generally, an area of bog with at least a semi-intact surface, existed in the vicinity. At
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highly exploited sites such as Thorne Moors, there is no remaining local reservoir of

some raised bog plants. Evidence that this limits recolonisation is circumstantial.

However, it is interesting, for example at Thorne, that raised bog Sphagna were not

observed to have recolonised in cuttings where the substrate was suitably wet. This

has also been observed by other workers for the original National Nature Reserve

(NNR) area of Thorne (Smart, Wheeler & Willis, 1989). Wet conditions have

prevailed in cuttings there for decades, but numerous raised bog Sphagna (notably S.

magellanicum, S. papillosum and S. capillfolium) have not recolonised. Evidence

considered above suggests that mild enrichment recorded in the NNR by Smart et a!

(1989) and recorded in cuttings elsewhere on Thorne by this study, is unlikely to have

been directly toxic to raised bog Sphagna. Therefore, it it is not clear why species such

as S. papillosum and S. magellanicum have not recolonised alongside S. recurvum or

S. fimbriatum. However, factors other than propagule availability may also be

important in explaining the absence of these species at Thorne. This is considered in

more detail in section 6.6.
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Chapter 3

Water regime in a milled peat field and its
influence on Sphagnum growth

3. 1 Water-table fluctuations

Patterns of spontaneous recolonisation in peat cuttings described in Chapter 2,

highlight the importance of water regime in influencing vegetation development. The

hydrological conditions in a recently abandoned milled peat field on Thorne Moors

were investigated to assess the moisture conditions that are likely to be prevalent over

extensive areas of the moor upon the ultimate cessation of surface milling, and the

implications for revegetation.

3. 1. 1 Method

In the Spring of 1990, 7 piezometer tubes were placed equidistantly along an east -

west transect which stretched approximately 250m across the width of an abandoned

peat field in the Creykes study area (1.10.2). Tubes were inserted to the base of the

peat, approximately 1 m deep. Water-table depth was recorded by measuring the

distance between the peat surface and the top of the water column in the tube.

Measurements were taken from each tube, bimonthly, over three years from

September 1990 to July 1993. For each recording event, measurements from all the

tubes were combined to give a mean water-table depth for the transect.

62



3. 1. 2 Results

Water-table fluctuations recorded over three years are shown in Fig 3.1. Large

variations in water-table depth were recorded during the study period. An overall

temporal cycle was observed, the water-table being highest during the winter and

spring months, and falling dramatically during the summer. In January 1991 and 1993

the water-table reached, and inundated the peat surface. However, in January 1992 the

water-table, although higher than summer levels, did not match the height of adjacent

winters. Throughout the study period, the water-table was consistently lowest in July,

falling to between 60 and 100 cm below the peat surface. The water-table remained

sub-surface for most of the study period, except for periods of winter saturation.

However, data recorded in January 1992 suggests that even winter saturation is not

guaranteed. The peat surface remained unsaturated and prone to drought for many

months at a time, and typically in the summer, conditions at the surface became

particularly dry and dusty.
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Fig 3.1: Water-table fluctuations in a milled peat field at Thorne Moors, S. Yorks [Each bar
represents the mean value from a series of piezometer tubes. Error bars = 95 % cont
limits. Refer to Sect 3.1 for details]
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3. 1. 3 Discussion

The seasonality of water-table fluctuations recorded in the Creykes study area (Fig 3.1)

suggests that results are closely influenced by temporal changes in the precipitation to

evaporation ratio. Monthly rainfall totals from the Meteorological Office at R.A.F.

Finningley (NGR: SK 659989), a few miles south of Thorne Moors, are presented in

Fig 3.2. No clear seasonal trends were apparent in the rainfall data, with months of

high and low rainfall occurring in both the summer and winter. Therefore, water-table

fluctuations in the Creykes study area could not simply be related to changes in rainfall.

Low summer water-tables may have been due primarily to other factors such as higher

air temperature and greater rates of evaporative loss. Furthermore, summer rainfall

may be more episodic than winter rainfall, so that rainfall totals may not appear to

differ consistently over the year but the frequency of 'dry' days may be greater in the

summer leading to increased evaporative losses. Low precipitation may however

account for the low water-table recorded in the winter of 1991-1992 (Fig 3.1)

compared with adjacent winters. There is the suggestion in Fig 3.2, that rainfall was

lower on average in the winter of 1991-1992 compared with the winter of 1990-1991.

Ditches draining the site were not blocked until the Spring of 1990. Consequently

much of the water precipitated in the 1989/90 winter may have been lost to drainage

and not stored on site. This might explain the very low water-table recorded in

September 1990. Water levels did not fall quite as low in following summers after the

drains were blocked, suggesting drainage did influence this result. However, the water-

table still fell significantly in July 1991, 1992 and 1993 despite periods of winter

recharge and blocked drains. In the winter of 1991 and 1993, the water-table was

particularly high but it still fell significantly the following summer. This suggests that

the residual peat layers, even when saturated, will not store sufficient water to protect

the system against summer drought. Therefore, at this site, ditch blocking alone may

not be sufficient to restore surface wet conditions.
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It is possible that peat dams blocking the ditches may have leaked so that some

drainage of the site continued. On inspection there were no obvious signs of leakage

but the possibility of chronic, inconspicuous leakage cannot be ruled out.

Nevertheless, it is debatable whether such seepage would sufficiently account for the

large water-table fluctuations observed. It is probable that water-table fluctuation is

exacerbated at Thorne as it is a relatively low rainfall site, receiving 550 - 600 mm a

compared with over 1000 mm a -1 received by sites further north and west in the UK.

Furthermore, data from Finningley Meteorological Office shows that annual rainfall

totals for Thorne Moors during 1990 and 1991 were low compared with the preceding

five years (Fig 3.3), suggesting that the water-table at the Creykes study area was

monitored during an unusually 'dry' phase.

Fig 3.3: Annual rainfall totals recorded at Finningley Meteorological Office, (nr
Thorne Moors)
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Therefore, it might be argued that this study was conducted under exceptional

circumstances with lower-than-average rainfall and leaking dams. However, the

phenomenon appears to be more widespread as similar water-table fluctuations have

been recorded for cut-over bog in higher rainfall locations elsewhere in NW Europe

(Eggelsmann, 1982; Schouwenaars, 1988, 1992; Schouwenaars & Vink, 1992;

Streefkerk & Casparie, 1989; Beets, 1992).

3. 1. 4 Factors contributing to water-table instability

3. 1. 4. 1 From diplotelmic to haplotelmic mire

Undamaged bogs are dual layered systems (diplotelmic) comprised of an uppermost

'acroteim' and a lower 'catotelm' layer (Ingram & Bragg, 1984). The acrotelm consists

of an actively growing layer of plants (principally Sphagnum mosses) up to 50cm thick

which covers the bog surface extending downwards into fresh peat. The underlying

catoteim comprises the bulk of peat in a raised bog. Typically well consolidated and

well humified, it consists of acroteim-derived material which accumulates as the bog

grows upwards. Commercial peat extraction completely removes the acroteim layer to

reveal the catotelm peat which is then harvested, and after peat winning, the base of

the catotelm peat is left behind to form the new bog surface.

In an undisturbed system the acroteim layer has an important regulatory function,

preventing drying out of the bog surface during the summer. Its loose and spongy

structure stores large volumes of water which buffers the system during periods of low

rainfall (Beets, 1992; Ingram & Bragg, 1984; Schouwenaars & Vink, 1992; Bragg,

1989). Water-table fluctuations are correspondingly limited and are contained within

the acrotelm (1.6.1), and surface conditions are kept optimal for growth and survival

of bog species (Bragg, 1989). The water storage capacity of catotelm peat is much

lower. Boelter (1964, 1965) found water storage capacity in undecomposed
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Sphagnum peat to be much higher compared with lower catoteim peat and that a rapid

gradient of decreasing water storage occurred over the upper 45cm of a living bog.

Loose Sphagnum peat in an acrotelm can contain some 85 % of 'free' water whilst in

strongly humified peat it is only 8% (Streefkerk & Casparie, 1989). The total porosity

of catoteim peat is actually high at around 80-97% (Reynolds et a!, 1992), but it

exhibits a greater frequency of micropores over macropores (> 50 .tm) which is

considered important in explaining its lower water storage capacity (Schouwenaars,

1982; Blankenburg & Kuntze, 1986).

After peat extraction, the bog surface lacks an acroteim to buffer the system against

periods of dry weather and the water storage capacity of residual catotelm peat may be

too low to carry out this function. Consequently, no mechanism exists to regulate the

water-table which may become highly unstable, and the peat surface become prone

both to drought and periodic flooding (Beets, 1992; Joosten, 1992; Schouwenaars,

1988; Schouwenaars, 1992; Schouwenaars & Vink, 1992; Streefkerk & Casparie,

1989)

3. 1. 4. 2 Peat Type

The physical properties of the catoteim are not constant with depth. Lower peats are

older and generally more strongly humified. Furthermore, deeper peat becomes

compressed beneath overlying layers. Hobbs (1986), suggests that drainage and

aeration of upper layers may further compress the underlying water-logged peat,

expelling water and lowering porosity. Consequently, lower peats may exhibit even

lower water storage capacities than catotelm peat higher in the profile. Schouwenaars

(1992), found extraction of a known volume of water from strongly humified peat

caused a greater fall in water-table than if less humified peat was used. This he

attributed to lower water storage capacity in the former. Streetkerk & Casparie
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(1989), also suggest that water storage capacity decreases with increasing degree of

humification.

This is of significance to restoration as it suggests water-table fluctuations will be

exacerbated where only deep peat is left remaining. However, the evidence supporting

the influence of peat type is scarce and conflicting. Whilst deeper peats are considered

more compact, profiles of bulk density over several metres are scarce and those that

exist do not show consistent patterns of change. Tolonen (1979) described a profile

which showed a consistent increase in bulk density with depth, but one reported by

Tolonen (1977) did not. Porosity and bulk density may vary both between and within

peat types so that 'light' and 'dark' peat cannot always be separated on the basis of

water storage capacity (Schouwenaars & Vink, 1992). Streefkerk & Casparie (1989)

suggest that some 'white' (less humified) peats may exhibit a water storage capacity as

low as 'black' peat. Consequently, whilst there are undoubtedly gross differences in the

water storage capacity of acrotelm and catotelm layers, the importance of peat type to

water table fluctuations in cut-over areas remains poorly understood.

3. 1. 4. 3 Peat thickness and vertical water loss

A feature of intensively cut-over bogs is a low residual peat depth, often in the region

of I m or less. In these situations, water-table fluctuations may be compounded by

vertical losses of water through the bottom of the bog into the underlying mineral

substratum. However, the water-table in raised bogs is generally considered to be

independent of regional groundwater-tables. For example the Groundwater Mound

Theory (Ingram 1982) assumes an impermeable base to the mound such that vertical

water losses feature very little in the water balance equation.

Despite this, it is widely recognised by workers in NW Germany and the Netherlands

that bogs can occur on a permeable sandy subsoil, where impermeability is provided by
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a high water-table in the underlying sandstone aquifer (Joosten & Bakker, 1987;

Kuntze & Eggelsmann, 1981). In this situation, the lowering of regional groundwater

levels (for example due to water abstraction for agriculture) may cause an unsaturated

layer to develop under the bog thus influencing attempts to rewet bog remnants.

Intact bogs might be protected by thickness of the catoteim, but where this layer has

been reduced by peat extraction, downward seepage may become an important

element in the water budget. However, evidence for this very scarce. Schouwennars,

Amerongen & Bootlink (1992) and Schouwenaars (1992) provide some data

suggesting downward losses in the Netherlands are inversely related to residual peat

depth. In NW Germany, Blankenburg & Kuntze (1987) suggest 50cm of residual peat

is required to keep seepage losses to an acceptable level of 60 mm a. A thicker layer

did not significantly reduce seepage but a thinner layer may be breached by cracking.

Despite a general lack of evidence, downward seepage is considered by workers on the

continent as a potentially important variable affecting bog restoration. It is difficult to

assess the importance of downward seepage to UK bogs as the nature of the

underlying substratum is frequently unknown. Stratigraphical studies are few, but

those that exist indicate a layer of clay beneath the peat (Birks, 1965; Godwin &

Mitchell, 1938; Gorham, 1949; Pigott & Pigott, 1963; Thomas, 1965; Walker,

1966). This suggests that downward seepage may be relatively unimportant but the

possibility that 'permeable windows' may exist in clay layers cannot be discounted. The

extent to which other bog sites may be influenced by downward seepage is not known.
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3. 1. 4. 4 Vegetation cover

Abandoned peat fields may become colonised by dense swards of Molinia caerulea

and be invaded by tree species, notably Betula spp (Chapter 2). High

evapotranspirative losses associated with these species may then serve to exacerbate

water-table fluctuations. This was not an important factor affecting the water-table at

the Creykes study area as the peat remained only sparsely recolonised. However, at

sites where Molinia is established, it is considered an important influence on water

regime (Schouwenaars, 1990; Schouwenaars, 1992; Schouwenaars & Vink, 1992).

71



3. 2 The effect of water-table fluctuation on Sphagnum

regeneration (Experiment 1)

Periodic reductions in water-table height leave the peat surface prone to drought. The

aim of this field experiment was to investigate the significance of this to Sphagnum

regeneration.

3. 2. 1 Method

The 'Swinefleet pits' in the Crowle Study area of Thorne Moors were used for this

experiment. They consisted of flooded, square pits 4 m2 in area and 1 m deep, with an

adjacent shelf of the same area cut 10 cm below the surrounding peat surface (1.10.2).

Two sets of contrasting surface conditions were created:

1. Periodic drought - These conditions were provided on the peat shelf. Water-table

depth below the surface of the peat shelf was recorded bimonthly for the duration of

the experiment. Results are shown in Fig 3.4. Water level in the pits was prone to

fluctuation and frequently in the summer the water-table fell below the surface leaving

it dry.

2. Permanently wet - This was provided by a raft, floated in the flooded part of the

pits. The raft was constructed from a bamboo cane framework, plastic (netlon) fence

material (mesh size - 1 cm2) and polystyrene floats all held together by plastic garden

ties. Although the water level in the pits fluctuated, the raft remained in contact with

it, providing a permanently wet surface.

Eight species of Sphagnum were used in this experiment: S. magellanicum, S.

papillosum, S. capillfolium, S. palustre, S. fimbriatum, S. recurvum, S.

auriculatum andS. cuspidatum. The peat shelf was divided into a grid of 16, 0.25 m2
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squares. Two squares were chosen randomly for each species. Twenty five plants, cut

to 5cm length, were then placed prostrate into each square. This treatment was

repeated exactly on the floating raft. The experiment was set up in May 1991. Results

presented represent growth after 30 months. The area covered and capitulum density

for each species were recorded using a 4 m2 quadrat divided into 400, 100 cm2

squares.

3. 2. 2 Results

This experiment was originally designed so that changes in capitulum density within

each square, and any growth beyond the limits of each square, could be recorded for

each species. However, such precise measurement was prevented for two main

reasons. Firstly on the peat shelf, plants of all species became severely displaced by

rain splash. Secondly on the raft, the 'sprawling' growth of some species displaced

other plants and merged squares. Consequently, species no longer occupied their

original discrete areas. A simpler measure of growth was therefore used. Total area

covered and average capitulum density were recorded for each species on the raft and

on the peat shelf. The results are presented in Table 3-I below.

Table 3-1 Expt. 1: Sphagnum regeneration from whole plants placed on a persistently wet artificial
raft and on a solid peat surface prone to periodic drought. Results represent growth after 30 mths.
[Starting density for each species = 1 capitulum per 100 cm 2 over 0.5 m2]

PEAT SHELF	 FLOATING RAFT
Area covered	 Mean	 N°	 Area covered	 Mean N°	 capitula

m2	capitula	 m2	 per 100 cm2
per 100 cm2

	

S. auriculatum	 0	 0	 0.9	 38

	

S. capil!?folium	 0	 0	 0	 0

	

S. cuspidatum	 0.25	 20	 1.9	 29

	

S. fimbriatum	 0	 0	 0	 0

	

S. magellanicum	 0	 0	 0.5	 1

	

S. palustre	 0	 0	 05	 1

	

S. papillosum	 0	 0	 1

	

S. recurvum	 0	 - -	_______________	
_	 -	 0.4	 25
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By multiplying area covered by capitulum density, an estimate of total capitulum

number was derived for each species. As the starting number for all species was equal

i.e. 50 plants, differences in capitulum number at the end of the experiment provide a

crude measure of relative growth, shown in Fig 3.5.

On the peat shelf all species except S. cuspidatum failed to regenerate and only dead

remains of the original inoculum could be found. On the raft, S. magellanicum, S.

papillosum, S. capill?folium, S. palustre and S. fimbriatum also failed to regenerate.

No trace was found of the original S. capillfolium and S. fimbriatum plants.

However, unlike on the peat shelf; living plants of S. magellanicum, S. papillosum

and S. palusire did remain. Regeneration of these latter species was very limited as

they had become smothered by the growth of other Sphagna. Furthermore, the area

covered was difficult to measure as the plants had become displaced from their original

squares. Consequently in Table 3-1, S. magellanicum, S. papillosum and S.

palustre are listed as retaining their starting density and area On the raft, to indicate

that the original plants were not lost but had grown very little.

Prolific growth was observed on the raft for S. cuspidatum, S. recurvum and S.

auriculatum. All three showed dramatic increases in capitulum density (Table 3-1). 5.

auriculatum and S. cuspidatum also expanded spatially although the cover of S.

recurvum was slightly reduced. S. cuspidalum grew the most prolifically (far

exceeding its growth on the peat shelf) to cover eight times its original area of 0.5 m2

and at a capitulum density over an order of magnitude higher. Consequently, the total

capitulum number can be estimated at two orders of magnitude above the original 50

used (Fig 3.5). S. auriculatum grew at a higher capitulum density than S. cuspidatum

but expanded to cover only four times its original area. Growth of S. recurvum was

lowest of the three species. Capiti,ilum density matched that of S. cuspidatum but its

lower area suggests it is a less competitive species under these conditions (Table 3-1).

74



5

0

-5

-10

-15

-20

-25

-30

-35

.40

5000

4000

3000

2000

1000

0

a,

E

E

U

4-
0
I-

RAFT

Fig 3.4: Experiment 1- Water regime on the peat shelf. [Water table fluctuations are shown relative
to the peat surface. Water level was recorded bimonthly - dates are given for each value]

31/3/93

Fig 3.5: Results of experiment 1 - Comparative regeneration of Sphagnum applied to a permanently
wet raft and a periodically dry peat shelf [ For experimental details refer to section 3.2.1]

6000

S. aurlculatijm

S. caplilifoilum

S. cuspldawm

z:::	 S.

.'	 S. magellanlcum

SHELF

75



3. 2. 3 Discussion

Results suggest that water-table fluctuations severely limited growth of S. cuspidatum,

S. recurvum and S. auriculatum on bare peat. Furthermore, desiccation of the peat

surface was probably responsible for the failed regeneration and death of all Sphagnum

material placed on the peat shelf. It may be argued that failure of S. magellanicum, S.

papillosum, S. capillfolium, S. palusire and S. fimbriatum to regenerate on the raft

indicates that water-table was not the primary factor limiting growth of these species

on the peat shelf. However, failure of these species to regenerate on the raft may be

otherwise explained. It was notable that S. magellanicum, S. papillosum and S.

palustre plants did not die on the raft as they did on the peat shelf, but their growth

was effectively checked as they became smothered, particularly by growth of S.

cuspidatum and S. auriculatum. However, original plants of S. capillfolium and S.

jlmbriatum remained unaccounted for. It is possible that they were lost through the

holes in the mesh due to rain splash as individual gametophytes of S. capillfolium and

S.fimbriatum are very delicate and insubstantial compared to other species used.

Plants that regenerated well on the raft were all species known to grow in aquatic

habitats (1.6.2). Therefore it is possible that growth of the other species was limited

by conditions that were too wet. The raft generally remained a centimetre below the

water level so that its surface was just submerged. However, evidence discussed in

Section 1.6.2 suggests that hummock-forming species are not intolerant of water-

logged conditions but growth of pool species is much more prolific under these

conditions. Hence, failure of hummock species to regenerate on the raft was probably

due to competitive exclusion and not water-logging.

Despite periods of drought the peat shelf did support some growth of S. cuspidatum.

It was interesting that a species typical of the wettest situations should be the one most

able to survive the 'dry' conditions of the peat shelf. Growth was confined to periods
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when the water-table was at or above the peat surface. When the water-table was low,

plants became desiccated and brown. In abandoned peat fields in the Netherlands,

similar desiccation tolerance in S. cuspidatum has been observed (B. D. Wheeler, pers

comm). Furthermore, Clymo & Hayward (1982) found Sphagnum auriculatum

survived desiccation better than the hummock forming S. capil4folium. It would

appear pool species can exhibit desiccation tolerance greater than hummock species,

which may go some way towards explaining the regeneration of S. cuspidalum on the

peat shelf.

3. 2. 4 Stabilising water-tables

Results from Experiment 1 suggest that water table fluctuations, such as those

recorded in a milled peat field at Thorne (3.1), may severely restrict Sphagnum

recolonisation. Beets (1992) suggests the water storage capacity of abandoned peat

fields will be increased by creating open water across the bog surface. In water

balance studies for bog relics in the Netherlands, Schouwenaars (1992) also points out

that the storage coefficient of open water is 100% and areas characterised by a high

proportion of permanently inundated surface show limited water-table fluctuations

when compared with areas where the open water is absent.

Creation of open water will require reconfiguration of the peat surface. In Germany, a

system of lagoons, resembling paddy fields, has been utilised widely and is considered a

particularly important method for creating open water on sloping surfaces

(Eggelsmann, 1987, 1988a, 1988b). Fig 3.6 gives an example of suggested lagoon

construction for a slightly inclined slope. Once the lagoons are constructed, the

surface is further reconfigured by 'ploughing' a series of longitudinal hummocks and

hollows. The aim is to produce a fine network of open water instead of extensive

lagoons which may produce problems of wave action.
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On flatter surfaces a mosaic of pools could be constructed by building an interstitial

network of bunds. Alternatively open water could be created by excavating pools.

Beets (1992) suggests distance between pools should be minimised to reduce water-

table fluctuations in the bunds. The depth of pools required to ensure perennially wet

conditions will depend on the severity of water-table fluctuations at a particular site.

Experience in the Netherlands suggests depths of 0.5 - 0.6m should be sufficient

(Beets, 1992).

Such constructs serve to reduce lateral water losses and retain precipitated water on

site. Their exact design will vary depending on site specific factors such as climate.

For example, areas characterised by a relatively high annual evaporation to

precipitation ratio may require larger, deeper pools to maintain surface water.

Fig 3.6: System of lagoons for allowing storage of water on sloping surfaces

PEAT
B1JND

78



3. 2. 5 Implications for Sphagnum regeneration

Creation of open water areas may stabilise water-tables, but consideration must be

given to how this will influence Sphagnum recolonisation. Regeneration of Sphagnum

deliberately introduced to open water is considered in detail in Chapter 5. Evidence

presented in Chapter 2 suggests that open water was the starting point for some of the

most 'desirable' bog plant assemblages observed to have recolonised old peat workings.

These had developed as floating rafts over flooded peat pits. Rafting refers to the

growth of plants floating in or on supra-surface water and therefore requires (by

definition) some degree of inundation. Plants may be free floating or attached to the

margins of pools, from which they expand centripetally. Development of rafts

produces a 'skin' permitting subsequent colonisation by species that would not

normally colonise open water. For example Sphagnum rafts were observed to support

species such as Narthecium ossfragum, Erica tetralix, Andromeda polfolia and three

species of Drosera.

In undisturbed bogs, rafts are not a major component of the surface being restricted to

the vicinity of pools but rafts are often very important in the initiation and early

development of ombrotrophic bog. Stratigraphical studies suggest that development

of Sphagnum vegetation within some basin mires in NW England occurred by

colonisation of floating fen rafts i.e. a hydroseral succession from open water to bog

(Walker, 1970). Development of Sphagnum bog on fen rafts has also been recorded

for basin mires in the Scottish Borders (R. Tratt pers comm.), in peat cuttings in the

Norfolk Broads (Giller & Wheeler, 1986, 1988) and in the Dutch mires of NW

Overijsel (Segal, 1966; van Wirdum, 1991).

Where conditions are not base-rich, Sphagnum rafts may directly colonise open water

without the need for a pre-existing raft of fen vegetation. Stratigraphical evidence

indicates that deposits of Sphagnum peat at Flaxmere, in north Cheshire, originated as
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a floating raft of Sphagnum cuspidalum. Furthermore, the present day vegetation of

other small basin mires in the region consists of floating rafts of S. cuspidatum and S.

recurvum overlying open water (Tallis, 1973). Floating bog mats are also reported to

have developed in kettle-hole mires in south west Ontario (Hanf& Warner, 1992).

Rafts appear to be favourable environments for the development of Sphagnum bog

vegetation. They have the critical advantage of being able to move with the water-

table if it fluctuates. Therefore, relative to the vegetation layer the water-table remains

stable and the Sphagnum mosses are never subject to drought. Furthermore, growth

of undesirable 'dry' species such as Molinia, Betula and Pieridium aquilinum is

suppressed in permanently saturated conditions.
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3.3 Efftct of surface humidity on Sphagnum growth
(Experiment 2)

3. 3. 1 Introduction

In an abandoned milling field, physical conditions at the peat surface may be highly

unstable. In addition to the direct effects of low water table on Sphagnum growth (see

above), colonisation must contend with a substrate prone to considerable temperature

fluctuations, frost heave, rain-splash, surface crusting and wind erosion (Nilsson et al,

1990). Cut-over bog may remain substantially bare for many years and consequently,

wind resistance at the bog surface is probably low. Without a layer of relatively still

air, analogous to the boundary layer surrounding a leaf, it is quite conceivable that

humidity at the bog surface is very low. The significance of plant cover to surface

microclimate was demonstrated by Salonen (1992). In a novel experiment he planted

plastic plants on a bare peat surface to simulate a cover of Vaccinium vitis-idaea and

found that it significantly increased peat water content and reduced temperature at the

peat surface.

In undisturbed systems, Sphagnum species growing some distance from the water table

generally occur in dense hummocks, suggesting some importance to Sphagnum growth

of sustaining a humid microclimate around the plants (1.6.2). The importance of

humidity was also alluded to in Chapter 2, as revegetation trends suggest that

Sphagnum growth on peat is favoured by the shelter provided by a cover of vascular

plants (2.2.3.1). There has been little detailed research on the effects of surface

microclimate on Sphagnum growth; however, very recent studies by Buttler,

Grosvernier & Matthey (in prep) show that under the cover of E. vaginatum and

Polytrichum spp., Sphagnum does find better growing conditions, with higher

humidity and less extreme temperatures.
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The aim of this investigation was to conduct a simple laboratory experiment to

examine the effect of humidity on growth and morphology of Sphagnum.

3. 3. 2 Method

S. cuspidalum plants cut to 5 cm in length, were placed in batches often, into rooting

pots, which were then placed in clear plastic containers filled with water collected from

the Crowle study area of Thorne Moors (1.10.2). The rooting pots were floated by

small polystyrene rafts so that the Sphagnum was submerged up to 1 cm below the

capitula at the start of the experiment (Fig 3.7). Some containers were covered by a

clear plastic lid (with air holes) to increase humidity and other 'control' containers were

left uncovered. The containers were placed in a greenhouse for eight weeks, exposed

to natural light and a maximum temperature range of 15 - 22 °C. There were three

replicates per treatment. As the plants grew, so the capitula became more distant from

the water level. No attempt was made to keep the water level 1 cm below the capitula

as this would have defeated the object of the experiment. By floating the pots, the

original water level of 4cm above the base of the plants was kept constant in both

treatments. Humidity was not measured, but it was evident from condensation in the

covered containers that the atmosphere was saturated for the duration of the

experiment. The chemical condition of water used in this experiment is considered in

detail in Chapter 4. Growth in weight was measured using the Capitulum Correction

Method (Clymo, 1970) and was expressed as Relative Growth Rate, where RGR = (nL

final plant dry weight - nL original plant dry weight) I time. Increase in shoot length

and the number of innovations produced were also recorded. Innovations are the

product of vegetative reproduction in Sphagnum, and consist of new shoots

resembling the parent plant, which branch from the parent stem.
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3. 3. 3 Results

Difference in RGR, shoot length and innovation number between the treatments were

tested for using the Student-t test assuming equal variances. For RGR data, normal

distribution and equal variance was assumed as the data were in log form. Frequency

distribution suggested that shoot length data were also normally distributed, and Fm

results (Fm = 1.58, d.f. 2,29, p>O.05) showed that variance between the two

treatments did not differ significantly. Data for innovation number, being in the form

of small, whole numbered counts were transformed by the equation tl(x + 0.5).

Giowth in weight did not differ significantly between the control and the covered

Sphagnum (p = 0.267), (Table 3-2, Fig 3.8i). However, growth in length was

significantly greater in plants growing under covered conditions (p 0.0001)(Table 3-

2, Fig 3.8ii). Furthermore, innovation production was also on average, significantly

greater in Sphagnum growing under covered conditions (p 0.0001)(Table 3-2, Fig

3.8iii).

Table 3-2 Growth of S. cuspidatum under different microclimatical regimes (Ex-pt. 2).
[Mean values are given with standard errors in parentheses. RGR = Relative
growth rate (mg mg week dry wt.)]

N° Innovations
_________________	 RGR	 Shoot Length (mm)	 per original shoot

Uncovered (Control)	 0.203 (0.004)	 93.7 (2.126)	 0.73 (0.082)

Covered	 0.210 (0.005)	 168.83 (2.671)	 2.267 (0.158)

Student-t test results	 d.f. = 58	 d.f. = 58	 d.f. = 58
(2- tail)	 t = - 1.1204	 t = -22.005	 t = -8.5867

p=O.2672	 p=O.0001	 p=O.0001

84



Fig 3.8: Expt 2: Growth of Sphagnum cuspida turn in pots (shown in Fig 3.7) at different humidities
for 8 weeks. [Covered pots provided a more humid microclimate. Uncovered pots = Control. Error
bars = 95 % confidence limits]
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Fig 3.8: Continued
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3. 3. 4. Discussion

The results of this experiment suggest that surface humidity may have an important

influence on Sphagnum growth. Conditions provided by the covered containers

facilitated growth of Sphagnum to much greater lengths compared with the control.

This is probably because evapotranspirative stresses were much lower in the covered

containers and Sphagnum shoots were able to sustain capitulum moisture content at

significantly greater distances from the water table. It is likely that growth of

Sphagnum observed beneath a canopy of vascular plants (see above) is also facilitated

in this way.

The average distance between groups of branches (or fascicles) on a stem was

recorded for a sample of three plants from each replicate (Fig 3.9). The results suggest

that this 'inter-fascicular distance' was, on average, greater in longer plants from the

covered containers. Therefore, growth in length appears to have occurred primarily by

stretching or elongation of the stem between fascicles.

It could be argued that increased humidity has served to modify growth form but has

not increased growth as RGR did not differ from the control (Fig. 3.5i). However, it is

possible that growth in mass was limited by other factors, particularly phosphorus

concentration in the bog water used. This is considered in more detail in Chapter 4.

Modification of growth form in this way without an increase in overall mass may

nevertheless be significant for Sphagnum recolonisation. Greater extensional growth

and greater innovation production, would conceivably encourage the vertical

development of Sphagnum cushions. Once established, the microclimate within such

cushions would be more regulated enabling Sphagnum to be more resistant to periodic

drought. Experiments have shown that S. magellanicum and S. fuscum are less

sensitive to low water tables when in dense hummocks or lawns (Buttler et a!, in prep).
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This would be of particular significance to growth of Sphagnum around the periphery

of pools, considered in section 3.2.3. However, this is completely conjectural and

requires further study.

Fig 3.9: Mean Inter Fascicular Distance (I.F.D.) in S. cuspidatum grown under different humidities
[Covered pots provided a more humid microclimate. Uncovered pots = Control. Error bars = 95 %
confidence limits. Each bar represents mean IFD for an individual plant. Three plants were
measured from each replicate U.C. 1 - U.C.3 & C.! - C.3]
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Chapter 4

Some hydrochemical characteristics of cut-over
bogs

4. 1 Field survey of cut-over peatland

There has been little detailed study on the effect of peat extraction on bog

hydrochemistry. However, changes in water quality would be of particular significance

to the development of floating raft vegetation. The aim of this study was to investigate

whether the chemical environment of a milled peat field differed significantly from an

undamaged bog and consider the implications of any differences to Sphagnum

regeneration.

4. 1. 1 Method

Water samples were collected from two contrasting types of cuttings on Thorne

Moors. The Creykes study area was representative of a recently abandoned milled

peat field and the Crowle study area consisted of long abandoned block cuttings

retaining a reasonable depth of ombrotrophic peat (1.10.2). Water samples were

collected in triplicate from the following pits:

Creykes	 Cpl, Cl, C3, CP5, C5, C7, CP9, C9, Cli, CP13, C13, C15 (Fig 1.4)

Crowle	 SP1, SP5, SP9, STA1, STA5, STA9, STA13, STB1, STB5, STB9,

STB13, SP13, SP14 (Fig 1.5)
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Between June 1990 and July 1991, samples were collected bimonthly, filtered and

measured for pH, conductivity and the ionic concentration of calcium, potassium, iron,

soluble reactive phosphorus, ammonium, sulphate and nitrate. Methods of analysis are

outlined in Table 4 -1. Measurement of pH and conductivity continued bimonthly until

July 1993. Conductivity values were corrected for pH (Golterman, Clymo, and

Ohnstad, 1978).

Table 4-1: Methods used in analysis of water samples

PH

Conductivity

Calcium, Iron

Potassium

Nitrate, Sulphate

Jenway 3030 Portable pH Meter

Jenway 4070 Portable Conductivity
Meter

Atomic Absorption Spectrophotometry.
Perkin - Elmer 2100 AAS

Atomic Emission Spectrophotometry
Corning Flame Photometer 410

High Performance Liquid
Chromatography
Dionex 2000i HIPLC

Ammonium-N	 Colorimetric (Indophenol) method
modified from Schemer (1976).
Absorbance measured on Cary 1 UV-
Visible Spectrophotometer (Varian)

Soluble Reactive Phosphorus
	

Colorimetric. Acid Molybdate
Antimony/L -ascorbic acid method
modified from John (1970). Absorbance
measured as for Ammonium.
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4. 1. 2 Results

Fig 4.1 shows the mean concentrations of major ions recorded for Creykes and Crowle

at each sampling event. Mean values were derived by combining data from all the pits

sampled at each study area. Furthermore, data from all the sampling events were

combined to give overall annual means for pits at the Creykes and Crowle study areas

which were then compared using the Student t-test. In all cases the data approximated

a normal distribution. Data were analysed using the Fm to test for homogeneity of

variance so that the appropriate t-test (assuming equal or unequal variances) could be

used. Mean concentrations and t-test results are presented in Table 4 -2.

Table 4-2: Mean pH, conductivity and solute concentration in water from peat cuttings.
[SRP = Soluble reactive phosphorus. All concentrations in mgl t except where stated. Standard Eno in parentheses]

pH	 Cond.	 Ca	 K	 Fe	 SRP NB4-N SO4	NO3
______ ______ pScm _______ _______ _______ jigl' _______ _______ ______

Creykes	 3.4	 425.0	 8.6	 3.3	 1.44	 31.1	 14.9	 41.3	 3.4

	

(0.01)	 (15.4)	 (0.5)	 (0.16)	 (0.15)	 (2.7)	 (0.81)	 (1.25)	 (0.14)

Crowle	 3.44	 158.1	 7.4	 3.0	 1.83	 27.7	 4.4	 24.2	 2.7

	

(0.02)	 (3.6)	 (0.28)	 (0.15)	 (0.16)	 (2.11)	 (0.81)	 (0.5)	 (0.07)

t-value	 -1.73	 16.9	 -2.06	 -1.6	 1.85	 0.98	 -12.21	 12.73	 4.35
df	 507	 262	 120	 152	 154	 145	 96	 61	 71
prob.	 0.08	 <0.001	 0.056	 0.11	 0.067	 0.33	 <0.001	 <0.001	 <0.001
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Concentrations of Ca, K, Fe and SRP in water from pits in the Creykes and Crowle

study areas, remained similar throughout the study period (Fig 4.1). In November

1990, concentrations of Ca and K were temporarily elevated at the Creykes study area,

but overall, means did not differ significantly (p > 0.05) (Table 4-2). The reason for

this apparent 'pulse' of Ca and K in November is not clear. It may be a brief episodic

occurrence following a recent precipitation event or represent a general 'flushing' effect

as the peat field became recharged with water after the summer dry period (Section

3,1). Concentrations of NH4-N, SO4 and NO3 were higher at the Creykes study area

throughout the year (Fig 4.1) and were found, overall, to differ significantly from the

Crowle area (p < 0.001) (Table 4-1). There was some evidence of a flushing effect

with NH4-N, as concentrations greater than 20 mg 11 occurred only in January 1991,

and levels around 10 - 20 mg 11 were more usual (Fig 4.1).

The range of values recorded at the Creykes study area were compared against those

recorded by other workers for undisturbed sites (Fig 4.2). Concentrations of SRP

were similarly small but concentrations of Ca, K, Fe, NH4-N, SO4 and NO3 were all

much higher at Creykes. Ca, SO4 and NH4-N concentrations were the most markedly

elevated. At the Creykes study area, Ca occurred at between 5 - 18 mg 11 compared

to < 3 mg 11 in undisturbed bogs. However, Fig 4.1 suggests that 5 - 10 mg 11 Ca

was more normal at Creykes, values above 10 mg 11 occurred exceptionally in

November 1990 (see above).

Conductivity measurements recorded over three years suggest that conductivity at the

Creykes study area was significantly higher than at the Crowle area (p < 0.001) with a

mean of 425j.iS cm compared with 158j.tS cm' respectively (Table 4-2). It is

evident from Fig 4.3 that conductivity at the Creykes study area, whilst generally

higher than at the Crowle area, was also much less stable during the study period.

Levels are strongly peaked around November 1990 and July - October 1992, falling

sharply afterwards both times. It is tempting to suggest that these peaks represent a
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'flushing' effect of late autumn and winter rainfall, the subsequent fall in conductivity

being due to a dilution effect, but monthly rainfall totals between June 1990 and April

1992 show no clear seasonal pattern (Fig 3.2). Flushing' of the peat may nevertheless

have occurred in response to a general increase in water levels in the peat, which did

show some seasonal trend, for example water table data (Fig 3.1) suggest that high

conductivity recorded in November 1990 corresponded with a period of increasing

'wetness'. Similarly, water levels rose around November - January in 1992 though not

to as high a level. This corresponds with just a small increase in conductivity around

that time (Fig 4.3). However, in July 1992, conductivity was greatest despite the

water table being low, suggesting a winter flushing effect was not responsible. It is

possible that sampling took place after a recent precipitation event which caused a

pulse of solutes to be released from the peat or, alternatively, it may represent a

concentration effect due to high evaporative losses during the summer. It was notable

that a high conductivity persisted in the autumn but was subsequently lowered during

the winter possibly due to a dilution effect. Therefore, some degree of seasonality may

have influenced the conductivity values recorded.

Overall, no significant difference was found between the pH of water at the Creykes

and Crowle study areas, both sites recording a mean of pH 3.4 (Table 4-2). However,

in Fig 4.4 it is evident that during the second half of the study period there was a trend

towards a greater frequency of lower pH values at Creykes. A regression line can be

fitted to data from the Creykes area which shows a linear trend of decreasing pH with

time (p = 0.0002). No significant relationship was found for the Crowle area (p =

0.1461) (Fig 4.5). This suggests that since ditches were blocked at Creykes there has

been a trend of increasing acidification during the study period. If the site had been

monitored for longer then a significant difference in mean pH between the Creykes and

Crowle study areas may have been detected. The range of pH values recorded at the

Creykes area were compared to those recorded at undisturbed sites (Fig 4.2). Water at

Creykes was generally of comparatively low pH. It is evident from Fig 4.4 that very
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low pH values of 3.0 - 3.2 persisted in flooded pits at the Creykes study area for

several months at a time.
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Fig 4.2 Water quality of cut-over bogs compared with undisturbed sites.
[Bars represent the range of pH and solute concentrations recorded in water samples from the
Creykes milling field (4.1), compared with values recorded by other workers for undisturbed bog]
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Fig. 4.3 Mean Conductivity of water samples taken from the Creykes and Crowle study areas during
the study period. [Values given are corrected for pH. Error bars = 95% confidence limits]
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Fig. 4.5 Overall trends observed in the pH of water samples taken from the Creykes and Crowle
study areas during the study period [Error bars = 95% confidence limits]
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4. 1. 3 Discussion

4. 1. 3. 1 Sources of enrichment

Results provide some suggestion for chemical enrichment at both the Creykes and

Crowle study areas compared with undisturbed bog. Furthermore, at the Creykes

area, concentrations of SO4, NH4-N and NO3 were significantly greater than at the

Crowle area. The source of this enrichment is not known, however, several

possibilities are considered below:

4. 1. 3. 1. 1 Basal contamination

Exposure of the mineral substratum may lead to base enrichment of cuttings (2.2.3.3).

The bottom of pits at the Creykes study area frequently made contact with, or

remained very close to, the mineral substratum. However, it is unlikely the mineral

layer was a major source of contamination as concentrations of Ca, Fe and K were not

significantly greater at the Creykes area than at the Crowle area, the latter of which

retained at least a meter of peat below the pits. This supports observations made by

Wheeler (unpublished data) that in parts of Thorne and Hatfield Moors, underlying

sands and gravels are of low pH and base status.

4. 1. 3. 1. 2 Drainage

Drying of peat may cause biochemical oxidation, mineralisation and release of nutrients

(Streefkerk & Casparie, 1989). On an intact bog, Breakke (1981) observed that the

process of N - mineralisation may show seasonal variation due to the effect of climate

on peat saturation and microbial activity. A seasonally-low water table may lead to

nutrient release on rewetting. Drying-out of peat has also been observed to cause a

four-fold increase in total amounts of soluble N due to increased aerobic microbial
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activity (Piispanen & Lähdesmäki, 1983). At the Moor House Nature Reserve (N.

Pennines) concentrations of SO4 2 in bog pools were observed to increase four-fold

during periods of dry weather, accompanied by a fall in pH below 4.0 (Gorham, 1956).

This was attributed to suiphide oxidation and release of protons. Note in this study,

high conductivity and low pH values were generally recorded where the peat substrate

was dry (Table 2-2).

Peat drainage during harvesting may lead to extensive sulphide oxidation and N -

mineralisation which may explain the enriched conditions and low pH recorded at

Thorne Moors. Furthermore, these processes remain important after peat cutting

where sites remain drained or where drains have been blocked but the water-table

remains unstable (Chapter 3). The Creykes area had suffered much more intensive and

more recent disturbance than Crowle. It was also prone to much more severe water

table fluctuation (Chapter 3). This may explain why higher concentrations of NIH4-N,

SO4 and NO3 and greater conductivity were recorded there. It may also explain the

trend observed at Creykes towards more acidic conditions. A lack of vegetation could

also explain, at least in part, the higher N- values recorded at the Creykes study area as

no plants were present there to assimilate excess N, however this is purely conjectural.

4. 1. 3. 1. 3 Anthropogenic inputs

1) Run off from surrounding agricultural land - This is most likely to occur where the

bog has developed in a basin, especially where ditches have been deliberately

introduced into the bog to drain adjoining fields for example at Danes Moss in

Cheshire (Meade, 1992). This is unlikely to be of significance at Thorne Moors as,

unlike Danes Moss, it is not surrounded by higher ground and drainage occurs

primarily away from the bog.

100



2) Limestone dust - Windblown dust from limestone trackways at Thorne may have

contributed to the elevated calcium concentrations recorded. However, Smart et al

(1989) recorded elevated calcium concentrations in the original National Nature

Reserve at Thorne Moors prior to construction of the main limestone road.

Alternatively, it is possible that liming of surrounding agricultural land may have had

an influence on calcium concentrations in the bog but this is only speculation and its

true origin remains unclear.

3) Atmospheric pollution - In ombrotrophic systems the chemical environment is

particularly susceptible to atmospheric inputs. The principal contaminants are likely to

be those associated with 'acid rain' i.e. SO2 and its derivatives, especially bisulphite and

sulphate, and nitrogen oxides (NO) and derivatives, especially nitrate and ammonia.

Emissions of SO2 and NO originate from fossil fuel combustion, with motor vehicle

exhaust making a major contribution to the latter. The distribution of major emissions

generally reflects the distribution of power stations, industry and major centres of

population. (Gillham, Leech & Eggleston, 1992). This is of potential importance to

Thorne Moor as numerous major power stations operate in the area of the

Humberhead levels. By contrast, the major source of ammonia emissions is animal

husbandry. Agriculture adjacent to Thorne is largely arable, though a number of

'factory' farms exist in the region. The major pathways by which these pollutants may

enter the bog is by wet and dry deposition. However, no records exist for inputs to

Thorne and no attempt was made to measure them in this study. Consequently, whilst

atmospheric inputs may have contributed to the high SO4 and NH4-N concentrations

and low pH values recorded at Thorne, their actual importance remains unknown. If

atmospheric pollution was solely responsible, then it is not obvious why concentrations

of some ions would be greater at the Creykes study area compared with the Crowie

area unless other factors are causing this this discontinuity (see above). In the future,

it would be useful to investigate whether high N is a characteristic of other milled peat

fields on Thorne Moors, when they eventually come out of production.
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Data on the water quality of cut-over bogs are scarce. However, the results from a

number of studies are presented in Table 4 -3, alongside data recorded for undisturbed

bog. High SO4 concentrations were also observed at Danes Moss, Cheshire and in

NW Germany, Blankenburg (unpubi.) recorded high NH4-N concentrations for a

milled peat field in the Leegmoor region. In North America, Clausen & Brooks (1983)

compared run-off water from 5 'mined' bogs in Minnesota with that of 66 natural

'control' bogs. Run-off from mined bogs contained significantly greater concentrations

of ammonia-N. Therefore the enriched conditions observed at Thorne appear not to be

unique but part of a general trend of enrichment in cut-over areas. Solute

concentrations recorded in the Creykes study area, were significantly greater than

those recorded by Smart, eta! (1989) for the National Nature Reserve area of Thorne.

The reason for this is not clear but it may again reflect the fact that Creykes was much

more severely, and more recently disturbed and that it supports little vegetation for

assimilating the nutrients. It is interesting to note that despite a general level of

enrichment, concentrations of SRP at Creykes remained comparable to those of

undisturbed bog, i.e. negligible.

Table 4-3: Some chemical conditions in peat cutting sites (compared
with little-disturbed mires) [Concentrations in mg 11; blank cells indicate no
data]	 ______ ______ ______ ______ _______

	

Natural	 Danes	 Thorne	 Thorne	 Leegmoor

	

waters,	 Moss,	 Waste,	 Waste,	 Milling
UK	 Cheshire Vegetated Milling 	 Field

	

_________ __________ __________ cuttings 	 Field	 ___________
Ca	 0.2-3.0	 3.2- 11.4	 3.8-6.2	 5.1-18.2 _________

	

Mg0.1 -2.5	 1.7-2.9	 1.8 -4.5 _________ __________
K0.04 - 2.0 0.5 - 0.8 0.6 - 2.1 2.1 - 6.6 __________
Na2.3 -23.0 _________ 4.6 -6.3 _________ __________
Fe - <1.0 _______ _______ 0.6-2.2 ________
SO	 2.4 - 10.0 18.6-32.9 6.2 - 13.8 27 - 42.0 __________
NO1	0.1-0.3	 1.3-2.2	 0.04-0.2	 1.8-6.2	 0.6-2.5

N1-14-N	 _________ 0.4 -0.7	 0.0 -0.3	 5.5 - 29.0	 7.0 - 13.5
SRP	 0.0 - 0.05	 0.0 - 0.3	 0.0 - 0.08 0.0 - 0.06	 0.0 - 0.05

	

pH- 3.5 -4.7	 3.0 - 3.8	 3.8	 3.0 - 3.7 __________
Source	 Clausen	 Meade	 Smart	 Money	 Blanken-

	

& Brooks	 (1992)	 Wheeler	 (this	 burg

	

(1980)	 & Willis	 study)	 (unpub.)

	

Proctor	 (1989)
________ (1992) _________ _________ _________ __________
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4. 1. 3. 2 Implications of hydrochemical changes to Sphagnum regeneration

4. 1.3.2.1 Sulphur

Sulphur pollutants have long been considered important in explaining loss of

Sphagnum from south Pennine blanket mires which occurred proximate to

industrialisation (Tallis, 1964). Numerous fumigation experiments with S02 and

irrigation experiments with bisulphite and sulphate have demonstrated that Sphagnum

species are differentially sensitive to S pollution (Ferguson, Lee & Bell, 1978).

Ferguson & Lee (1980) showed that irrigation of an unpolluted bog surface in

Snowdonia with approximately 1 mg 11 HSO3, reduced growth of Sphagnum

magellanicum and £ papillosum. In laboratory experiments growth of £

cuspidalum was significantly reduced when irrigated with 9.6 mg 11 HSO3 (Baxter,

Emes & Lee, 1989). The concentration of HS03 in rainfall at Thorne Moors was not

measured in this study, but Smart (1983) measured the concentration between March

and December 1981 at 5.8 mg 11. Therefore inputs of HS03 at Thorne may well be

sufficient to inhibit growth of some Sphagnum species.

Bisulphite is rapidly oxidised to sulphate having a half life of around 5.5 hours

(Ferguson et a!, 1978). Consequently, for plants growing in pools exposure to HS03

will be acute and episodic but exposure to SO4 2- will be more long term. Application

of an artificial rain solution containing 14.4 mg 11 So4 2- has been shown to reduce

the growth of S. recurvum, S. papillosum, S. magellanicum, S. capillfolium and S.

tenellum (Ferguson & Lee, 1983). This suggests that SO4 2 concentration recorded at

the Creykes study area may be toxic to Sphagnum growth. However, by contrast to

this, Bayley, Rochefort & Vitt (1990) found that spraying a poor fen once a month

with lake water modified to contain 26.9 mg 11 SO42 did not reduce Sphagnum

growth. It is possible in the latter case that exposure time was not sufficient to
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produce a toxic effect. Austin & Wieder, (1987) found growth of Sphagnum in

solution culture was significantly reduced at 422 jimolIl (40.5 mg 11) so42-.

However, in contrast, immersion experiments with S. cuspidatum, have shown that

chronic exposure to concentrations as high as 96 mg 11 SO42 may only reduce stem

elongation slightly (Ferguson ci a!, 1978). It is therefore uncertain whether SO42

concentrations at Thorne may limit Sphagnum regeneration. Furthermore, deposition

rates of S pollutants have fallen dramatically in the last few decades and are no longer

considered high enough to explain the paucity of Sphagnum in the S. Pennines (J. Lee

pers comm). Ferguson & Lee (1983) suggest that deposition rates in the S. Pennines

may remain super optimal for Sphagnum but cannot entirely account for the failure of

transplants. Similarly, at Thorne Moors it is unlikely that the high SO42

concentrations recorded will alone prevent Sphagnum regeneration, but the possibility

that growth is constrained cannot be dismissed.

4. 1. 3. 2. 2 Nitrogen

The effect of high atmospheric nitrogen on Sphagnum growth has been the subject of

quite intensive study. Whilst atmospheric sulphur deposition has decreased, N

deposition has increased markedly over the last century. Moreover, NO deposition

has significantly increased in recent decades in response to increased use of the motor

car. Consequently, nitrogen pollution is now considered by some workers as an

important factor limiting Sphagnum regeneration in the south Pennines (Press & Lee,

1982; Woodin, Press & Lee, 1985; Press, Woodin & Lee, 1986).

Press et a! (1986) found Sphagnum cuspidatum collected in North Wales and grown in

solution culture, showed reduced growth in response to small increases in N, i.e.

0,01mM NO3 (0.62 mg 11) and 0.01mM NH4 (0.18 mg 11), the latter having the

most toxic effect. Furthermore, growth of S. cuspidatuni in pools at Holme Moss in

the S. Pennines was considerably less than at the unpolluted Berwyn Mountains in N.
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Wales and this was associated with a larger increase in tissue N content. Clymo

(1987) reported that addition of < 2 mg 11 NO3- and < 1mg 11 NH4 to a distilled

water medium depressed growth of S. papillosum. He also pointed out that these

concentrations were similar to those recorded in UK rainfall. Concentrations of

N1I4+ exceeding 4 mg i have also been shown to reduce growth of S.

magellanicum, with a strong depression occurring at around 10 mg 1- 1 (Rudolf &

Voigt, 1986).

Nitrogen toxicity appears to show some species specificity. This was demonstrated by

TwenhOven, (1992) in field experiments on S. recurvum and S. magellanicum on an

ombrotrophic mire near Kiel, Germany. Unmodified rain contained 1.5 mg 11 NTrI4+

and 4.2 mg 11 NO3-. These concentrations were then elevated independently to 6.7

mg 11 and 18.6 mg 11 respectively. On the hummocks NO3- and NH4 reduced

growth of both species while in the lower part of the hummock-hollow gradient

growth of S. recurvum was promoted. There was also some evidence of reduced

growth in S. magellanicum and under increased N deposition, in the hollows and lawns

S. recurvum was able to out-compete S. magellanicum.

Evidence considered so far suggests the high concentrations of f{4+ and NO3

recorded in the Creykes area of Thorne may be inhibitory to Sphagnum regeneration.

However, there is also considerable experimental evidence to suggest that modest N

enrichment may stimulate Sphagnum growth. In laboratory culture, Rudolf & Voigt

(1986) found that NO3- concentrations of up to 322 j.tM (20 mg 11) were favourable

to the growth of S. magellanicum (though 100 jiM was recommended as an upper

limit due to accumulation of green algae). Baker & Boatman (1990) found that

reducing NO3- from 12 mg 11 to 0.2 mg i1 while keeping other nutrient ions in

culture solution constant caused a significant reduction in growth of S. cuspidatum.

Furthermore, concentrations of 20 mg 11 NO3- have been found to be favourable to

the growth of S. cuspidalum and several other Sphagnum species in culture solution
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(Baker & Macklon, 1987 unpublished; Baker & Boatman, 1990). Li & Glime (1990)

found that 3.4 mg 11 N}T4 and 12.4 mg lNO3 in culture solution had no adverse

effect on the growth of S. magellanicum and increased growth in length of S.

papillosum. Bayley et a! (1990) found that spraying lake water modified to contain

6.8 mg lNO3 on to poor fen once a month increased Sphagnum productivity over 2-

3 years and although growth declined beyond this time span, it was not reduced below

the control. Aerts, Wallén & Malmer (1992) applied nitrogen as NH4NO3 at rates

similar to total N deposition in polluted parts of Britain and recorded a four fold

increase in Sphagnum productivity in a relatively unpolluted bog in Swedish Lapland.

In a more polluted southern Swedish bog, added N did not increase Sphagnum growth

but neither was it detrimental. Similarly, Austin & Weider (1987) observed in

laboratory studies lasting 40 - 50 days that moderate additions of NH4 and NO3 did

not adversely affect Sphagnum growth.

Experimental results show considerable inconsistency, probably due to variations in

experimental conditions. Nitrogen toxicity may be partly dependent on the balance of

other nutrients. For example concentrations of NH4+ up to 18 mg 11 have been

shown not to affect the growth of S. cuspidatum in submerged culture when a high

CO2 concentration (1000 jiM CO2/l- 1 ) was simultaneously applied (Paffen and

Roelofs, 1991). Furthermore, plants of the same species collected from geographically

different locations may show variations in sensitivity (Press et a!, 1986). Therefore, it

remains difficult to assess the potential importance of high N to Sphagnum

regeneration at Thorne.

4. 1. 3. 2. 3 Potassium

Concentrations of K at Thome Moors were measured in the range 2.1 - 6.6 mg 11 (Fig

4.2) with a mean of 3.3 mg 11 (Table 4 -2). This compares to values of< 2 mg 11

recorded in undisturbed sites (Table 1-3, Fig 4.2). In laboratory experiments, Baker &
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Boatman (1990) found that 7.8 nig 1 1 K in culture solution was favourable to growth

of S. cuspidatum and that reducing the concentration depressed growth. Critical

evidence for the importance of K in the field is lacking but Talus (1973) suggests that

high K concentrations (5-10 mg 11) may be important in the development of floating

Sphagnum communities in north Cheshire basin mires. Therefore, although there has

been little detailed study on the influence of K on Sphagnum growth, the evidence that

does exist indicates that concentrations of K recorded at Thorne Moors are likely to be

beneficial rather than detrimental to Sphagnum growth.

4. 1. 3. 2. 4 Iron

At Thorne Moors Fe concentrations in the range 0.6 to 2.2 mg ii were measured

compared to < 1 mg 11 recorded for undisturbed sites (Table 1-3, Fig 4.2). The effect

of Fe concentration on Sphagnum growth has not been studied in any detail.

Ferguson, Robinson, Press & Lee (1984) showed that Fe concentration in plants

transplanted from unpolluted sites to polluted sites increased four fold in 18 months.

Consequently, Aerts et a! (1992) suggest that poor growth of Sphagnum in the South

Pennines may be due not only to high loads of atmospheric nitrogen but also to iron

toxicity. Therefore, increased Fe concentration may inhibit Sphagnum regeneration at

Thome but critical evidence for this is lacking,

The importance of elevated calcium concentration, low pH and low SRP concentration

on Sphagnum growth were investigated experimentally in this study. They are

considered independently in more detail below.
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4.2 The effect of calcium concentration on the growth of

Sphagnum (Experiment 3)

The concentration of calcium in water collected from the Creykes study area ranged

from 5.1 - 18.2 mg 11 (see above). The aim of this laboratory investigation was to

detennine whether calcium concentration in this range influenced Sphagnum growth.

4. 2. 1 Method

Three species of Sphagnum of contrasting habitat were used:

S. cuspidatuin	 - a species of pools and wet hollows generally in ombrotrophic

bogs though occasionally in weakly minerotrophic sites.

S. magellanicurn	 - a species forming lawns and hummocks, typically in

ombrotrophic conditions

S. recurvuni	 - may form hummocks or occur in pools, generally in

minerotrophic fens, though sometimes in ombrotrophic bogs.

Individual gametophytes, cut to 5cm in length, were washed in distilled water and then

grown in solution culture in pots as shown in Fig 4.6. The culture solution was a

modification of the medium used by Boatman & Lark (1971) and is outlined in Table

4-4. Unlike their experiments, the plants used in this investigation were not cultivated

in sterile conditions but were collected from the field (1.11). Consequently, the

concentration of nitrate was reduced from 20 mg ii in the original formulation to 4

mg 11. This latter figure is the upper limit suggested by Rudolph & Voigt (1986) to

prevent prolific growth of algae.
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The Sphagnum material used in this study was collected from a number of sites

(Tablel -4). However, the material was stored for several months in experimental

trenches at the Crowle study area (1.11) prior to any experimentation. Therefore, all

species used would have had a chance to acclimatise to similar conditions prior to their

use in experiments.

Table 4-4: Composition of culture solution used in Experiments 3 and 4.

Stock solution (5)

Compound
	

Quantity (mg t1)

NaH2PO42H2O
	

208.0
Ca(NO3)24H20
	

72.7
CaCl26H2O
	

206.0
KNO3
	

77.6
MgSO47H2O
	

225.0
Na Cl
	

5.6
MnSO4H2O
	

2.85
CuSO45H2O
	

0.24
ZnSO47H2O
	

0.29
H3B03	 1.86
(NH4)6Mo7O244H20
	

0.035
(NH4)2SO4
	

62.245
FeEDTA
	

5.0

Concentration of major ions in 0.1 (S) 1j

Ca2
Mg2

Na
NH4
NO3
so42

-H2PO4

Calcium concentration in the standard culture solution was 5.0 mg 11. Sphagnum was

also grown at three higher concentrations i.e. 10, 15 and 20 mg 11 . Calcium was

added to the culture solution as CaC12 6H20. The pH of all solutions was adjusted to

pH 4 using 0.5 M HCI. Nine plants were grown in each pot, with three replicate pots

per treatment for each species. The experiment was conducted in a greenhouse under

5.0
2.4
3.0
2.9
1.7
4.0
14.1
12.6
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natural light for 9 weeks. During this period the maximum temperature range was

between 18 - 25 0C . The culture solution was changed every 3 days to maintain water

quality and prevent algal growth. The position of the pots was rotated at each solution

change. As the plants grew upwards they were pushed down through the polythene to

maintain the water level just below the capitulum throughout the duration of the

experiment.

Fig 4.6 Pot design for solution culture experiments.

Sphagnum piants pushed through
holes in membrane

Black plastic membrane
keeps culture solution dark
and limits algal growth.

Black plastic pot

Polystyrene float stitched to plastic
membrane with nylon mono filament

Solution culture (kept dark)	 cm

9 cm
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Plants were harvested and measured according to the Capitulum Correction Method

(Clymo, 1970) and the results expressed as relative growth rate i.e. RGR = (nL final

plant thy weight - nL original plant dry weight) / time. Any significant effect of

treatment was tested for using ANOVA. As RGR data were already in log form, it was

considered unnecessary to test for normality within the data sets or to test for

homogeneity of variance.

4. 2. 2 Results

Mean values for RGR are given in Table 4-5 along with probability values derived

from ANOVA and results are shown graphically in Fig 4.7. Increased calcium

concentration up to 20 mg 11 had no effect on the growth of S. cuspidatum and S.

recurvum. However, growth of S. magellanicum was significantly reduced at 20 mg

1-1 (p= 0.000 1).

Table 4.5: Expt. 3 - Mean Relative Growth Rate (RGR) of Sphagnum grown at different Ca2+
concentration. [Standard Errors given in parentheses. RGR in mg 1 mg 1 week dry wt]

______________ _____________ Calcium concentration mg	 ______________ ____________
ANOVA

______________ 5 (control) 	 10	 15	 20	 results

S. cuspitatum	 0.188	 0.186	 0.198	 0.202	 d.f. = 3
(0.006)	 (0.004)	 (0.005)	 (0.004)	 F = 2.673

___________ ___________ ___________ ___________ ___________ p=O.05l3

S. magellanicum	 0.095	 0.110	 0.090	 0.068	 d.f. = 3
(0.005)	 (0.004)	 (0.007)	 (0.007)	 F = 8.647

___________ ___________ ___________ ___________ ___________ p=o.000l

S. recurvum	 0.171	 0.176	 0.165	 0.160	 d.f.=3
(0.006)	 (0.006)	 (0.009)	 (0.006)	 F= 1.126

___________ ___________ ___________ ___________ ___________ p=O.342
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Fig 4.7 Mean Relative Growth Rate of Sphagnum grown in laboratory culture for nine weeks at
different calcium concentrations (Experiment 3)(4.2). [Error bars = 95 % confidence limits].
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4. 2. 3 Discussion

Results suggest that calcium concentration in the upper range of those recorded at the

Creykes milling field (5 - 18.2 mg 11) may inhibit growth of some Sphagnum species.

However, concentrations above 15 mg ii were only recorded temporarily and

concentrations of 5 - 10 mg 11 occurred on average (4.1.2). Consequently, results

from this experiment suggest that overall yearly growth of Sphagnum magellanicum is

unlikely to be too adversely influenced by calcium concentrations recorded on average

at Thorne.

Clymo (1973) grew twelve Sphagnum species at calcium concentrations of

approximately 1, 10 and 100 mg 11. He found a trend towards reduced growth in

response to increased calcium but this pattern was not significant. He concluded that

calcium had little influence independently on growth of Sphagnum but significantly

reduced growth in combination with a pH elevated above 3.5. However, in

Experiment 3 outlined above, pH of the culture solution was relatively low at pH 4.0.

Therefore, in contrast to Clymo's observations, results from this experiment suggest

that growth of S. magellanicum (and possibly other species) may be significantly

reduced by moderate increases in calcium concentration whilst maintaining a low pH.

Low pH of the culture solution may however, explain why no toxic effect of calcium

was observed in S. magellanicum at lower concentrations or at all in S. cuspidatum

and S. recurvum. The pH of water samples taken from the Creykes study area were

generally below pH 4.0 (4.1.2). Therefore, any toxic effect of calcium enrichment in

cut-over areas may be negated to some extent by the low pH which also appears to

characterise such area.
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4.3 The effect ofpH on Sphagnum growth (Experiment 4)

4. 3. 1 Introduction

Evidence from Thorne Moor suggests that commercially cut-over areas are more

acidic environments than undisturbed bogs. A mean pH of 3.4 was recorded for the

Creykes milled peat field with values frequently measured as low as pH 3.0 (4.1.2).

The aim of this experiment was to determine whether such low pH values adversely

influence the growth of Sphagnum. Andrus (1986) studied the distribution of

Sphagnum species with pH in 49 New York State mires. The pH ranges of four raised

bog species are summarised below. The figures in brackets represents the pH value at

which plants were most frequent:

Sphagnum papillosum	 3.6 - 6.4 (4.0 - 4.5)

Sphagnum magellanicum	 3.5 - 6.3 (4.0 - 5.0)

Sphagnum cuspidatum	 3.5 - 5.9 (4.0)

Sphagnum rubellum	 3.5 - 5.4 (3.8)

Similar trends have been identified for a plateau bog on the southern coast of Finland

(Heikkila & Loytonen, 1987) and for Sphagnum communities colonising floating mats

of fen vegetation in the Norfolk Broads (Wheeler & Shaw, 1992 Unpubi.). It is also

notable in Chapter 2, that floating Sphagnum communities developed in old turf

cuttings rarely occurred at pH values below 4.0 (Table 2-2).

Sphagnum bogs are naturally acid systems and the ability of Sphagnum to acidify its

own environment is widely accepted (refer to sect. 1.6.3). Therefore, it may seem

unusual to suggest that low pH may limit Sphagnum growth. However, as pH is a

logarithmic scale, pH 3.0 represents a H+ concentration an order of magnitude higher
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than pH 4.0. Therefore pH values recorded at Thorne represent conditions

significantly more acidic than those outlined above for natural Sphagnum communities.

There has been little detailed study on the effects of pH on Sphagnum growth. Clymo

(1973) observed that there was a trend for several species to grow better at pH 5.5

than at pH 3.5, but this was not significant. At pH 3.0 it is possible a significant effect

would have been seen. This investigation considered in more detail the effect of pH

within the range recorded for cut-over and undisturbed raised bogs.

4. 3. 2 Method

Experimental design closely followed that of Experiment 3 (see above). Plants were

grown in culture solution at four different pH values i.e. 4.7 , 4.0, 3.5 and 3.0. The

control culture solution used (Table 4-4) had a natural pH of 4.7. This was acidified

using 0.5 M HC1 to produce the three other pH treatments. The experiment lasted for

sixty days in conditions as outlined in Experiment 3 (see above). The culture solution

was changed every three days. At each change the solution pH was measured. After

three days all treatments remained at their designated pH except the 4.7 treatment

which was consistently reduced to pH 4.3. Therefore, pH 4.3 is always given in

parentheses when this treatment is referred to. Growth was measured as outlined in

Experiment 3 (see above) and the data analysed using ANOVA.

4. 3. 3 Results

S. recurvum : pH significantly influenced the growth of S. recurvum (p =

O.0001)(Table 4-6). There was a trend of increased growth with increasing pH (Fig

4.8). The treatments which showed significant differences were determined by

partitioning the sum of squares (PSS) (Table 4-7). Growth at pH 3.0 was significantly

lower than growth at pH 3.5, 4.0 and 4.7(4 . 3) (p < 0.001). Growth at pH 3.5 was not
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significantly lower than pH 4.0 but was significantly less than at pH 4.7(43) ( p =

001).

S. cuspidatum: ANOVA results show that pH significantly influenced growth of this

species (p = 0.0001)(Table 4-6). Fig 4.8 suggests an optimum curve whereby growth

increased from pH 3.0 to 4.0 and then declined at pH 4.7(43). Results from PSS

(Table 4-7) show that growth at pH 3.0 was significantly lower than at pH 3.5, 4.0 and

4.7(43) (p < 0.001). Growth at pH 4.0 was optimal, being significantly greater than at

pH 3.5 and 4.7(43) ( p < 0.001). Growth at pH 4.7(43) did not differ significantly

from growth at pH 3.5 ( p > 0.05).

S. magellanicum : Fig 4.8 suggests a trend towards reduced growth at pH 3.0.

However results from ANOVA suggest this difference is not significant (p = 0.1886)

(Table 4-6). Therefore, pH treatment in the range used had no significant effect on

growth of this species under these experimental conditions.

4. 3. 4 Discussion

Results showed that below pH 4.7(43) conditions were sub-optimal for the growth of

Sphagnum recurvum. This is perhaps unsurprising as S. recurvum is a typical species

of poor-fen environments. Nevertheless, it is an important coloniser of cuttings at

Thorne Moors and in other raised bogs, possibly in response to factors such as nutrient

enrichment (2.2.3.3) The evidence presented above suggests that pH values in the

range recorded at Thorne (4.1.2) are sub-optimal for its growth.

Similarly, the results suggest that pH values below 4.0 are sub-optimal for growth of

S. cuspidalum. Therefore, highly acidic conditions measured at Thorne may also limit

growth of this species. Unlike S. recurvum, above pH 4.0 growth of S. cuspidatum

declined, possibly reflecting its less base tolerant nature.
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Table 4.6: Expt. 4- Mean Relative Growth Rate (RGR) of Spha"num grown at different pH.
[Standard Errors given m parentheses. RGR in mg mg 1 week 1 thy ]

_____________ ____________ 	 pH	 _____________ ____________

3.0	 3.5	 4.0	 4.7(43)	 ANOVA
______________ _____________ ______________ ______________ ______________ 	 results

S. cuspidatum	 0.123	 0.143	 0.163	 0.139	 d.f. 3, 107
(0.005)	 (0.006)	 (0.006)	 (0.003)	 F = 11.815

___________ __________ ___________ ___________ ___________ p=O.0001

S. magellanicum	 0.100	 0.117	 0.115	 0.116	 d.f.3, 107
(0.006)	 (0.006)	 (0.005)	 (0.007)	 F = 1.623

___________ __________ ___________ ___________ ___________ p=0.l886

5. recurvum	 0.132	 0.158	 0.171	 0.186	 d.f. 3, 107
(0.007)	 (0.006)	 (0.006)	 (0.006)	 F = 13.034

___________ __________ ___________ ___________ ___________ p=0.0001

Table 4.7: Expt. 4 - Effect of pH on growth of Sphagnum - results from partitioning the sum of
squares

S. recurvum	 S. cuspidatum

pH 3.0 vs (3.5, 4.0, 4.7(43))	 d.f. = 1, 107	 pH 3.0 vs (3.5, 4.0, 4.7 (43))	 d.f= 1, 107
F = 34	 F=24.2

_________________ P= 0.001	 ____________________ p= 0.001

pH 3.5 vs 4.0	 d.f. = 1, 53	 pH 4.0 vs (3.5, 4.7(43))	 d.f. = 1, 80
F = 1.848	 F=14.24

________________	 p>O.O5	 ___________________	 pO.00l

pH 3.5 vs 4.7(43)	 d.f. = 1, 53	 pH 3.5 vs 4.7(4.3)	 d.f. = 1, 53
F=9.524	 F=1.424

________________	 p=0.Ol	 p>0.05
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Fig 4.8 Mean Relative Growth Rate of Sphagnum grown in laboratory culture for nine weeks at
different pH (Experiment 4)(4.3). [Error bars = 95 % confidence limits].
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These results are in broad agreement with observations made by Austin & Weider

(1987), In experiments lasting 50 days, they found that three other species of

Sphagnum grew markedly less in culture solution at pH 3.0 compared with 4.0.

Clymo (1987) found that changing culture solution pH by 2 units either side of pH 5.5,

caused only a small change (0.1 - 0.2 units) in the cytoplasm pH of Sphagnum plants.

Therefore, he suggests that shifts in pH of that order are unlikely to adversely affect

Sphagnum growth. However, his experiments lasted only a few days and longer

exposure may have produced a different result. Similarly Bayley et al, (1990) found

spraying lake water modified to pH 3.0 onto a poor fen did not adversely affect growth

of Sphagnum. However, water was only sprayed once a month so exposure was very

short and episodic. Evidence from sect. 4.1.2, suggests that plants growing in pools at

Thorne may be chronically exposed to pH below 3.5. Therefore, Experiment 4

represents more realistic exposure conditions. Furthermore, it is possible if the

experiment had lasted longer than nine weeks a response to low pH may also have

been observed in S. magellanicum.
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4.4 The efftct ofphosphorus and lime on the submerged growth

of Sphagnum in the field (Experiment 5)

4. 4. 1 Introduction

The concentration of phosphorus in ombrotrophic bog waters is generally very small

(1.6.3). Based on empirical evidence, some workers have suggested that low

phosphorus may limit Sphagnum productivity. McVean (1959) observed that when

ground rock phosphate was applied to a bog surface in preparation for forestry, the

growth rate of Sphagnum compaclum, S. auriculalum, S. cuspidatum and S. tenellum

appeared to increase. Baker & Boatman (1990) noted that Sphagnum plants collected

from ombrotrophic sites on the Silver Flowe in 1983 and 1984 showed higher

innovation frequency from sites at the southern end of the reserve. Coniferous forests

surrounded or were adjacent to these sites and in September 1982 these forests were

fertilised from the air with rock phosphate and potassium chloride. Therefore, the

higher innovation frequency observed may have been a consequence of fertiliser drift.

More recently laboratory studies have provided further evidence of the importance of

phosphorus to Sphagnum. Clymo & Hayward (1982) observed that S. papillosum

was able to take up phosphate rapidly from solution and suggested that growth rate of

Sphagirnm may be limited in the field by the supply of phosphate. However, in further

experiments on S. papillosum, Clymo (1987) found that addition of a dilute solution

of orthophosphate to plants growing in a distilled water medium reduced growth at

concentrations less than 1 mg j1 The balance of other ions in solution appears

important in determining the response of Sphagnum to phosphorus. In distilled water,

dilute solutions of inorganic P may kill Sphagnum (Clymo, 1987), however, in the

presence of other nutrient ions numerous workers have observed a fertilising effect.

For example, in solution culture, Baker & Boatman (1990) observed a reduction in

growth of S. cuspidatum at concentrations of H2PO4 below 7.6 mg i1. When the
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concentration of this element was enhanced, other elements, particularly N, became

limiting. They concluded that in ombrotrophic conditions innovation production in

Sphagnum is limited by the concentration of P in the water. Similarly, Li & Glime (in

prep., cited Li & Glime, 1990) found that growth in length and dry weight of

Sphagnum papillosum and S. magellanicum increased as phosphorus concentrations in

culture solution increased within less than a 0.1 mM (9.7 mg 11) H2PO42- range.

Evidence presented in Section 4.1 suggests that whilst peat extraction may lead to

some degree of chemical enrichment, concentrations of phosphorus remain negligible,

similar to undisturbed systems. Water quality measurements made for Thorne Moors

suggest that phosphorus is the one nutrient most likely to be limiting (Table 4-2). This

experiment had two main aims:

1, To determine whether growth of Sphagnum in the field may be enhanced by

elevating phosphorus concentration in bog water.

2. To determine whether increasing the pH of pool water at Thorne will encourage

Sphagnum growth (Evidence from Experiment 4 suggests that the pH of pool water at

Thorne is sub-optimal for Sphagnum growth)

4. 4. 2 Method

The square experimental pits in the Crowle study area of Thorne were utilised for this

investigation (1.10.2). Sphagnum was grown under four different chemical conditions:

1, CONTROL - no treatment

2. + LIME (to elevate pH)

3, + PHOSPHORUS (+P)

4. + LIME +P - both treatments
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The experimental pits each contained approximately 4000 litres of water. Water

quality of pits in the Crowle study area is considered in Section 4.1. It was calculated

that 30 g of NaH2PO4 would be required to raise the concentration of soluble reactive

phosphorus in the pit water from 0.05 mg ii to 2 mg ii. It was estimated from

simple laboratory trials, in which lime was added to small, known volumes of pit water,

that 160 g of laboratory standard CaCO3 was required to raise the pH of 4000 litres of

pit water from around pH 3.0 - 3.2 up to pH 4.0. The toxic effect of lime on

Sphagnum is well recognised (Mackenzie, 1992). However, this generally applies to

direct dusting of Sphagnum with limestone powder whereas in this experiment the lime

was to be added in relatively small quantities to solution around the plants. Chemicals

were added to the pits in March 1992, two weeks after Sphagnum had been placed in

the pits. Sphagnum was removed and placed in control pits while the chemicals were

applied and then returned 6 hours later to avoid acute exposure.

Sphagnum cuspidalum and S. recurvum were used in this experiment. The rationale

behind this choice of species was that they are both species which have been observed

to grow in bog pools and form floating rafts. Therefore, they are potentially important

species for pioneering raft development (6.6) and their growth is likely to be strongly

influenced by water quality. Furthermore, S. recurvum is most frequently a species of

poor-fen environments and its growth response in this experiment would provide an

interesting comparison with the response of S. cuspidalum which is more typical of

ombrotrophic bog.

Sphagnum plants were cut to a standard length (5cm) and placed into bunches of 10,

secured by nylon monofilament. Bunches of both species were grown in each of the

four treatments. There was three replicates for each treatment. The Sphagnum

'bunches' were suspended by nylon monofilament from bamboo canes lying horizontally

across the pits. A plasticine weight was used to keep the Sphagnum bunches

suspended 30cm below the water surface. Conditions below the water surface are sub
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optimal for growth with regard to light and gaseous exchange. However, this design

was chosen as it represents realistic starting conditions for plants deliberately added to

shallow pools on cut-over surfaces as part of a restoration strategy. This is considered

in more detail in Section 6.6.

pH of water in the pits was measured fortnightly for the duration of the experiment.

Water samples were collected fortnightly and analysed to determine concentrations of

soluble reactive phosphorus (SRP) and calcium. Methods of analysis are described in

Table 4 -1. The experiment lasted for 20 weeks after which the plants were removed

and growth was measured using the capitulum correction method (Clymo, 1970).

Results were expressed as relative growth rates i.e. RGR = (nL final plant dry weight -

nL original plant dry weight) / time. A sample of ten plants of each species from each

treatment was analysed for tissue phosphorus and calcium concentration. Tissue was

digested using a sulphuric acid - hydrogen peroxide procedure (Allen, 1974). Samples

were then analysed for calcium and phosphorus as for water samples (see above). The

technique for phosphorus analysis was slightly modified to adjust for low pH of the

samples.

Any significant effect of treatment was tested for using ANOVA. As RGR data were

already in log form, it was considered unnecessary to test for normality within the data

sets or to test for homogeneity of variance. Data for tissue calcium and tissue

phosphorus concentration were tested for homogeneity of variance using the Fm

test. In both cases treatment variances were found to be significantly different,

therefore the data were transformed using natural logs prior to applying ANOVA

(Table 4 -10, Table 4 -12).
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4. 4. 3 Results

4. 4. 3. 1 Water quality

Fig 4.9 shows the concentration of SRP, calcium and the pH of pit water which

persisted in each treatment for the duration of the experiment.

SRP - In both treatments to which phosphorus was added, the concentration of SRP

remained elevated above the control throughout the experiment (Fig 4.9i). An

early peak of 1.6 mg 1 SRP occurred two weeks after treatment was applied

after which the concentration gradually declined to 0.2 mg 11 at the end of the

experiment. SRP concentration in the control and the '+lime' treatment remained

below 0.05 mg 1i . The response of pit water to phosphorus addition was very

similar with or without lime.

p11 - On average, both treatments to which lime was added showed an increase in pH

compared with the control (Fig 4.9ii). However, the original addition of lime

proved inadequate to sustainably elevate the pH and a further 400g of lime was

added in total, on separate occasions during the first two months in order to

approximately produce the desired pH.

Ca - Addition of lime outlined above resulted in the concentration of calcium in pits

to which lime was added increasing to very high concentrations i.e. 25-30 mg ii

(Fig 4.9iii).
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Fig 4.9 Water quality of experimental pits used in Experiment 5 (4.4), in response to chemical
treatment. [For details of treatment refer to section 4.4.1. Measurements are given for pH plus
concentration of phosphorus and calcium recorded over the experiments duration. Results
demonstrate the different chemical conditions in which Sphagnum was grown]
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4.4,3. 2 Sphagnum growth

Treatment significantly affected the growth of both Sphagnum species (p < 0.0001)

(Table 4 -8).

Fig. 4.10 suggests that addition of phosphorus increased growth in S. cuspidatum, but

growth was reduced in the presence of lime. More detailed analysis of differences

between treatments was conducted by partitioning the sum of squares (Table 4-9).

Addition of phosphorus and the addition of phosphorus plus lime significantly

increased growth of above the control (p < 0.001). Addition of lime on its own

significantly reduced growth (p = 0.01). Fig 4.10 suggests that growth in the presence

of phosphorus and lime was slightly less than in the presence of just phosphorus, but

this difference was not statistically significant (p > 0.05) (Table 4 -9).

Growth of S. recurvum also increased significantly in the presence of added

phosphorus (p < 0.001)(Table 4-8). Furthermore, like S. cuspidatum, growth was

significantly depressed in the presence of lime (p 0.01) (Table 4-9), but unlike S.

cusp/datum, growth rate in the presence of lime plus phosphorus was significantly less

than growth in the presence of phosphorus alone. In fact, growth with lime plus

phosphorus did not differ significantly from the reduced growth which occurred in the

presence ofjust lime (p> 0.05) (Table 4-9).

Results suggest that in control conditions, the growth rate of S. recurvum was

significantly less than S. cusp/datum i.e. 0.076 compared with 0.113 mg mg week1

dry wt respectively. However, growth of S. recurvum became similar to that of S.

cuspidatum in the presence of phosphorus (Table 4-8).
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Table 4-8: Expt. 5- Mean Relative Growth Rate of Sphagnum in the field on addition of lime
and phosphorus. [Standard Errors given in parentheses. RGR in mg mg week dry wt]

Treatment

S. cuspidatum

S. recurvum

Control	 + Lime

0.113	 0.104
(0.002)	 (0.003)

0.076	 0.063
(0.002)	 (0.002)

+P

0.149
(0.002)

0.136
(0.002)

+Ljme+P

0.144
(0.002)

0.067
(0.002)

ANOVA
results

d.f. = 39,3
F=89.924

p=0.0001

d.f. = 39, 3
F = 263.319
p=0.0001

Table 4-9: Effect of lime and phosphorus on growth of Sphagnum - results from partitioning the
sum of squares.

S. cuspidatum	 ___________	 S. recurvum

Control vs (+P, +Lime +P)	 d.f. = 1, 89 Control vs (+Lime, +Lime +P)	 d.f= 1, 89
F=135.34	 F=8.501

___________________ P< 0.001 ________________________ p= 0.01

Control vs +Lime	 d.f. = 1, 59 +P vs (Control, +Lime, +Lime +P) d.f. = 1,119
F = 8.049	 F 779.82

____________________ p=0.01 _________________________ p<0.001

+Pvs+Ljme +P	 d.f. = 1, 59 +Lime vs +Lime +p	 d.f. = 1, 59
F=2.541	 F=1.392
P >O.05	 p>0.05
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Fig 4.10 Mean Relative Growth Rate (RGR) of S. cuspidaturn and S. recurvum after 20 weeks
immersed in flooded peat pits modified by additions of phosphorus and lime (Experiment 5)
(4.4). [For details of treatment refer to section 4.4.1. Error bars = 95 % confidence limits]
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4. 4. 3. 3 Tissue phosphorus concentration

Tissue phosphorus concentration (TPC) varied significantly between treatments in both

species (p < 0.0001) (Table 4-10). Concentration closely mirrored the pattern

obtained for RGR (Fig 4.11). Results from partitioning the sums of squares show that

in S. cuspidatum, TPC was significantly greater in plants from the phosphorus only

and the phosphorus plus lime treatments compared with the control (p < 0.00 1) (Table

4-11). No significant difference existed in TPC between the two treatments (p >

0,05). Despite reduced RGR in the presence of lime (Fig. 4-10), TPC was not

significantly less in the lime only treatment compared with the control (p > 0.05).

In S. recurvum, TPC was conspicuously greatest in the phosphorus only treatment (p

<0,001) (Fig 4.11). It was significantly less in the '+ lime' treatment compared with

the control (P < 0.001). In the lime plus phosphorus treatment, TPC was significantly

less than in the phosphorus only treatment but it was significantly greater than the

control (p <0.001) (Table 4-11).

In general, TPC was smaller in S. recurvum compared with S. cuspidatum. This was

in keeping with the lower growth rates generally recorded for this species. In the

phosphorus treatment, which showed rates of growth similar to S. cuspidatum (Fig

4.10), TPC in S. recurvum was on average almost double that recorded for S.

cuspidatum (Table 4-10, Fig 4.11).
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Fmax
+ Lime + P	 results

2.034	 d.f. = 9\4
(0.136)	 F= 17.66

________ p 0.00 1

0.811	 d.f.=9\4

(0.127)	 F = 206.22

i,=0.001

ANOVA
results

d.f. = 3,39

F=28.994

= 1.03 x109

d.f. = 3,39

F = 119.284

= 9.26 x1019

Table 4-10: Expt. 5- Mean tissue concentration of phosphorus in Sphagnum
[Standard Errors given in parentheses. Mean values in mg g dry wt]

__________ __________	 Treatment

_________ Control 	 + Lime	 -4- P

S. cuspidatum	 1.395	 1.456	 2.16
(0.036)	 (0.056)	 (0.032)

5. recurvum	 0.275	 0.081	 3.638
(0.05)	 (0.009)	 (0.187)

Table 4-11: Expt. 5 - Tissue phosphorus concentration in Sphagnum - results from partitioning the
sum of squares.

S. cuspidatum	 __________	 S. recurvum

(Control,+Lime)vs(+P, +Lime +P)	 d.f. = 1,	 +P vs (Control, +Lime, +Lime +P) d.f = 1, 39
39	 F=255

F=84.794	 p< 0.001
______________________ P< 0.001 _______________________

Control vs +Lime	 d.f. = 1,	 +Ljme -4-p vs (Control , +Lime)
19

F= 2. 162
______________________ p>0.05 _______________________	 ________

+Pvs+Lime -i-p	 d.f. = 1,	 Control vs +Lime
19

F = 1.753

o>0.05

d.f. = 1,

29
F=82.278

_p 0.001

d.f. = 1,

19

F=275.58

p<0.001
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Fig 4.11 Mean tissue phosphorus concentration in S. cuspidatum and S. recurvum after 20 weeks
immersed in flooded peat pits modified by additions of phosphorus and lime (Experiment 5)
(4.4). [Error bars = 95 % confidence limits]
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4. 4. 3. 4 Tissue calcium concentration

Tissue calcium concentration (TCC) varied significantly between the treatments for

both species. (p < 0.000 1) (Table 4-12). TCC was conspicuously greater for both

species in the lime plus phosphorus treatment (Fig 4.12). In both cases TCC was in

the order of 4 - 4.5 mg i1. Results from partitioning the sum of squares confirm that

ICC in the lime plus phosphorus treatment was significantly greater than all other

treatments for both species (p = 0.001). Furthermore, in both Sphagna, there was no

significant difference in TCC between the remaining treatments (p > 0.05) (Table 4-

13).

Table 4-12 Expt. 5 - Mean tissue concentration of calcium in Sphagnum
[Standard Errors given in parentheses. Mean values in mg g1 &y wtj

______________ ____________	 Treatment	 _____________ ____________ ________________

	

Fmax	 ANOVA
____________ Control	 + Lime	 + P	 + Lime + P	 results	 results

S. cuspidatum	 2.826	 2.614	 2.337	 4.189	 d.f.=9\4	 d.f. 3,39
(0.254)	 (0.134)	 (0.091)	 (0.307)	 F= 11.47	 F= 15.142

_________ ________ ________ ________ ________ p=O.00l p=1.55x10

S. recurvum	 2.248	 2.343	 2.423	 3.509	 d.f. 9\4	 d.f. 3, 39
(0.266)	 (0.165)	 (0.144)	 (0.230)	 F=3.42)	 F=8.123

_____________	 I	 ______________________ p > 0.05	 p = 0.0003

Table 4-13: Expt. 5 - Tissue calcium concentration in Sphagnum - results from partitioning the sum
of squares.

S. cuspidatum	 _________	 S. recurvum	 _________

+Ljme +1' vs (Control, +Lime, +P)	 d.f. 1,	 +Lime+P vs (Control, +Lime, +P) d.f = 1, 39
39	 F=22.672

F=41.93	 pO.00l
___________________________ P=0.001 ___________________________ ________

Control vs +Ljme vs +P	 d.f. = 1,	 Control vs +Lime vs +P	 d.f. = 1,
29	 29

F=3.495	 F=1.697
________________________ p>0.05 ________________________ p>0.05
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Fig 4.12 Mean tissue calcium concentration in S. cuspidaturn and S. recurvum after 20 weeks
immersed in flooded peat pits modified by additions of phosphorus and lime (Experiment 5)

(4.4). [Error bars = 95 % confidence limitsj
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4. 4. 4 Discussion

Addition of inorganic phosphorus significantly increased the growth of S. cuspidatum

and S. recurvum in the field. Both species also showed a capacity for increased

phosphorus uptake (Fig 4.11). Thus, despite some degree of nutrient enrichment

detected at Thorne Moors (4.1), phosphorus concentrations appear to be sub-optimal

for growth of at least two Sphagnum species.

Overall, application of lime had an adverse effect on Sphagnum growth. One

exception to this was the growth of S. cuspidalum in presence of both lime and

phosphorus. Fig 4.10 shows that its growth was less in the combined treatment

compared with the phosphorus only treatment (suggesting lime did have a detrimental

effect on growth) but this difference was not significant (Table 4-9). pH was

successfully elevated in the pits from pH 3.0 in the control to between pH 3.5 and 4.0

(Fig 4.9) but, in contrast to the results from laboratory experiments (Expt. 4), this

increase in pH did not improve Sphagnum growth. Results from Experiment 4 suggest

that a pH shift in this range would not itself have a detrimental effect on growth,

therefore, depressed growth was probably a toxic response to addition of calcium.

Clymo (1973) suggests that a toxic effect of calcium is unlikely in this pH range.

Furthermore, results from laboratory experiments conducted in this study (4.2) showed

that Ca concentrations up to 20 mg 11 had no toxic effect on S. cuspidatum or S.

recurvum (over nine weeks). However, water calcium concentration in pits to which

lime was added exceeded 20 mg j1, reaching up to 30 mg 11 (Fig 4.9) and exposure

to such high concentrations over a longer period of twenty weeks could conceivably

have had a toxic effect. The mechanism by which lime exerted a toxic influence is

unclear as application of just lime did not increase tissue calcium concentration (TCC)

in either species (Fig 4.12) suggesting that calcium was not readily taken up.
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Growth of S. recurvum under control conditions was less than that of S. cuspidatum

(Table 4-8, Fig 4.10). There are several possible explanations for this. Sphagnum

cuspidalum is innately a quite productive species in the bog-pool environment (1.6.2)

and whilst S. recurvum may be found growing in pools, it is also frequently observed

growing in lawns and hummocks. Therefore, the pool environment may be less

optimal for growth of S. recurvum than S. cuspidatum, especially when plants start

off submerged 30 cm below the surface as they were in this study. However, S.

recurvum may be a prolific coloniser of weakly-minerotrophic pools (Tallis, 1973).

Therefore, it may have been the chemical environment and not submergence that

limited its growth in this experiment. S. recurvum is most commonly associated with

poor-fen environments and may be less efficient at 'scavenging' nutrients than S.

cuspidatum. It was notable in this experiment, that S. recurvum achieved a similar

growth rate to S. cuspidatum only in the presence of added phosphorus (Table 4-8,

Fig 4.10). Furthermore, at a similar growth rate, TPC in S. recurvum averaged at

3.64 mg g 1 dry wt. compared with 2.16 mg gdry wt in S. cuspidatum (Table 4-10,

Fig 4.11). This suggests that S. recurvum required greater availability and uptake of

phosphorus to achieve a similar growth rate to that of S. cuspidatum. If this is the

case then it is not surprising that S. recurvum is much less frequent than S.

cuspidatum on ombrotrophic bogs.

Comparison between Fig 4.10 and Fig 4.11 suggests that growth rate was closely

associated with tissue phosphorus concentration (TPC) and therefore phosphorus

uptake. This suggests that adding calcium limited P-acquisition. For example, Fig

4.11 shows that TPC in S. recurvum was significantly reduced in the presence of lime,

and so, notably, was growth (Fig 4.10). Reduced TPC may be an indirect effect of

calcium toxicity or, alternatively, it may be a direct effect of the chemical association

between calcium and phosphorus. Boyer & Wheeler (1989) suggest that emerging

spring waters saturated with CaCO3 bind phosphorus at the spring head to produce

infertile pockets of species-rich fen within stands of more productive, less diverse
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vegetation. Therefore, adding lime may have limited P-availability and thus limited

Sphagnum growth. However, P-adsorption requires solid CaCO3, and at pH 3.5-4

most of the added lime was likely to have been dissolved (Wheeler, pers. comm.),

therefore the real significance of P - CaCO3 interaction in explaining these results

remains unclear. Lime application only significantly increased tissue calcium

concentration (TCC), when applied in combination with phosphorus (Fig 4.12)

suggesting some interaction did occur between the two elements.

In contrast to S. cusp/datum, relative growth rate in S. recurvum was significantly

lower in the combined treatment compared with the phosphorus only treatment (Fig

4.10). A toxic effect of lime seems rather unlikely as S. recurvum has been shown to

be more base tolerant than S. cusp/datum (Clymo, 1973). This may instead be a

product of phosphorus acquisition, as low growth in S. recurvum was mirrored by

significantly lower TPC (Fig 4.11). TPC was significantly higher compared with the

control but this did not appear sufficient to produce a positive growth response. This

supports a previous suggestion that S. recurvum requires greater phosphorus uptake

than S. cusp/datum to promote growth. This presents an interesting paradox whereby

S. recurvum, a species which may grow in base rich conditions, has grown less in the

presence of lime than the S. cusp/datum which is comparatively base-intolerant.

Furthermore, the reason for this appears to be that the presence of lime has limited

phosphorus uptake in S. recurvum but not in S. cusp/datum.

There is no obvious explanation for this result. A possible explanation is suggested

below but it is based purely on conjecture. It is possible that base-tolerance for which

S. recurvum is renowned may, to some extent, be a product of its ability to exclude

base elements from uptake (essentially a base avoidance strategy). However, in this

case because of bonding between phosphorus and lime, avoiding base uptake also

reduced uptake of phosphorus. Fig 4.12 suggests that uptake of phosphorus and

calcium were linked as TCC was only significantly greater when lime occurred in
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combination with phosphorus. In S. cuspidatum base uptake may not have been

restricted (no base avoidance strategy) and consequently neither was phosphorus

acquisition. This would explain why S. cuspidatum in the combined treatment,

exhibited higher TPC, TCC and RGR than S. recurvum and any toxic influence of

calcium may have been over-ridden by the growth benefits of increased phosphorus.

However, in S. recurvum phosphorus uptake may have been limited by excluding

calcium from uptake; hence a moderate increase in TPC and TCC occurred but the

increase in phosphorus uptake was not sufficient to invoke a growth response (see

above). If this hypothesis is correct then one would expect TCC to be lower in S.

recurvum compared with S. cuspidatum. Indeed, mean TCC in S. recurvum was 3.5

mg g 1 dry wt, compared with 4.2 mg g' dry wt in S. cuspidatum. However, this

explanation is not entirely satisfactory as this small difference in TCC was not

proportional to the large difference in TPC.
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Chapter 5

Re-introduction of Sphagnum to cut-over bog
surfaces

5. 1 Background

Recolonisation of cut-over bog by Sphagnum may be influenced not only by habitat

conditions but also by availability of propagules. Clymo & Duckett (1986) observed

that new shoots of S. papillosum developed on peat discs taken from up to 30cm

below the surface of an uncut bog. When the peat discs were exposed to light and

saturated air in a cool greenhouse, green shoots developed from brown, apparently

dead Sphagnum material estimated to be up to 60 years old. This suggests that a

persistent vegetative 'seed' bank exists for Sphagnum in surface peat layers from which

regeneration may take place. However, in most peat cutting situations extraction

exposes deeper more humified peats which do not retain viable diaspores (Salonen,

1987; Clymo & Duckett, 1986).

The lack of a persistent diaspore bank in the peat of newly abandoned, cut-over

surfaces, means spontaneous recolonisation is dependent upon dispersal of viable

diaspores from proximate source areas. There is little information on the rates and

methods of propagule dispersal in Sphagnum. Poschlod (1992) points to the

importance of wind dispersal of bryophyte shoot fragments as a source of propagules

138



for milled bog surfaces in S. Germany. However, bogs extensively damaged by peat

extraction, such as Thorne Moors, often retain few refugia for survival of bog species

that can act as a source of propagules. It is difficult to estimate to what extent this

limits Sphagnum recolonisation as the natural propensity for Sphagnum to establish in

old peat cuttings is frequently obscured by unsuitably dry conditions (Chapter 2 and 3).

However, raised bog Sphagna have also failed to colonise suitably wet cuttings,

notably at Thorne Moors (2.2.3), suggesting recolonisation may be hindered by the

absence of a local propagule source.	 i

Therefore, it may be necessary to consider deliberately reintroducing Sphagnum to

accelerate (if not initiate) the revegetation process. For relatively small operations,

plants could be collected under careful guidelines from donor sites considered least

'sensitive' to disturbance. Recently, concern has been voiced over inter-site transplants

as disturbance of regional gene pools is considered undesirable (B. Johnson, English

Nature, pers comm). Furthermore, the possibility exists of introducing plant or animal

species previously alien to a site. However, whilst intra-site transplants would be

preferable, there may be insufficient material for this to be possible. For larger scale

restoration, removal of Sphagnum from donor sites would be unsatisfactory. In order

to obtain the required quantity of inoculum too much àamage would 'be sustained by

the donor site. In this situation the possibility of 'farming' Sphagnum must be

considered. This is considered in Section 6.7.

There is very little published research that considers Sphagnum regeneration from

inocula applied to cut-over bog surfaces. Occasionally 'ad hoc' trials have been

conducted by wardens at nature reserves and employees of peat cutting companies but

these initiatives are seldom recorded. The aim of this investigation was to investigate

the propensity for a variety of Sphagnum species to regenerate from inoculum applied
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in the field and furthermore, determine the water regime required for optimal re-

establishment.

5.2 Sphagnum regen eration from whole plants (Experiment 6)

In this experiment Sphagnum was applied in the form of intact gametophytes, in

contrast to Experiment 7 in which inocula were decapitated into fragments prior to

application.

5. 2. 1 Method

Trenches STB I - STB 16 in the Crowle experimental of Thorne were used in this

investigation. Details of trench design are given in Section 1.10.2. They were

approximately 1 6m long and 2m wide with a sloping bottom that provided a range of

water regimes so that a trench could be crudely divided into sections as follows:

Peat slope

Peat-water interface

Shallow water

Deep water

Remains dry for long periods

Thin band either side of the water's edge. Consists of

moist peat on one side and very shallow water on the

other.

Depths up to 50 cm

Depths exceeding 50 cm up to approx. 100 cm

Sphagnum was applied to the trenches as shown in Table 5-1. Prior to addition of

Sphagnum, birch brashings were added to the flooded part of trenches STB I - STB 8

140



to investigate whether physical support would assist colonisation of open water.

Between 100 and 150 litres of loosely packed, living Sphagnum material was applied

to each trench. The material was scattered by hand at an approximately even density

along the entire length of the trenches. Inocula were applied during December 1990

and January 1991 with the exception of S. papillosum which was added in April 1991

and S. jlmbriatum which was added in July 1991. Growth was recorded in November

1993. A I m2 quadrat divided into a hundred 10 x 10 cm squares was used to measure

the mean number of capitula per 100 cm 2 at 1 m intervals along the length of each

trench.

Water levels were not uniform throughout the trenches. Therefore, in each trench the

length of peat slope exposed was recorded bimonthly for comparison. Details of water

quality were taken from results of the broader survey described in Chapter 4, sect 4.1.

Water chemistry of trenches STB 1, STB 5, STB 9 and STB 13 were routinely

measured, as part of that survey, between June 1990 and July 1991, and pH and

conductivity between June 1990 and July 1993. The data were examined for

heterogeneity of water quality across the trenches. Data were tested for homogeneity

of variance using the Fmax test prior to applying ANOVA.
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Table 5-1: Inoculation of trenches with Sphagnum (Experiment 6)

Trench	 Species	 Treatment

STh1	 S. recurvum	 + Brushwood
STB2	 S. cuspidatum	 + Brushwood
STB3	 S. palustre	 + Brushwood
STB4	 S. capillfo1ium	 + Brushwood
STB5	 S. auriculalum	 + Brushwood
STB6	 S. magellanicum	 + Brushwood
STB7	 S. papillosum	 + Brushwood
STB8	 S. jimbriatum	 + Brushwood
STB9	 S. recurvum
STB1O	 S. palustre
STB 11	 S. capillifolium
STB12	 S. auriculatum
STB 13	 S. magellanicum
STB14	 S. cuspidatum
STh 15	 S. papillosum
STB16	 S. jimbriatum

5. 2. 2 Results

5.2. 2. 1 Sphagnum growth

Growth of Sphagnum in each of the trenches is recorded in Table 5-2. Successfiul

regeneration was only observed for S. recurvum, S. cuspidatum and S. auriculatum,

though limited regeneration was also observed in S. fimbriatum. Results for S.

recurvum, S. cuspidatum and S. auriculalum are illustrated in Fig 5.1. All three

species showed similar patterns of regeneration. Growth was confined to the

shallower end of the trench where it formed a continuous floating raft extending 3 - 4

m along the trench to a maximum water depth of 50 cm. Some growth was observed

in deeper water occurring as small floating 'clumps' anchored to the pool periphery.
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Less prolific regeneration of S. recurvum, S. cuspidalum and S. auriculalum also

occurred in trenches inoculated with other species. For example S. cuspidatum was

found growing in STB 6, STB 11, STB 13 and SIB 15. Furthermore, S. recurvum

and S. auriculatum were observed growing in STB 3 and SIB 10. However, no

Sphagnum regeneration was observed in the control trench and, this growth almost

certainly resulted from contamination in the source material and not from spontaneous

recolonisation.

Comparison of results in Fig 5.1 suggests that in the limited number of trenches which

showed regeneration, the presence of brushwood had no obvious effect on Sphagnum

growth.
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x - axis = length of trench

1610m

Each horizontal bar represenL
__________	 length of peat slope exposed

(distance 'z' above)

STB 1 - S. recurvum (+ Brushwood)
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Fig 5-1 - Growth of Sphagnum added to sloping trenches in Expt. 6. [Trenches were inoculated with Sphagnum
along their entire length. Results represent distribution of Sphagnum in the trenches approximately 3 yrs after inoculation.
Records also presented for each trench showing changes in position of the water table between July 1991 and Nov 1993.
Results only given for those trenches in which the Sphagnum added grew successfully. For further details of these and
and other trenches refer to Table 5-2]
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5. 2. 2. 2 Water table

In Fig 5.1 water table fluctuations are shown alongside growth data for those trenches

in which Sphagnum regeneration was successful. Water table fluctuations in the

remaining trenches are shown in Fig 5.2. All trenches showed similar patterns of water

table change with fluctuations largely confined to the top 6 m of the peat slope.

During at least the first half of the experiment's duration, a significant length of peat

slope remained exposed in all trenches. However, from winter 1992/1993 onwards,

Thorne Moors received greater amounts of rainfall than in the previous two years and

surface conditions became much wetter. Consequently, all the trenches were

completely submerged for the duration of 1993.

Overall there was a general trend of increasing wetness across the trenches towards

SIB 1. In Fig 5.2 it is evident that more peat slope was exposed, on average, in

trenches STB 10 - 16 than in STB 3 - 8. The same trend is evident in Fig 5.1 between

trenches STB 9 - 14 and STB 1 - 5. In 1993, when all the trenches were full of water,

the ground around trenches STB 1 - 3 was also flooded.
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5. 2. 2. 3 Water quality

The mean concentration of major ions plus mean pH and conductivity (corrected for

pH) are shown for the trenches sampled (Fig 5.3). Mean values and results from

analysis of variance are given in Table 5-3. The results indicate no significant trend in

pH across the trenches. There is a suggestion of elevated conductivity in STB 1 but

this was not significant (p = 0.217). Therefore, results indicate that over three years

the gross ionic character of water in the trenches did not differ. Results for individual

ions show that concentration of SRP and K did not differ significantly between the

trenches (Fig 5.3). However, there was a trend of decreasing NO3, NH4-N and SO4

towards STB 1 but differences were only significant for NO3 and NH4-N (Table 5-3).

Conversely, Ca and Fe showed a significant trend of increasing concentration towards

STB I (p = 0.006 and 0.034 respectively) (Table 5-3).
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Table 5-3: Water quality of trenches used in Experiment 6. [Mean values given with standard errors in
parenthesis. Units of conductivity = p.S cm. All other units = mg i except SRP which =
p.g i-li

___________	 STB I	 STB 5	 STB 9	 STB 13	 Fm9y results ANOVA results

pH	 3.5	 3.5	 3.5	 3.4	 d.f. = 4, 13	 di'. = 3, 55
(0.073)	 (0.068)	 (0.047)	 (0.054)	 F = 2.4	 F = 0.474

__________ _________ _________ _________ _________ p>O.O5 	 p =0.702

Corrected	 191.44	 160.5	 170.03	 154.15	 d.f. = 4, 15	 d.f. = 3, 63
Conductivity	 (12.39)	 (14.83)	 (10.98)	 (14.26)	 F = 1.824	 F = 1.525
__________ _________ _________ _________ _________ p>O.05 	 p=O.2l7

NO3	 1.85	 2.02	 2.28	 2.55	 d.f. = 4, 3	 d.f. = 3, 15
(0.132)	 (0.095)	 (0.149)	 (0.119)	 F=2.5	 F=5.907

__________ _________ _________ _________ _________ p>0.05	 p=0.010

NH4-N	 1.293	 3.5	 5.3	 5.13	 d.f. = 4, 5	 d.f. = 3, 23
(0.648)	 (1.294)	 (0.968)	 (0.660)	 F=3.99	 F=4.0

__________ _________ _________ _________ ________ 	 p>O.O5	 p=O.022

SRP	 29.03	 24.68	 25.98	 32.88	 d.f. = 4, 5	 d.f. = 3, 23
(7.160)	 (6.678)	 (7.696)	 (9.718)	 F=2.118	 F=0.213

___________ __________ __________ __________ __________ 	 p > 0.05	 p = 0.886

SO4	 21.38	 23.32	 25.18	 24.0	 d.f.=4,3	 d.f.=3, 15
(0.272)	 (0.890)	 (1.382)	 (0.610)	 F=25.8	 F=3.219

__________ _________ _________ _________ _________ p>O.OS 	 p=0.O61

Ca	 9.87	 9.3 17	 7.3	 6.73	 d.f. = 4, 5	 d.f. = 3, 23
(0.662)	 (0.750)	 (0.629)	 (0.503)	 F = 2.22	 F = 5.611

___________ ___________ ___________ ___________ ___________ 	 p > 0.05	 p = 0.006

K	 3.87	 3.98	 3.38	 2.83	 d.f. = 4, 5	 d.f. = 3, 23
(0.225)	 (0.569)	 (0.708)	 (0.547)	 F = 9.93	 F = 0.937

__________ _________ _________ _________ _________ p>O.05 	 p=O.44l

Fe	 3.97	 2.4	 1.67	 1.43	 d.f. = 4, 5	 d.f. = 3, 23
(0.727)	 (0.6)	 (0.614)	 (0.473)	 F=2.4	 F=3.51

p > 0.05	 p = 0.034
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5. 2. 3 Discussion

5. 2. 3. 1 Water regime and Sphagnum regeneration

Inoculum applied to the exposed peat slope which persisted 2 years prior to 1993,

failed to regenerate largely due to desiccation. During this period, growth of

Sphagnum was restricted to a narrow band at the peat water interface and shallow

water zone. During 1993, the previously dry peat slope became permanently

inundated by shallow water and Sphagnum subsequently grew to cover that part of the

trench. This explains why in Fig 5.3, Sphagnum was generally recorded to the top of

the trench slope. The wind direction was predominantly from the shallow end towards

the deeper part of the trench. Therefore, predominance of plants at the shallow end of

the trench was not a product of wind blown accumulation.

When initially applied, inoculum of all species floated on the open water. Initially it

was thought possible that plants might continue to float and regenerate 'in situ', but,

results from this experiment suggest this is unlikely to occur. Within 24 hours, all

inoculum sank to the trench bottom. Subsequently, regeneration of all species largely

failed in the deep water zone. It is likely that at depth, low availability of light and

dissolved gases severely limited regeneration. Brown remains of all Sphagnum species

were retrievable from the bottom of the trenches.

This warns against construction of deep lagoons in cut over areas. However, at Banks

Head Moss in Fife (refer to Chapter 2) Sphagnum rafts have developed over water 5 m

deep. Similarly at Killaun Bog rafts were developed over one metre depth. In these

deep water situations, colonisation may occur slowly by centripetal invasion from the

pool edges. In this way plants stay supported at the water surface. At Killaun and
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Banks Head Moss, colonisation was probably encouraged by the small area of the peat

pits. Small pits limit wave action and provide a greater pooi edge : area ratio for

centripetal invasion. In the experimental trenches, some clumps of plants were

observed floating in deeper water anchored to the trench periphery. In the future, it is

possible that these 'nuclei' and the existing rafts developed in shallow water, will

expand to colonise deeper parts of the trenches.

The only species which successfully regenerated i.e. S. recurvum, S. cuspidalum and

S. auriculatum are all species known to occupy aquatic habitats, often being

associated with pools in undisturbed bogs where they may form floating rafts (1.5).

Similarly, in this experiment growth of these species occurred in the form of floating

rafts to water depths up to 50 cm. Those species which showed poor or no

regeneration i.e. Sphagnum papillosum, S. magellanicum, S. palustre, S. fimbriatum

and S. capillfolium, were all species normally associated with lawns and hummocks in

undisturbed bogs. The reason these latter species failed to regenerate at the peat-water

interface or in the shallow water zone is not clear. One possible explanation would be

is a difference in productivity between hummock and pooi species in the pool

environment. Hummock species are not averse to shallow inundation but growth of

pool species is much more prolific (1.6.2). The peat-water interface and shallow water

zone was not static in the trenches during the experiment. Fig 5.1 shows how the

water table was prone to fluctuation until 1993. During this time, inoculum on the

peat slope was prone to periodic drought and inundation. The relatively high

productivity of the aquatic species could mean they were more able to compete against

the difficult starting conditions and get established whilst the lower productivity of

hummock species may have rendered them unable to get a 'foot hold'. Furthermore, a

faster growth rate would enable aquatic species to 'escape' smothering by loose peat

sediments. Hummock species were frequently observed coated in peat. Rain splash
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may also have caused further disturbance and loss of inoculum into the soft peat

surface.

5. 2. 3. 2 Effect of brushwood

Brushwood added to the flooded part of the trenches temporarily floated and then sank

to the trench bottom. Consequently, any potential benefit of brushwood to act as a

climbing frame or reduce wave action in deeper water was lost. Therefore, results

from this experiment are inconclusive as to whether physical support may or may not

assist Sphagnum regeneration. The brushwood in the shallow water may eventually

exert an influence on Sphagnum growth, but this was not sufficient at the time of

measurement to demonstrate this.

5. 2. 3. 3 Influence of water quality

Results for water quality must be treated with caution as the data were part of a larger

data set for the Crowle study area and results for individual trenches have only a small

sample size. Furthermore, the survey period represents only the first year of the

experiment duration and may not be representative of water quality over three years.

Therefore, these results can only be considered to give a crude indication of water

quality. Despite this, the data suggest that over three years there was no significant

gradient of pH or conductivity across the STB trenches. However, ion concentrations

for the first year suggest significant trends of increasing Ca and Fe and decreasing NO3

and NI-14-N from STB 16 to STB 1. It is possible that the balance of these two trends

explains why overall conductivity did not significantly differ. However, whether these

trends persisted beyond the first year is not known. There is no clear evidence that

addition of brushwood significantly altered water chemistry. If this were so one would
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have expected concentration of N, P and K plus overall conductivity to be significantly

higher in STB 1 and STB 5 but this was not the case (Fig 5.3).

High calcium and iron concentrations in STB 1 were recorded prior to addition of

brushwood (June and December 1990) as well as afterwards, therefore, enrichment by

brushwood cannot be considered responsible. Furthermore, the same trend of

increasing Ca and Fe concentration towards the western limit of the Crowle trenches

was recorded in neighbouring STA trenches in which Sphagnum for experiments was

stored without any additions of brushwood (Fig 1.4). The reason for this gradient

remains unclear. The western edge of the Crowle experimental area appeared to be a

zone of water accumulation and ground around trenches SIB 1 and STA 1 was

frequently inundated (Fig 5.1). The low NO3 and NH4-N concentrations recorded in

STB I may reflect lower mineralisation rates in wetter less aerobic conditions.

Alternatively, larger amounts of N may have been incorporated into algal biomass

which was particularly prolific in trenches STB 1 and SIB 2 (Table 5-2). This is

considered in more detail below.

Any variation in trench water quality did not appear to influence Sphagnum growth

significantly. From Fig 5.1 it might be suggested that growth of S. recurvum and S.

cuspidatum was less in SIB 1 and STB 2 compared with SIB 9 and 10 respectively

but this is more likely to be an effect of interaction with algae (see below). Perhaps

most importantly, evidence discussed in Chapter 4 suggests that there was no feature

of water quality in the STB trenches that could be considered severely detrimental to

Sphagnum growth and which would explain the observed failure of lawn and hummock

species to regenerate (Chapter 4). However, it is possible that regeneration of these

species would have been increased by addition of phosphorus (4.4).
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Growth of algae was noticeably greater in trenches STB 1 - SIB 8 after addition of

brushwood. This suggests that brushwood did have some eutrophicating effect.

However, this effect was only temporary except for in trenches SIB 1 and SIB 2

which remained persistently over-grown by filamentous green algae (Oedogonium sp.)

throughout the duration of the experiment (Table 5-2). This was unlikely to be an

effect of brushwood as a similar trend existed in neighbouring STA trenches which did

not contain brushwood. The reason may be related to the high water table recorded

around those trenches. Frequently, there was direct contact between water in the

trenches and water lying between hummocks of Molinia in the surrounding flooded

ground. This water appeared to be enriched by decomposition of the Molinia litter

and was generally infested with algae.
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5. 3 Sphagnum regeneration from fragments (Experiment 7)

This experiment was designed to complement Experiment 6. The growth of lateral

buds (or innovations) in Sphagnum can be stimulated by removal of the capitulum

(Clymo & Hayward, 1982; Clymo & Duckett, 1986; Jones, 1978). This suggests that

suppression of lateral buds in Sphagnum is similar to that seen in vascular plants which

is controlled by the apex itself and that regeneration of inoculum in the field might also

be stimulated by decapitation. The aim of this experiment was to investigate the

propensity for Sphagnum to regenerate from fragments in the field and compare

regeneration from fragments with regeneration from whole plants seen in Experiment

6.

5.3.1 Method

Trenches STA 12 - STA 15 were used in this experiment (Fig 1.4). Design of the

trenches was exactly the same as neighbouring STB trenches used in Experiment 6.

The experiment was conducted using S. cusp/datum and S. recurvum. The rationale

behind this choice of species was that they were both species which showed successful

regeneration in Experiment 6 and therefore were most likely to grow successfully in

this experiment. It would have been desirable to also use S. auriculatum but this was

limited by availability of trenches.

Plants of S. cuspidalum and S. recurvum were shredded in a household food blender

and the resultant mulch diluted to form a thin 'slurry' in which capitula remains and

fragments of stem up to 0.5 cm long remained visible. The 'slurry' was then dispensed
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using a watering can (without the rose !) along the length of the trenches which were

assigned as shown below:

Trench	 Species	 Treatment

STA 12	 S. recurvum	 Fragments

STA 13	 S. recurvum	 Fragments + Brushwood

STA 14	 S. cuspidatum	 Fragments

STA 15	 S. cuspidatum	 Fragments + Brushwood

Each trench was inoculated with approximately 5 kg spun wet weight of fragmented

Sphagnum, approximately half (maximum) the quantities used in Experiment 6.

Brushwood was placed in the flooded part of certain trenches (see above) to

investigate whether physical support might assist growth. Inocula were applied in

March 1991 and growth was recorded in December 1993 as detailed in Experiment 6.

Water table fluctuations were recorded bimonthly in each trench as for Experiment 6.

Water chemistry in the trenches was only recorded only after a single sampling event in

July 1991. Therefore, results give only a crude indication of water quality and must be

treated with caution. Methods of analysis are detailed in Table 4-1.
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5. 3. 2 Results

5. 3. 2. 1 Water table

Water table fluctuations in the experimental trenches are shown in Fig 5.4. Overall,

shifts in position of the peat water interface were confined to the upper 7m of the peat

slope and on average, 2 - 4 m of peat remained exposed. Unlike the STB trenches in

Experiment 6 (Fig 5.1 and Fig 5.2), a minimum of 2 m of the peat slope was exposed

throughout the duration of the study.

5. 3. 2. 2 Water quality

The mean concentration of major ions and mean values for pH and conductivity are

given in Table 5-4. Conductivity values were corrected for pH (Golterman, Clymo &

Ohnstad, 1978). Results suggest that water quality amongst the trenches was very

similar. Concentrations were similar to those recorded for the neighbouring STB

trenches (Table 5-3).
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Fig 5-4 : Water quality of trenches used in Experiment 7 [Mean
values and standard errors (in parenthesis) are presented based on 5
replicate samples from a single sampling event in July 1991. Units
of conductivity = j.tS cm'. All other units = mg 11 except SRP
which = p.g l]

__________ STAI2	 STAI3	 STAI4	 STA15

pH	 3.5	 3.5	 3.6	 3.6
(0.055)	 (0.067)	 (0.058)	 (0.071)

Corrected	 155.8	 179.2	 159.5	 161.4
Conductivity	 (15.30)	 (12.93)	 (14.22)	 (11.67)

NO3	0.87	 1.31	 .90	 0.96
(0.239)	 (0.624)	 (0.299)	 (0.438)

NH4-N	 5.3	 5.74	 5.32	 5.36
(0.221)	 (0.140)	 (0.172)	 (0.140)

SRP	 28.0	 21.0	 26.0	 21.0
(3.0)	 (2.0)	 (3.0)	 (2.0)

SO4	 48.12	 45.72	 45.30	 49.52
(0.984)	 (0.373)	 (0.835)	 (0.708)

Ca	 5.48	 5.7	 5.42	 5.54
(0.073)	 (0.095)	 (0.08)	 (0.068)

K	 1.36	 1.36	 1.46	 1.76
(0.04)	 (0.024)	 (0.147)	 (0.412)

Fe	 3.78	 3.9	 4.08	 4.22
(0.037)	 (0.055)	 (0.039)	 (0.049)
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5. 3. 2. 3 Sphagnum growth

Sphagnum fragments sank to the bottom of the trenches soon after they were applied.

Regenerative success of fragments along the length of each trench is recorded in Table

5-5. Results are illustrated in Fig 5-4. Regeneration of S. cuspidatum (STA 14 and

STA 15) was extremely limited over the top 2 - 3 m of the peat slope. This

corresponded with the area of peat slope which remained above the peat-water

interface throughout the experiment (Fig 5-4). Some regeneration occurred from

inoculum lying in cracks in the peat but in general only desiccated remains of inoculum

were evident. Growth was most prolific 3 - 4 m along the trench, forming a

continuous carpet at the average position of the peat-water interface. As in

Experiment 6, this distribution could not be explained by prevailing wind direction.

Below the peat-water interface, prolific regeneration continued forming a continuous

floating raft. In STA 15 this extended to 9.5 m along the trench. At this point water

depth reached 70 cm. Regeneration was evident up to 13 m along the trench (water

depth = 90 cm) but here growth was subsurface and sparse. Trench STA 14 showed a

similar pattern of growth. Capitulum density was slightly higher at the peat-water

interface but the floating raft only extended to 9 m (water depth = 60 cm). Poorer

subsurface regeneration was observed to 1 im along the trench and a maximum water

depth of 80 cm. In both STA 15 and STA 14 floating rafts had developed at the

deepest end of the trench (15.5 - 16 m, water depth 100 cm). This growth came from

groups of plants dislodged from the shallow end of the trench and blown to the deep

end where they became anchored to the edge of the trench and were thus supported at

the water surface.
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S. recurvuni (STA 13 and STA 12) showed similar patterns of growth to S.

cuspidalum. Inoculum largely failed to regenerate on the exposed peat slope but

prolific regeneration occurred at the peat-water interface. At this point capitulum

density in S. recurvum was generally higher than that of S. cuspidatum but there was

no difference in overall cover, so that S. recurvum was characterised by a larger

number of small capitula and S. cuspidatum by a smaller number of larger capitula.

Below the peat water interface S. recurvum also showed potential for floating raft

development. In STA 13 the raft extended to 7m (maximum water depth = 45 cm). In

STA 12 the raft extended to 8 m (maximum water depth 40 cm) and poorer

subsurface regeneration was observed to 10 m (maximum water depth = 55 cm). In

both trenches some peripheral regeneration was observed in deeper water from plants

anchored to the trench periphery.
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Table 5-5: Regeneration of Sphagnum from fragments applied to trenches STA 15 to STA 12 (Expt. 7)
[Results describe Sphagnum cover 2 yrs 9 mths after inoculation. Results are presented graphically

in Fig 5.4] Water Depth: '- Below surface, '+ 'Above surface. Cover - distances refer to position along
trench. 0 = top of peat slope (refer to Fig 5.4)

Trench Species	 Cover	 Growth form	 Water depth
STA 15 S. cuspidafum 0 to im - no cover	 -25 to -15 cm

1 to 2 m - sparse. <4 Capitula Isolated capitula growing close 	 -15 toO cm
per 100 cmZ	 to the peat surface, particularly

from within cracks in the peat.

2 - 3 m - Discontinuous at 5 - 10 Clumps of plants floating in a 	 0 to + 10 cm
capitula per 100 cm 2.	 few cm of water but prone to

periodic drought.

3 to 9.5 m - Continuous cover 	 Floating raft at the water surface + 10 to + 70 cm
steadily decreasing in capitulum
density along trench from 35 per
locm2 at3mtos-loper 100
cm2 at 9.5 m

9.5 to 13 m - sparse at 5 capitula Clumps of plants suspended	 + 70 to + 90 cm
per 100 cm2	subsurface.

13 to 15.5 m-Nogrowth

15.5 to 16 m - Continuous	 Floating raft at the water surface + 100 cm
cover. Capitulum density 15 per
100 cm2

STA 14 S. cuspidatum 0 to 2 m - very sparse 	 Isolated capitula growing close	 - 20 to - 5 cm
regeneration. <5 capitula per	 to the peat surface, particularly
0.5 m2	from within cracks in the peat.

	

2 to 3 m - sparse. 5 capitula per Clumps of plants floating in a	 - 5 to + 7 cm
100 cm2	few cm of water and on moist

peat but prone to periodic
drought.

Floating raft at the water surface I + 5 to + 60 cm3 to 9 m - Continuous cover
steadily decreasing in capitulum
density along trench from 50 per
100 cm2 at3 mto 10 per 100
cm2 at 9 m.

9 to 11 m - sparse at 5 capitula
per 100 cm2

11 to 15.5 rn-No growth

15.5 to 16 m - Continuous
cover. 15 capitula per 100 cm2

Clumps of plants suspended	 +60 to + 80 cm
subsurface.

Floating raft at the water surface + 100 cm
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Table 5-5: Continued

Trench Species	 Cover	 Growth form	 Water depth
STA 13 S. recurvun	 0 to 1 m - No growth	 -20 to - 15 cm

1 to 3 m - Sparse. <5 capitula 	 Isolated capitula growing close 	 - 15 to 0 cm
per 100 cm2	to the peat surface, particularly

from within cracks in the peat.

3 to 7 m - Continuous cover 	 Floating raft at the water surface 0 to + 45 cm
steadily decreasing in capitulum
density along trench from 65 per
100 cm2 at3 mto 15 per 100
cm2 at 7 m.

STA 12 S. recurvum	 0 to 1 m - No growth	 - 20 to - 10cm

1 to 2 m - Sparse. <5 capitula 	 Isolated capitula growing close	 -10 to 0 cm
per 100 cm2	 to the peat surface, particularly

from within cracks in the peat.

2 to 8 m - Continuous cover 	 Floating raft at the water surface 0 to + 40 cm
steadily decreasing in capitulum
density along trench from 70 per
100 cm2 at2mto 15 per 100
cm2 at 8 m.

8 to 10 m - Sparse. <1	 Clumps of plants suspended 	 + 40 to + 55 cm
capitulum per 100 cm 2	subsurface.
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5. 3. 3 Discussion

5. 3. 3. 1 Water regime and Sphagnum regeneration

The influence of water regime on Sphagnum regeneration was much clearer in this

experiment than in Experiment 6. The position of the peat water interface was

relatively stable for the duration of the experiment and a significant length of the peat

slope remained exposed. The dry conditions of the peat slope were clearly unsuitable

for regeneration. Growth in all trenches was most prolific at the peat water interface in

depths of water less than 10 cm. However, good regeneration was also observed in

shallow water conditions (less than 50 cm deep), where floating rafts became

established. Results show a clear trend of decreasing capitulum density with increasing

depth. These results support evidence from Experiment 6 that deep water conditions

(>50 cm deep) limit regeneration from inoculum.

These results represent growth after approximately three years and regeneration is

likely to continue into the future. However, there was no evidence of any growth even

at the base of the water column in deeper water (> 70 cm) (Table 5-5). It seems

reasonable to infer that inoculum applied to these areas completely failed to regenerate

and is unlikely to do so in the future. This does not imply that deep water in the

trenches will remain uncolonised but that growth is unlikely to come from in situ

regeneration of inoculum lying at the trench bottom. Instead, deep water is more likely

to become colonised by lateral spread of existing Sphagnum rafts at the shallow end of

the trench. In this way, new growth is supported by neighbouring plants which

themselves are supported by the pool edge. Furthermore, it is possible that in an

established raft, a build up of entrapped gases helps to provide buoyancy. Natural

colonisation of deep abandoned peat pits or drains is frequently observed to occur by

169



centripetal colonisation from the edges. In all trenches (as in Experiment 6), small

'clumps' of Sphagnum were observed floating at the trench periphery in deeper water.

In the future these may represent the 'nuclei' from which centripetal colonisation takes

place. Future monitoring of these trenches would be valuable.

Overall, growth of S. cuspidatum was more prolific than S. recurvum, with the

former colonising deeper conditions (Table 5-5). However, this is not clear in Fig 5.4

when comparing trenches STA 14 and STA 12, as Sphagnum cover appears to be

similar for both species. This incongruity is due to slight differences in slope of the

trenches created during their excavation. In STA 12, a floating raft was observed up

to 8m along the trench with further subsurface growth up to 10 m and water depth at

these points was only 40 and 55 cm respectively. However, in STA 14, a floating raft

was observed to a similar length along the trench (9m) with further subsurface growth

up to 11 m but water depth at these points was greater at 60 and 80 cm respectively

(Table 5-5).

5. 3. 3. 2 Effect of brushwood

By April 1992, 1 year after the experiment was set up, trenches STA 15 and STA 13

showed markedly less regeneration than their counterparts. Furthermore, they were

characterised by prolific algal growth, especially the green filamentous Oedogonium

spp. Numerous workers have observed a detrimental effect of algae on Sphagnum

growth in both laboratory and field conditions (Boatman, 1983; Baker & Boatman,

1985; Goode, 1970; Jones, 1978; Rudolph & Voigt, 1986; Skene, 1915; Slater,

1986/87). Whether this is an allelopathic effect or just an effect of smothering is not

known, but addition of brushwood appeared to have some detrimental effect upon

Sphagnum regeneration. Water quality data from July 1991 (3 months after the
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experiment was set up) does not indicate nutrient enrichment in trenches STA 15 and

STA 13 (Table 5-5). It is possible there was a delayed or slow release of nutrients or

else a release of complex organics that were not detected, or perhaps most

importantly, this highlights the difficulty of interpreting data from 'spot' samples of

water quality.

By April 1993 a recovery of Sphagnum had occurred in trenches STA 15 and STA 13

and the proliferation of algae was not recurrent. These observations agree with those

in Experiment 6 that eutrophication from brushwood does not appear to be long term.

At the time growth was recorded (December 1993), cover of S. cuspidatum was

similar to its non-brushwood counterpart STA 14. However, as is evident in Fig 5.4,

recovery in S. recurvum was not as complete. This is not surprising as S. recurvum

was notably slower to regenerate than S. cuspidatum over the first 2 years of the

experiment and appeared to be generally less productive (see above).

As with Experiment 6, brushwood added to deep water sank to the bottom of the

trenches, and the intended effect of providing structural support at the water surface

was not achieved. Furthermore, in shallow water no effect of brushwood was

observed though this may be because of insufficient time for any effect to be realised.

It remains possible that brushwood will act as a climbing frame encouraging upward

growth of the Sphagnum layer in the future, but further monitoring is required. In

STA 15 there was some indication that brushwood lying subsurface had encouraged

raft development in S. cuspidalum over a greater length of the trench than in STA 14

(Fig 5.4). In S. recurvum any such benefit to date will have been masked by the

earlier effects of algal growth. Clearly, care must be taken in making such

comparisons when growth is not markedly different. An effect may become more

apparent in the future, therefore, further monitoring is required.
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5. 3. 3. 3 Sphagnum fragments vs whole plants

Comparison of Fig 5.4 with Fig 5.1 suggests that regeneration from fragments was far

more prolific than regeneration from whole plants. Fragments grew to cover a much

greater length of the trenches using less than half the volume of starting material.

Comparison of water quality data in Table 5-4 and Table 5-1 suggests there were no

major differences in water quality that might account for this, which is not surprising as

STA and STB trenches were the same design, directly adjacent and dug into the same

substrate. It seems reasonable to infer from these results that vegetative growth of S.

cuspidalum and S. recurvum was stimulated by decapitation under these conditions

and inoculating pools with fragments of these species would be a more effective way

of encouraging colonisation than using whole plants.
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Chapter 6

General Discussion

6. 1. Spontaneous revegetalion ofpeat cuttings

Evidence presented in Chapter 2 suggests that an actively growing Sphagnum cover

will not necessarily return spontaneously to an intensively cut-over peatland without

some intervention. In general, re-establishment of Sphagnum at cut-over sites in the

UK has been poor. Among the sites visited, water regime appeared to be the primary

factor limiting Sphagnum regrowth and frequently, conditions in cut-over areas were

too dry and the most widespread communities to have recolonised them resembled dry

heath vegetation characterised by the growth of ericaceous shrubs, Betula spp and

Molinia. Water regime at the surface of cuttings was strongly influenced by the

residual topography of the peat. Upstanding peat baulks often remained dry while

'basin-like' cuttings and ditches harboured wetter conditions. However, even cuttings

may exhibit conditions similar to baulks where drainage remains effective.

Good-quality raised bog vegetation was observed to have recolonised peat cuttings in

some locations, as represented by the Erica tetralix - Sphagnum papiiosum

community (Table 2-2). Generally, this occurred in cuttings at the fringes of less

extensively damaged sites where bog vegetation in the form of floating mats had

colonised flooded peat pits. Such vegetation closely mirrored that of undisturbed bog

and would be considered a very desirable endpoint to restoration (1.5). This

observation alone is of significance because it suggests that that it is possible for raised

bog vegetation to recolonise cut-over areas if given the right conditions.
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6.2 Hydrological conditions required for restoration - a case for

rafting.

Among the peat cuttings surveyed, most retained functional drainage ditches which

would account to some extent, for the predominantly dry conditions observed. Clearly

an early priority for any restoration strategy must be to obstruct such drainage (1.8).

However, evidence discussed in Chapter 3 suggests that in intensively cut-over areas,

ditch blocking alone may not be sufficient to restore surface wet conditions. Despite

blocked ditches the water-table may remain highly unstable leading to long periods of

surface drought during the summer months. Fundamental differences exist in the

hydrophysical properties of catotelm peat and the living acrotelm layer of an

undisturbed bog. Water storage capacity of the catoteim peat surface left after peat

winning is much lower than that of an acroteim; hence the surface of a cut-over system

does not retain sufficient water to prevent drought (3.1.4).

Although Thorne Moors is a relatively low rainfall site, evidence exists that water-table

fluctuations are a commun characteristic of intensively harvested bogs in a range of

climatic regimes (3.1.3). It would be of great value to set up monitoring programs at

sites elsewhere in the UK to obtain comparative data. Results from Experiment 1

(3.2) demonstrate that water-table fluctuations less extreme than those recorded for

the Creykes milled-peat field at Thorne Moors can severely limit Sphagnum

regeneration. This raises concern over what real opportunities there are for restoring

Sphagnum dominated vegetation to milled peat fields under such environmental

constraints.

Evidence from workers on the Continent suggests that water-table fluctuations may be

limited by increasing water storage on the cut-over surface. This can be achieved by

reconfiguration of the peat surface to produce a series of pools (3.2.4). Evidence from

this study suggests that open water does not preclude Sphagnum regeneration. In fact
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Mosaic of shallow poois for development
of floating Snhnarnin, rftQ

Residual peat

the best examples of recolonisation by raised bog vegetation were observed to be

floating rafts which remain perennially wet, suppressing the growth of heathiand

species (see above). Hence, pools created on a milled bog surface can be seen to serve

two functions. Firstly, they increase surface water storage and reduced water-table

fluctuation (especially low summer water-table). Secondly, pools provide conditions

suitable for the hydroseral development of Sphagnum vegetation in the form of floating

mats. Thus, cut-over surfaces can be engineered to support a mosaic of Sphagnum

hydroseres (Fig 6.1). It may be expected that, in time, as the pools become in-filled

with fresh peat, a series of 'miniature raised bogs' will develop over a site which may

grow out beyond the perimeter of their original pools and ultimately coalesce. By this

time a sufficient acroteim layer will have developed for the system to become self

regulating and open water will no longer be essential for sustaining surface wet

conditions.

Fig 6.1 Pool system for the restoration of bog vegetation to cut-over peat fields.
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6.3 Open Water - an obligate requirement?

Despite the potential benefits of rafting, results of the vegetation survey show there

were many instances where spontaneous Sphagnum regeneration was observed on

solid peat (2.2.3). Development of Sphagnum dominated vegetation is favoured by

perennially wet conditions and although rafts clearly provide this, Sphagnum

colonisation should be equally successftil if a permanently wet peat surface can be

provided.

Kuntze & Eggelsmann (1981) indicate that restoration in NW Germany is aimed at

establishment of bog vegetation on constantly moist surfaces rather than open water

Great emphasis is placed on the need for a layer of 'top spit' (or 'Bunkerde') to be

placed on the peat surface after extraction to improve its hydrophysical characteristics.

'Bunkerde' is a German term for the surface layer of vegetation and peat which is

removed prior to peat cutting. Placing a layer of 'Bunkerde' over residual dark peat is

thought to improve conditions for recolonisation by bog species. It is able to float

during periods of inundation and in periods of drought it is supposed to limit water-

table fluctuations by storing large amounts of water (Eggelsmann, 1987) - essentially it

acts as an artificial acrotelm. However, clear evidence that 'Bunkerde' actually has a

positive effect is generally lacking. Furthermore, in the UK any possible benefits of

Bunkerde' are largely irrelevant as no measures have been taken to store surface

layers.

Communities dominated by Sphagnum were very rarely observed growing directly on

solid peat. This suggests that cut peat surfaces rarely provide sufficiently wet

conditions. More frequently Sphagnum growth occurred in combination with an

abundance of heathland plants such as Calluna vulgaris, Molinia caerulea and

Eriophorum vaginatum, and the resultant vegetation resembled wet heath rather than

undisturbed bog (2.2.3).
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There is some evidence that Sphagnum growth benefits from the improved

microclimate provided by a cover of vascular plants (2.2.3). Buttler, Grosvernier &

Matthey (in prep) suggest that this provides a mechanism for establishment of

Sphagnum in cut-over areas which exhibit a low water-table. This would remove the

need for a rafting strategy and suggests that cut-over areas are ultimately self restoring.

However, critical evidence that this succession takes place is lacking and in many UK

situations, the general absence of any such trends indicates it may have limited

relevence. Therefore, the fate of wet heath communities in abandoned peat workings

remains debatable. Whilst it is possible Sphagnum may grow to dominate wet heath it

remains equally possible, particularly in drier locations, that vegetation will remain wet

heath for the foreseeable future. Evidence from the vegetation survey shows that many

examples of dry heath vegetation on peat exist where a cover of Molinia or Calluna

has not facilitated any Sphagnum regeneration. Furthermore much of the wet heath

vegetation has persisted as such for at least 50 - 100 yrs.

It seems likely that just allowing milled peat fields to recolonise with heath species may

result in development of dry heath devoid of Sphagnum or wet heath containing some

Sphagnum (dependent on site specific water regimes). The latter community will be

finely balanced and susceptible to temporal changes in climate. For example, a few

years of below average rainfall may cause an increase in abundance of 'dry' species,

invasion by scrub and increased susceptibility to fire. If a dense cover of Molinia

becomes established then evapotranspirative losses can exacerbate water-table

fluctuations and further dry out the system (3.1.4)

Although conditions may vary amongst sites, evidence from this study suggests that

maintenance of wet conditions at the surface of abandoned peat fields will prove

extremely difficult without the excavation of pools. Conditions must be kept

sufficiently wet all year round to encourage Sphagnum regeneration and discriminate

against 'undesirable species'. It is possible that surface inundation will be unnecessary
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in some high rainfall locations but at low rainfall sites such as Thorne Moors it is

probable that a hydroseral approach to restoration may be necessary.

6.4 Problems with rafting

6. 4. 1 Guanotrophication

For bogs in NW Germany, Blankenburg & Kuntze (1986) warn that the creation of

'free water sheets' must be prevented if possible as they may attract birds with

concomitant problems of guanotrophication. It is difficult to evaluate to what extent

this is likely be a universal problem. At Cors Caron in Wales, peripheral cuttings

dominated by Molinia have been inundated by construction of a peat bund. It was

evident on visiting the site that the open water attracted large numbers of gulls and the

discoloured peat bulks were suggestive of significant faecal inputs! However, many

large reflooded cuttings have not proved to be attractive to birds, and workers in the

Netherlands, who have created large inundated sites, seem unconcerned about the

matter (Wheeler, pers comm.). Furthermore, there is some evidence that bog

vegetation can develop over stands of Juncus effusus which characterise sites of

former gull colonies (Baaijens, 1984 cii Joosten & Bakker, 1987) so guanotrophication

may not ultimately prevent bog regeneration. The precise conditions which may

encourage birds have yet to be established.

6. 4. 2 Pool size and wave action

The creation of ponds has also been discouraged on account of the fact that floating

vegetation can be significantly disturbed or even prevented by wave action

(Egglesmann, 1988a). Joosten (1992) also warns that inundation may lead to the

development of lakes of black water in which no floating bog mats come into being.

Any problems of wave action can be reduced by creating a large number of small pools
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(3.2.4). Small pools also provide a greater length of pool edge per unit area of open

water which may encourage recolonisation particularly by centripetal growth from the

pooi edges. The density of pools will be limited by the practicalities of reconfiguring a

mire surface, something which has yet to be determined. Evidence from Experiment 6

and 7 (Chapter 5) suggests that shallow pools are likely to recolonise most rapidly but

minimum pool depth will be limited by their susceptibility to drying out.

Therefore, whilst a complex network of small, shallow pools would be the ideal the

extent to which it can be realised will depend on site specific conditions (3.2.4). Large

sheets of free water do not necessarily preclude formation of Sphagnum rafts.

Colonisation by floating mats of Sphagnum cuspidalum have been observed in large

inundated areas such as the flooded peat fields at Amsterdamsche veld in the

Bargerveen Reserve, Netherlands (Wheeler pers comm). Colonisation may be

particularly prolific where conditions remain shallow, for example at Peatlands Park,

Belfast, where S. cuspidalum was observed to have colonised a shallow pond, 10 ha in

area and 30 - 40cm deep.

Despite the possible problems associated with rafting, it offers a strategy for restoring

bog vegetation to intensively cut-over areas which have a water regime too unstable to

permit recolonisation by Sphagnum directly onto the peat surface. There is agreement

from some workers in the Netherlands that development of floating rafts may be the

only effective way of re-establishing bog vegetation. Schouwenaars & Vink (1992)

suggest that for areas which have been colonised by Molinia, the only potential for

regrowth of Sphagnum is by complete inundation. Furthermore, Schouwenaars (1992)

concludes that the residual peat surface of most bog relics in the Netherlands is not

suited to direct establishment of a Sphagnum vegetation. " In these areas the only

practical solution seems to be the creation of permanently inundated sites where

floating mats of Sphagnum spp are able to fluctuate with the water level and

permanently water-logging of the Sphagnum layer is guaranteed".
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6.5 Hydrochemical conditions and Sphagnum growth

6. 5. 1 pH

Results from Experiment 4 suggest that the low pH values recorded at Thorne,

particularly in the milled peat field are sub-optimal for the growth of Sphagnum (4.3).

However, in Experiment 5, addition of lime to pools in the field was unsuccessful in

both sustaining an increase in pH and in increasing Sphagnum growth (4.4). In fact,

overall, lime could be said to have had a detrimental effect on growth. In simple field

trials an attempt was made to elevate the pH of water in experimental pits at Creykes

using alternative agents i.e. I M NaOH and NaHCO3. They were found to produce

similar pH response curves to 80 g of CaCO3 (Appendix 1). Unlike lime, NaOH and

NaHCO3 may not be toxic to Sphagnum, however, they would be expensive to use.

Therefore, unless a suitably cheap and effective method could be found it may simply

be unrealistic to attempt to elevate the pH of abandoned peat fields.

6. 5. 2 Nutrient and base-enrichment

Evidence presented in Chapter 4 suggests that significant differences may exist

between the hydrochemistry of cut-over and undisturbed bog surfaces. Water samples

from cuttings at Thorne Moors were found to contain elevated concentrations of Ca

2+, Fe2 , K, NO3, NT-14-N and SO42 , and exhibit lower pH. From the limited

evidence available from other workers, this appears to be part of a more universal

trend towards enrichment in cut-over areas (4.1.3). Such enrichment may explain the

growth of-poor fen species such as S. recurvum, S. fimbriatum and Juncus effusus

characteristic of cuttings at Thorne (2.2.3).

The source of this enrichment is not clear. Modern methods of peat extraction

frequently leave only shallow depths of peat above the mineral ground introducing the
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possibility of basal enrichment. Whilst basal enrichment may be a feature of some

sites, at Thorne Moors evidence suggests it was not an important influence on water

quality in the Creykes and Crowle study areas (4.1). Atmospheric pollution may have

contributed to the high S and N concentrations recorded but its significance is not

known (4.1.3.1). NH4-N, NO3 and SO4 concentrations were significantly higher at

the Creykes study area than at Crowle (4.1) suggesting factors other than pollution

may also have influenced the results. Firstly, the vegetation cover present may have

lowered S and N concentrations at the Crowle area. Secondly, more recent and severe

disturbance by peat cutting may have caused higher S and N concentrations (through

mineralisation) at the Creykes area. (4.1.3.1).

6. 5. 2. 1 Implications of nutrient enrichment for Sphagnum growth.

The fear is often expressed among workers in the field that chemical enrichment will

encourage growth of poor fen species. Whilst this may be so, there is considerable

evidence to suggests that mild enrichment is not be directly detrimental to plant species

typical of raised bog and that it may even stimulate their growth. Boatman (1977)

transplanted shoots of S. cuspidatum from weakly minerotrophic pools in the lagg

zone of a bog to ombrotrophic pools on the bog's surface. He found that, initially, they

contained more tissue N, K and Mg than shoots in the bog pools, and they produced

more extensional growth and more innovations. In solution culture experiments on S.

cuspidalum, Baker & Boatman (1990) found greatest innovation frequency and

growth (in weight) at concentrations of N, P and K far in excess of those recorded in

ombrotrophic bog waters. Similar results were obtained for a range of species by

Baker & Macklon (1987). A number of sites in north Cheshire, exhibit overgrowth of

open water by S. recurvuni rafts which support numerous plant species normally

associated with ombrotrophic bog. Water samples from these Sphagnum rafts differ

little in pH from truly ombrogenous sites, but have higher total cation concentration

(particularly with respect to K+) (Talus, 1973). Finally, conductivity measurements
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shown in Table 2-2 indicate that mild enrichment occurred in some cuttings which

were observed to support a desirable raised bog vegetation (2.2.3). Therefore, modest

nutrient enrichment is not necessarily prohibitive to restoration.

6. 5. 2. 2 Nutrient enrichment and Sphagnum spore regeneration

Regeneration from spores is potentially an important process for recolonisation of

damaged peatland as it would enable long distance inoculation of areas devoid of a

local source of propagules. However, the contribution made by sexual reproduction in

Sphagnum is poorly understood. Boatman & Lark (1971) found that protonemata of

S. papillosum, S. niagellanicum and S. cuspidatum would not develop in the nutrient

regime of oligotrophic mire poois unless concentrations of phosphorus were raised to

artificially high levels. S. palustre has also been observed to regenerate successftilly

from spores on agar though growth was much slower than from vegetative

reproduction (Sabotka, 1976).

In order to obtain plants free from algal contamination, methods now exist for

routinely growing Sphagnum from protonemata on mineral enriched agar (Baker &

Boatman, 1985). However, under nutrient poor conditions in the field, it would

appear regeneration from spores is less important than vegetative reproduction.

Despite this, certain species do fruit frequently e.g. S. jImbriatum. Clymo & Duckett

(1986) suggest that some of the green shoots observed to grow on discs of peat arose

from unattached protonemata thought to have originated from spores. If this is the

case, then it suggests protonemata can develop given no more than light, air, and

whatever inorganic or organic solutes are available in newly formed peat. However,

regeneration was not observed in peat from depths greater than 30cm. Therefore, such

spontaneous growth cannot necessarily be expected in deeper peats left after

extraction.
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Long distance dispersal of viable diaspores must take place in order for Sphagnum to

spontaneously colonise in remote locations. Andreas & Host (1983) recount

colonisation of the wet floor of an abandoned sandstone quarry which was excavated

between 1911 and the mid 1940's. Since then, an extensive bog mat some 0.75 km in

diameter has developed supporting Sphagnum teres, S. recurvum, S. capillfolium, S.

fuscum and S. magellanicum. This suggests that Sphagnum is able to disperse over

considerable distances, the nearest extant bog being 14 km away.

It is possible that regeneration from diaspores at Andreas & Host's site was

encouraged by the weakly minerotrophic conditions in the quarry. Sphagnum

colonisation is also frequently observed in remote fen systems (6.5). This suggestion

would agree with laboratory observations (see above) that regeneration from spores is

only possible under mineral enriched conditions. In fact, rarely in nature does

Sphagnum vegetation initially colonise under ombrotrophic conditions. Ombrotrophic

conditions are a natural consequence of growth of the Sphagnum layer and peat

accumulation and as a bog grows upwards and conditions become ombrotrophic, so

the environment may become less favourable for regeneration from spores. This may

explain why in bog vegetation the primary method of Sphagnum regeneration is

vegetative.

If this hypothesis is correct, then it would be unreasonable to expect Sphagnum

regeneration from spores in abandoned peat fields as these represent conditions nearer

to ombrotrophy than minerotrophy. Evidence presented in Chapter 4 suggests that

cut-over bogs are characteristically nutrient enriched compared to undisturbed bog

which would be expected to encourage spore regeneration. However, phosphorus

concentration was not enriched, thus spore regeneration may still be limited. Notably,

phosphorus was an element suggested by Boatman & Lark (1971) to be critical in

spore regeneration (see above).
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6.5. 2. 3. The importance of phosphorus to Sphagnum recolonisation

Despite the general level of enrichment recorded at Thorne, concentrations of

phosphorus were very small as in undisturbed systems (4.1.2). In Experiment 5,

niodest additions of phosphorus in the field were found to significantly increase

productivity of S. cuspidalum and S. recurvum in pools, confirming the inferences of

other workers that concentrations of P in ombrotrophic waters are sub-optimal for

Sphagnum growth (4.4). In attempts to restore cut-over areas it may therefore be

possible to encourage Sphagnum recolonisation by fertilising with phosphorus.

Further work is required to investigate fully the potential growth response of

Sphagnum in the field to a range of phosphorus concentrations. It would be useful to

know how little P is required to increase growth significantly and also to what extent

growth can be promoted without promoting a change in species balance. Future

investigations must also consider the effect of added phosphorus on growth of a

broader range of Sphagnum species. Aerts et a! (1992) found growth of S.

niagellanicum at N rich sites in southern Sweden was limited by P availability. In cut-

over areas a similar scenario may exist where N concentrations are enriched, perhaps

due to mineralisation (or pollution), but P concentrations remain small. Recently,

Rochefort, Gautier & Lequeré (in prep) found growth of S. nemoreum on peat was

increased on addition of bone meal and a slow release chemical fertiliser. Therefore,

growth of numerous Sphagnum species in cut-over areas may benefit from additions of

P. Clearly there is much scope here for further research.

6.5.2. 4 Nutrient conditions, bog development and restoration.

Raised bogs are naturally low-nutrient environments (1.6.3) so it may seem

inappropriate to suggest that mild enrichment may encourage Sphagnum growth.

However, stratigraphical evidence suggests that most raised bogs may have originated
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from fen vegetation (refer to Section 1.1), and within present day areas of fen

numerous studies have revealed development of Sphagnum dominated bog, ranging

from small ombrotrophic nuclei to extensive ombrotrophic surfaces (Giller & Wheeler,

1988; Shaw & Wheeler, 1991; Bellamy & Reiley, 1967; Karlin & Bliss, 1984). The

propensity for Sphagnum to 'invade' fens is considered by Lindholme & Vasander

(1990), who point out that Sphagnum papillosum is an important coloniser of poor fen

systems in Southern Finland. Furthermore, in Britain and Ireland, it has been

suggested that the majority of minerotrophic mire sites have become over-run by the

growth of Sphagnum (Goodwillie, 1980; Rodwell, 1991). Prolific growth of

Sphagnum in fens is also documented for sites in the Netherlands, where ironically, it

is viewed as a management problem in the conservation of fen vegetation (van

Wirdum, 1991).

Therefore, weakly minerotrophic conditions may be the optimum nutrient regime for

Sphagnum growth and despite the dominance of Sphagnum in raised bog vegetation

we should not assume that ombrotrophic conditions represent an optimum for its

growth. Instead, Sphagnum may simply be one of the few plants able to tolerate the

acid, ombrotrophic conditions arising from succession from fen to bog (refer to

Section 1.6.3).

In base-rich fens, growth of Sphagnum is generally pioneered by base-tolerant species

such as S. contorlum, S. fimbrialum, S. recurvum, S. squarrosum, and S. subnitens

which are not species typical of raised bog. They do however, provide a platform for

colonisation by less base-tolerant Sphagna such as S. magellanicum and S.

papillosum but at the stage these latter species colonise, the chemical environment may

still be enriched compared to the surface of a raised bog (Shaw & Wheeler, 1991).

Base-tolerant species become pooly represented as conditions become ombrotrophic.

This suggests that some Sphagnum species are less able to grow in ombrotrophic

conditions than others. If such a gradient does exist then it may follow that
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ombrotrophic conditions are sub-optimal even for growth of typical raised bog species

- however, this is speculative.

In an intact bog, it is possible that most of the growth-limiting nutrients are

concentrated in the living Sphagnum layer, due to the effectiveness of Sphagnum and

other bog species at scavenging and recycling nutrients (1.6.3). Chemical profiles for

bogs are few but evidence from Damman (1978) indicates that the concentration of

most elements are highest in the surface peat (0 - 35 cm depth). Similarly, chemical

profiles from Flaxmere, north Cheshire, revealed that K and P concentrations were

highest at the surface of recent Sphagnum peat (Talus, 1973). This is partly because

elements do not simply accumulate in ombrotrophic peat and most are translocated or

removed to some extent (Damman, 1978) . However, Damman does provide some

evidence that essential elements in short supply such as N, P and K are actively

conserved by the living Sphagnum layer. This suggests a recycling mechanism but

further study is required.

If essential nutrients are actively recycled, then, in an intact bog, new Sphagnum

growth will benefit from nutrients salvaged from old growth. However, vegetation

and surface peat is removed by peat extraction and plants colonising an abandoned

peat field will not have access to such a resource. Therefore, restoration ecologists

may be attempting to restore Sphagnum bog vegetation in conditions of lower nutrient

status than bog species are naturally exposed to and it may not be inappropriate after

all, to suggest that an injection of nutrients (notably P) might be required to encourage

revegetation.

At the Creykes milled peat field, concentrations of some ions (notably NH4-N, SO42

and Ca2+), reached very high concentrations. Evidence from Experiment 3 (4.2),

suggests that Ca concentration at the upper limit of values recorded at Thorne may

inhibit growth of some Sphagnum species. However, such high concentrations
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occurred only temporarily and on average, concentrations of Ca in the range recorded

seem unlikely to be damaging (4.2.3). The effects of elevated S and N on Sphagnum

growth have been the subject of quite intensive study (4.1.3.2), but ambiguous results

in the literature make it difficult to infer what effect concentrations in the range

recorded at Thorne would have on Sphagnum regeneration. Ultimately, the suitability

of sites to support Sphagnum might be best assessed empirically by simple transplant

experiments.

6. 6 Inoculation of cut-over bogs with Sphagnum

6. 6. 1 The need for inoculum

During the vegetation survey of abandoned peat cuttings (Chapter 2) it was observed

that raised bog Sphagna such as S. niagellanicum, S. papillosum and S. caplllfolium

had failed to recolonise in some locations despite conditions being suitably wet for

growth of other Sphagna (2.2.3). This was a particular feature of the vegetation at

Thorne Moors and may be due to a lack of a local propagule source (5.1). However,

recolonisation at Thorne may also have been influenced by other factors besides

propagule availability and these are considered in more detail below.

Very high concentrations of N and S were recorded in water samples taken from the

Creykes peat field at Thorne and it is possible that these concentrations have limited

Sphagnzinz recolonisation (4.1.3.2). However, whilst such high concentrations were

recorded in the milling field, concentrations of S and N in the Crowle study area were

not as elevated (4.1). The latter area consisted of long abandoned, revegetated

cuttings which typify most of workings in the southern half of the moors. An extensive

vegetation survey of the southern area (conducted as part of the broader survey

described in Chapter 2) found little evidence of recolonisation by typical raised bog

Sphagna. Therefore, whilst it is possible that S and N concentrations in milling fields

187



Thorne may hinder recolonisation, it is less obvious why recolonisation has not

occurred elsewhere.

The general paucity of raised bog Sphagnum on Thorne may in part be a legacy of

higher sulphur deposition rates in the past (4.1.3.2). In addition to the effects of

enrichment, this may also explain why S. recurvum is a common species on Thorne as

it is regarded as one of the more pollution tolerant species (Ferguson et al, 1978).

However, S. cuspidatum is also a common species on Thorne despite being more

sensitive to S pollution than S. reczirvum, thus the significance of pollution to

Sphagnum growth at Thorne remains unclear. Overall it seems unsatisfactory in

explaining the current absence of some raised bog species from Thorne. This is

particularly so as surplus Sphagnum, from material transplanted to Thorne for

regeneration experiments, has survived in trenches where it has been stored. This

suggests that whatever pollution inputs continue at Thorne Moors, they are not lethal.

It is possible that spores of S. n2agellanicum, S. papillosum and S. capillfolium,

dispersed over long distances, reach Thorne Moors but fail to regenerate because of

unsuitable chemical conditions (6.5.2.2). It would be interesting to conduct a 'seed

rain' study at Thorne Moors to investigate this. S. recurvum and S. cuspidatum have

colonised isolated cuttings and ditches on Thorne Moors but this may have occurred

by vegetative growth from fragments dispersed by the wind or by birds and other

wildlife. Where a local source of propagules persists, as it does for S. recurvum and

S. cuspidatum, there would be reduced reliance on regeneration from spores.

The absence of a local propagule source is a potentially important factor limiting

recolonisation by raised bog Sphagna at Thorne Moors. A milled peat field engineered

to form a mosaic of poois for the development of rafts of raised bog vegetation, may

take decades to become spontaneously inoculated. Potentially, the process of

recolonisation could be accelerated by inoculating cut-over areas with Sphagnum.
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6. 6. 2 Sphagnum regeneration from inoculum applied in the field

Experimental trenches to which Sphagnum was added in Experiments 6 and 7, could

be seen as representing sections along the radius of a pool created on a cut-over bog

surface. Growth was only observed in trenches to which Sphagnum was added which

suggests that reintroduction significantly increases rates of recolonisation. However,

only species which exhibit an aquatic habit successfully regenerated i.e. S. recurvum,

S. cuspidatum and S. auriculatum, and the water regime required for successful

regeneration was quite precise. Growth directly on peat above the water-table was

limited by desiccation. Growth was most prolific at the peat/water interface and in

shallow water up to 50 cm deep, but at depths > 50 cm regeneration largely failed.

Sphagnum applied to open water floated temporarily but ultimately sank; hence

inoculum cannot be expected to float and regenerate 'in situ' to develop floating rafts.

Instead, regeneration must come from submerged plants, and depths> 50 cm appear to

severely constrain growth, probably due to low availability of light and CO2.

Results indicate that the shallower the pool the greater the rate of recolonisation.

However, the minimum pool depth that can be maintained without drying out will be

dependent on the water budget of specific sites (3.2.4). Sphagnum regeneration may

occur at depths> 50 cm where colonisation occurs largely by centripetal invasion from

the pool edges (5.2.3). In the future it is likely the deeper parts of the experimental

trenches will colonise in this way. However, colonisation dependent on centripetal

invasion will be slower than colonisation from inoculum applied across the whole area

of a pool and will be more affected by wave action, particularly in large pools (5.2.3).

The general failure of non-aquatic Sphagna to regenerate at the peat/water interface

and in shallow water was initially of some concern. Conditions at the peat-water

interface were highly unstable and Sphagnum material thrown prostrate into the

trenches was prone to periodic submergence, desiccation, agitation by waves and
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smothering by peaty sediment. The failure of hummock and lawn forming Sphagna to

regenerate may have been due to their low productivity compared with more aquatic

species (5.2.3). Consequently, inoculum was unable to transcend its initially vulnerable

condition to become established. Furthermore, productivity of these species may have

been limited by low P availability (see above). Therefore, it must be considered how

hummock and lawn forming species can be effectively introduced to pools in cut-over

areas.

Observations from inundated peat pits at various stages of recolonisation suggest that

raft formation follows a distinct successional pathway whereby a floating mat of

aquatic Sphagnum, particularly S. cuspidalum, generally precedes colonisation by

lawn and hummock forming Sphagna. Therefore, a raft of S. cuspidatum appears to

provide a favourable template for invasion from the pool edges by species such as S.

papillosum and S. niagellanicum and thence by vascular species such as Narthecium

ossfragum and Erica tetralix. Similar hydroseral succession has been observed in

reserves of Bargerveen, Deurnse Peel, Engbertsdyksvenen and Fochterloerveen in the

Netherlands (Joosten, 1992; Schouwenaars, 1982; Streelkerk & Casparie, 1989).

Evidence from Experiment 6 suggests that floating rafts of aquatic Sphagna including

S. cuspidatum can quite readily be achieved in depths of water up to 50 cm (5.2).

Therefore, a viable restoration strategy might be to concentrate on establishing rafts of

aquatic Sphagna in order to provide a suitable template for colonisation by lawn and

hummock forming Sphagna. Furthermore, in order to assist floating mat development

certain measures might be considered to accelerate raft formation:
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6. 6. 3 Facilitating rafting

6. 6. 3. 1 Pool size

Experiment 6 suggests that shallow pools will colonise more rapidly but this must be

balanced against the tendency for shallow pools to dry out. Furthermore, pools small

in area will limit disturbance caused by wave action (refer to Section 6.4).

6. 6. 3. 2 The use of brushwood

Branches of trees such as Betula placed in pools may help to break up the open water

reducing the effects of wave action and providing a climbing frame for Sphagnum

growth. At Haaksbergerveen in the Netherlands, inundation of a dry bog relic led to

small floating bog mats being lifted from their original pits. Rapid expansion of these

mats was favoured by the suppression of wave action by dying and dead birch trees

standing in the water (Joosten, 1992). In Experiments 6 and 7 brushwood added to

open water sank and consequently results were inconclusive. However, there was

some evidence that brushwood had assisted colonisation of deeper water in a different

way by forming a layer at the pool bottom effectively reducing pooi depth but little

affecting water storage. Furthermore, the potential for brushwood to act as a

climbing frame in shallower conditions may only become apparent in the future when

Sphagnum regeneration has proceeded further. Consequently, future monitoring of

these experiments is required. Addition of brushwood was observed to increase

growth of algae, notably the filamentous Qedogonium sp., and inhibit Sphagnum

growth. However this effect was short term, occurring only in the first year after birch

brashings were applied (5.2 & 5.3).
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6. 6. 3. 3 'Tussock buffering'

This process requires initial colonisation by species like Molinia, Eriophorum spp and

Juncus effusus. Water levels may then be elevated to inundate the area and the

tussocks of vascular plants will help to reduce the effects of wave action (Joosten,

1992). This method depends on sufficient inundation being achievable and maintained

to encourage Sphagnum growth at the expense of the tussock forming plants

(Streefkerk and Casparie, 1989)

6. 6. 3. 4 Artificial rafting

1) Peat debris

This may float to provide a permanently wet surface for Sphagnum growth. Peat of

low humification generally floats best, as has been observed at the Bargerveen reserve

in the Netherlands (Janson & Oosterveld, 1987 cii. Streefkerk & Casparie, 1989).

However, frequently, no light Sphagnum peat remains after industrial peat extraction.

Simple trials conducted at Thorne found that 'bricks' of basal catotelm peat failed to

remain afloat. Critical evidence for the benefits of peat debris is lacking.

2) Detachment of rooting zone upon inundation

In the Bargerveen reserve floating bog mats were created accidentally (Joosten, 1992).

Dry vegetation became inundated as a consequence of rewetting measures where upon

the rooted layer lost purchase and rose to the water surface providing a favourable

template for establishment of Sphagnum mosses. The significance of this process to

larger scale restoration requires further study.

3)Other artificial rafts

In the latter part of this project's duration some preliminary trials were conducted in

experimental trenches at Thorne Moors to test the floatation of purpose-made mats
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composed of biodegradable materials (Appendix 2). Early observations suggest that

such mats may provide a useful tool to restoration. Mats can provide a permanently

wet surface for regeneration of hummock and lawn forming species. They also

increase the length of pool edge per unit area of open water for centripetal colonisation

by non aquatic Sphagna. Furthermore, mats will help to break up large areas of open

water reducing the effects of wave action. The potential use of these mats requires

further investigation.

6. 6. 3. 5 Utilising vascular plants

Certain species such as Menyanihes trfoliata form skeletal rafts of rhizomes over open

water. Such plants may assist Sphagnum raft development though their significance

requires clarification. Eriophorum angustfolium is also frequently found growing in

association with rafts of S. cuspidalum (2.2.2). However, this species does not appear

to be innately a raft former. Simple field trials conducted at Thorne found that tillers

of E. angustfolium placed into experimental trenches did not float and regenerate

unless given the support of a netlon raft. Furthermore, turfs of E. angustfolium

transplanted to the peat-water interface did not readily grow across open water.

Therefore, E. angustfolium may colonise Sphagnum rafts and not the reverse. Even

so, its growth may give more structure to a raft and the tillers may encourage upward

growth of Sphagnum by providing a climbing frame and possibly, by creating a more

conducive microclimate to Sphagnum growth at the raft surface (2.2.2.). At pool

margins, E. angusqfolium can colonise some distance into a pool, to water depths in

the order of 30cm, remaining firmly rooted and with its leaves emerging above the

water surface. Tillers breaking up the water surface may help provide a sheltered

environment for Sphagnum growth. E. angust folium is a vigorous coloniser of

abandoned cuttings (Chapter 2), and may prove to be a useful tool for restoration,

however, the overall role of vascular species requires further research.
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6. 6. 4. Regeneration from Sphagnum fragments

Evidence from Experiment 7 suggests that regeneration of aquatic Sphagnum from

fragments is far greater than regeneration from intact gametophytes (5.3). Therefore,

pioneering Sphagnum rafts may be encouraged to develop by inoculating pools with

fragments instead of whole plants. Regenerative success from fragments provides a

means for using inoculum more economically and efficiently. Furthermore, 'hydro-

dispersal' of fragments offers a more practical way of inoculating more extensive areas.

In laboratoiy studies, the ability of Sphagnum to regenerate from fragments has been

observed by numerous workers. Sabotka (1976) successfully grew S. palustre from

fragments placed on agar, with green stems and apical branches showing the highest

regenerative capability. Poschlod & Pfadenhauer (1989) achieved regeneration from

fragments in nine species of Sphagnum including most major raised bog species. All

parts of the plant were found to regenerate except leaves. More recently, Rochefort et

a! (in prep) obtained growth on agar from all fragments including leaves, in S.

inagellanicum, S. rubellum, S. recurvum and S. papillosum. Therefore, the potential

exists for regenerating hummock and lawn species from fragments in the field as well

as aquatic species. However, further research is required to investigate this.

6.6.5 Inoculation with hummock and lawn-forming Sphagna

Assuming a raft of aquatic Sphagnum can be successfully established, it must then be

considered how hummock and lawn forming species would be introduced. Results

from Experiment 6 suggest that material scattered at the pool periphery may fail to

regenerate due to instability of the peat water interface (5.2.3). However, evidence

from trenches at Thorne in which Sphagnum was stored for experiments, suggests that

hummock and lawn forming species are able to survive and grow at the pool periphery

where 'clumps' of material are not disaggregated. Plants in a hummock exist in a more

humid, self-regulating microclimate, a property lost when hummocks are disaggregated
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and the component plants scattered (3.3). Furthermore, hummocks will give the

component plants physical support during periods of submergence. Therefore groups

of Sphagnum plants may be a more appropriate way of introducing species such as S.

magellanicum and S. papillosum to the pooi periphery. They could then be allowed

to grow centripetally across an existing raft of aquatic Sphagnum.

In theory, a raft of aquatic Sphagnum should itself provide a perennially wet substrate,

favourable for direct inoculation with hummock and lawn species. However, at

Thorne an attempt was made to inoculate a S. cuspidatum raft with whole plants but

they became displaced through the raft by heavy rain. A similar result would be

expected with fragments. This would not occur if robust artificial mats were used. It

would not be realistic to suggest covering inundated areas fully with artificial floating

rafts. However, they could be used as nuclei for growth of hummock and lawn species

within aquatic Sphagnum rafts, in addition to hummocks placed at the pooi periphery.

6.7 Sphagnum farming'

Fundamental to any strategy of deliberate re-introduction, is to provide a source of

inoculum. Elling & Knighton (1984) report that Sphagnum has been harvested

sustainably from bogs in the USA and Canada since the 1800's for use primarily as a

packing material for transporting plant seedlings. Traditionally, this was done

manually by pulling up Sphagnum from the bog surface but modern, mechanised

methods involve almost complete removal of the Sphagnum layer. Despite this,

regeneration of the Sphagnum layer does occur from fresh, residual peat exposed to

the surface in a way similar to that observed by Clymo & Duckett (1986)(5. 1). For a

Minnesota peatland, they recommend that a 20 year harvest cycle would be needed for

90% recovery of the 72 tonnes per hectare present before harvest.
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With extensive areas of Sphagnum bog remaining, particularly in Canada, restoration

projects in North America could conceivably acquire large quantities of inoculum in

this way. However, in the UK, extensive areas of productive, Sphagnum-dominated

vegetation are comparatively rare and what remains would be considered too precious

to consider converting to large-scale Sphagnum production. Instead the possibility of

'farming' Sphagnum must be considered. Evidence from this investigation suggests

that growth of aquatic Sphagna in shallow water can be very prolific especially when

regeneration occurs from fragments. Therefore, a series of 'nursery' trenches at cut-

over sites could be developed to provide adequate amounts of material. If trenches

were harvested on a rotation a constant supply could be maintained. Growth may

further be stimulated by manipulating the water quality. Evidence from Experiment 5

suggests that addition of phosphorus may dramatically increase productivity (4.4).

Consideration might also be given to increasing CO2 availability. Abnormal growth of

Sphagnum cuspidalum is frequently observed in still water and this may be a

consequence of carbon limitation. In acid solutions there is a poor reserve of

bicarbonate (HCO 3 ) so shortage of C may be particularly acute. Carbon dioxide

(CO2) is considered more important than HCO3 as the inorganic carbon source for

submerged vegetation, its source being largely from microbial decomposition and

organic compounds (Bain & Proctor, 1980).

On Silver Flowe, Boatman (1983) observed greater innovation production in S.

cuspidalum in hollows compared with deep pools. Greater production was also

observed at the ends of pools. He considered this may be due to increased exposure to

the atmosphere as the rate of diffusion of CO2 through water is extremely slow.

Boatman, (1977) observed greater innovation production in transplants of S.

cusp/datum grown in the swallow hole of a lagg compared with plants in a surface bog

pool, He suggested that the importance of CO2 should not be overlooked as water

niovement not only increases rate of supply of solutes but also levels of dissolved CO2.
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Spindly growth and poorly developed capitula are a feature of C limitation. In

laboratory studies, Baker & Boatman (1985) found growth of S. cuspickilum

resembling that which occurs naturally, could only be produced when CO2 was passed

through the culture solution. Jones (1978), achieved normal growth of S. cuspidatum

by addition of simple sugars to the culture solution. Further laboratory studies have

shown that at concentrations of N, P and K only slightly higher than those recorded in

rain i.e. 2 mg 11 NO3-, 0.78 mg 11 K, 1.3 mg ii H2PO4, CO2 gas bubbled

through solution can significantly increase innovation production (Baker & Boatman,

1990).

In the Maria Peel area of the Netherlands luxuriant growth sites of S. cuspidatum were

observed to correspond with high levels of dissolved CO2 i.e. 780 l.tM CO2 11

(Roelofs, 1983). Consequently, it was suggested that too low CO2 levels in the water

layer might be responsible for lack of growth of submerged Sphagna in numerous

pools of the Groote Peel area (Roelofs, Schuurkes & Smits, 1984). Laboratory

experiments on S. cuspidatum in submerged culture showed that high CO2 was

necessary for growth. At CO2 concentrations below 750 1.iM ii plants showed

reduced growth and were unable to form a floating mat (Paffen & Roelofs, 1991).

Therefore good evidence exists for a beneficial effect of increased concentration of

dissolved CO2 on Sphagnum growth. However, whether this knowledge could be

utilised on a large scale comes down to a question of logistics and particularly of

economics. Bubbling gaseous CO2 or air through numerous pools across an old milled

peat field would be prohibitively expensive. However, it may be more applicable for

rapid production of inoculum in special 'nursery' trenches.

Farming of non-aquatic species may be more difficult due to their lower productivity.

However, Baker & Macklon (1987) found in laboratory studies that aeration of culture

solution with air containing 10% CO2, dramatically increased submerged growth of
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several hummock and lawn forming species of Sphagnum, with potential for scaling up

the operation. In the field, artificial rafts may be of use as they would provide a stable

water regime for regeneration. Results from Experiment 3 (3.3) suggest the potential

also exists for improving microclimate in nursery trenches, perhaps with plastic

sheeting, in order to improve regeneration. Clearly there are many possibilities for

facilitating Sphagnum farming. However, further research is urgently required to test

many of these ideas.

6.8 Final remarks

Throughout this thesis, attention has been drawn to the many environmental

constraints which act to limit Sphagnum recolonisation. However, overall, results

from this study are quite encouraging. There is good evidence that desirable bog

vegetation can become re-established in abandoned cuttings given certain conditions.

If it is possible to reproduce such conditions then it is quite conceivable, assuming

Sphagnum growth is not constrained by atmospheric pollution, that a raised bog flora

can be restored to milled peat fields.

It is thought that rafts of bog vegetation in abandoned peat pits have developed

unaided in 50 - 100 yrs and although the area of these individual pits is generally small

(<100 m2), regeneration had occurred simultaneously in a number of adjacent pits so

the total area over which this vegetation had developed is much greater. Talus (1973)

reports that at Scouts Wood in Delamere Forest, north Cheshire, a shallow pool some

100 m in diameter has become completely overgrown by Sphagnum; and at Flaxmere,

shallow peat excavations have infilled with Sphagnum within ten years. Therefore, a

mosaic of pools colonising simultaneously across a milled peat field could be expected

to show considerable progress in a matter of decades. Furthermore, results of field

expenments suggest numerous management options may be considered for actively

assisting vegetation development. There is enormous potential for encouraging
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revegetation. Many suggestions have been made based on empirical evidence, which

require further experimental investigation. This reflects the very embryonic nature of

the subject and the scope for further research is great.

This project has focused primarily on the need for a hydroseral approach to

restoration. This concept has been devised with particular reference to the

hydrological conditions that persist at Thorne Moors. At this stage, there is

insufficient evidence from abandoned milling fields elsewhere to suggest that this

approach would be required universally, particularly in wetter climatic regimes.

However, the limited evidence which does exist suggests this may be the case.

Some particularly important questions lead on from this project which need to be

considered. Some attempt must be made to actually reconfigure a milled surface to

investigate the logistics of creating a mosaic of pools. If this can be achieved then

Sphagnum regeneration experiments need to be scaled up to attempt establishment of

aquatic Sphagnum rafts over larger areas as part of an actual restoration procedure.

Perhaps the biggest unknown which needs to be addressed, is whether we can

successfully establish later successional species. We know this has taken place

spontaneously on a small scale but uncertainty surrounds whether this can be replicated

over larger areas. Once these questions have been answered we will be in a much

better position to suggest whether or not it is possible to return a Sphagnum-

dominated flora to milled peat fields.

It must be considered that a cut-over bog could never be returned to its original

condition as thousands of years of palaeoecological record and the archaeological

archive cannot be replaced. Therefore, research into restoration can never be

considered justification for future peat extraction from conservationally valuable areas.

Although a bog cannot be restored to its original condition this does not detract from

the value of the research, as a knowledge of the methods required to regenerate raised
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bog vegetation would enable expansion of a nationally rare habitat into damaged bog

sites.
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Appendix 1

Attempts to reduce pool water acidity in a cut-over bog.

As a consequence of drainage, pools in cut-over bog may be characterised by

unusually low pH. In the Creykes study area, flooded peat pits frequently exhibited

values as low as pH 3.0 (refer to Chapter 4). Results of Experiment 4 indicate that

low pH may be sub-optimal for growth of Sphagnum. The aim of this investigation

was to test the effectiveness of three chemical agents at reducing acidity of pools in

cut-over bogs.

Method

Applications of NaOH, NaHCO3 and CaCO3 were made to water in peat pits in the

Creykes study area (refer to Section 1.10.2). Each pit contained approximately 4000

litres of bog water at around pH 3.5. The aim was to increase pH to around pH 4.0.

The quantity of each chemical required was estimated from simple laboratory trials in

which each chemical was added to a small known volume of bog water. Chemicals

were applied to peat pits as shown below:

Pit	 Treatment
CP2	 1 litre of lMolar Na OH
CP4_________________________
CP6	 80g NaHCO
CP8	 (in 5 litres of"distilled water)

CP1O	 80g CaCO3
CP12	 (in 5 litres of distilled water)

CP14	 Control
CP 16	 __________________________
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There were two replicate pits for each treatment (see above). The location of these

pits in the Creykes study area is shown in Fig 1.5. One application was made on the

9th August 1991 and a further application was made on 22nd August 1991. pH was

recorded fortnightly from 9th August 1991 to 15th November 1991 (at which point pH

had returned to its original level) and a further measurement was made on 15th January

1992. pH was measured using a Jenway 3030 portable pH meter.

Results

All three treatments were successful in increasing pH to around pH 4.0. However the

effect was very short term and pH was higher than the control only for the period 22nd

August 1991 - 18th October 1991 (approximately two months). Each of the chemicals

used produced a very similar pH effect. Fig Al shows that there was little difference

in pH response to different treatments.
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Fig Al: The pH of pit water in the Creykes study area in response to addition of NaOH, CaCO 3 and
NaHCO3. [There were two replicate pits per treatment - refer to text for details of treatment]
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Fig Al: continued
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Appendix 2

Float ation trials with artificial rafts

During the course of this study a series of 'ad hoc' trials were conducted at Thorne

Moors to investigate the feasibility of using artificial rafts as tools for assisting growth

of lawn and hummock forming Sphagnum on open water (refer to Section 6.6). In

Experiment 1 (Chapter 3) a netlon raft was successfully used for growing Sphagnum,

however, netlon is prohibitively expensive and is probably inappropriate for large scale

restoration. Efforts during this study have concentrated on using mats composed of

Jute fibres. Jute material is comparatively cheap and technology exists for 'weaving' it

into mats of varying thicknesses. It may be produced in rolls (rather like rolls of

carpet) which are easy to administer to the field. The absorbent mat provides a wet

surface on which laboratory trials suggest Sphagnum will readily grow. Thus, jute

matting potentially provides a cheap and effective rafting material.

However, field trials indicate that mats comprised purely of jute only remain afloat for

up to 72 hrs, and once fully saturated, they invariably sink. This applied to mats both

loosely and tightly woven and to mats of differing thicknesses. Mats were therefore

created with strips of cork adhered (using a non-phytotoxic glue), to give buoyancy.

However, even mats with over 50% of their area covered by a 5 mm layer of cork

failed to stay afloat. Finally, rafts were produced with a thin (2 mm) layer of

polystyrene 'stitched' to the underside which was successful in providing buoyancy.

These rafts were inoculated with plants of Sphagnum papillosum and S.

magellanicum and early indications are that the mats are providing a suitable template

for growth of these species.
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The need for a layer of polystyrene to achieve buoyancy perhaps makes the use of

these mats less desirable aesthetically, but they may nevertheless be a useful tool in

encouraging recolonisation by providing a permanently wet template suitable not only

for growth of Sphagnum but also vascular bog species. Aesthetics will be less

important in Sphagnum Tarming' (refer to Section 6.7) therefore mats with a

polystyrene base may still have a function in producing large amounts of inoculum for

restoration. In the future, it is possible that an alternative solution to the problem of

buoyancy may be achieved. The potential benefits are such that artificial rafts warrant

further investigation.
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