Y SISTEMAS PRODUCTIVOS EN AREAS REGADAS, SISTEMA PALOMA "VALIDACION Y TRANSFERENCIA DE TECNOLOGIA DE RIEGO IV REGION. (PROVALTT - PALOMA)

Gobierno Regional de Coquimbo Ministerio de Agricultura Comisión Nacional de Riego Instituto de Investigaciones Agropecuarias Convenio: FNDR – CNR – INIA

ELECTRIFICACION Y AUTOMATIZACION DE SISTEMAS DE RIEGO PRESURIZADO

TEMARIO JORNADA ELECTRIFICACION AUTOMATIZACION DE EQUIPOS DE RIEGO.

POTENCIA ELECTRICA.

Potencia es trabajo efectuado en la unidad de tiempo.

La unidad de potencia eléctrica es el Watt o Vatio.

La unidad de tiempo es el segundo.

En términos eléctricos $W = V.I. \cos \emptyset$

La unidad de potencia mecánica es Hp=500 L/P o Cv=75 Kgm.

La relación entre la potencia eléctrica y la potencia mecánica es a razón de 746 W/Hp o 736 W/Cv. (para efectos prácticos se considera 1 Hp = Cv.).

La energía es igual a la potencia multiplicado por el tiempo, y corresponde al trabajo efectuado en forma de mover algún cuerpo, aumentar o disminuir la temperatura de un cuerpo, producir luz, etc.

La unidad de energía eléctrica es el KWh, corresponde al trabajo efectuado por 1000 W durante 1 hora.

Teóricamente un motor eléctrico de 1 Hp funcionando durante una hora consumirá 0,746 KWh. (aproximadamente 1 KWh cada 1 hora 15 minutos).

Si suponemos que tenemos una motobomba eléctrica para elevar agua de 1 Hp de potencia funcionando durante una hora, la cantidad de agua alevada seria:

3600 * 75 = 270.000 L/hora o 3600 L/hora a 75 mt de altura =3,6 m3 / hora (aproximadamente lo necesario para 1 Ha. de riego por goteo).

Observación: (En este cálculo no se han considerado las perdidas).

Para determinar la potencia eléctrica de una motobomba en función del caudal se usa:

$$Hp = \underbrace{\text{Litros seg. * Altura en}}_{50} \text{ mts.}$$
(formula empírica)

POTENCIA MÁXIMA EN COND. 10 Y 30

La potencia monofásica sólo tiene como límite el uso práctico y económico de una instalación.

La potencia máxima 3Ø, cae dentro del mismo concepto, ejemplo:

$$10 \text{ KW } 30 = 5 * 2 \text{ KW } 10$$

Actualmente se fabrican motobombas 10 hasta 3 Hp por la alta corriente partida (5 a 20 veces de la nominal), el límite se fija en atención a la corriente de arranque. La versión 30 no tiene límite.

La distancia máxima aceptable entre el transformador y consumo depende de la potencia del consumo y sección del conductor (o tamaño)

$$R = Ro \underline{\Gamma}$$

Formula que permite conocer la resistencia eléctrica de una línea; parámetro importante para el cálculo de caída de voltaje en la que V = R*I).

Ro = 0.018

L = 200 Mts. Linea

S = 10mm2 Sección

I = 20 Amperes de Carga

W = 4.4 KW. de Potencia

V = 14.4 V caida = 6.5%

La instalación de una motobomba debe ser ejecutada por o con la asesoría de un profesional, contará como mínimo con un tablero de comando que a lo menos incluya:

- 1.- Interruptor de maniobra.
- 1.- Sistema de protección de accionamiento térmico.
- 1.- Sistema de partida y detención.

Dependiendo de la potencia del motor podrá o deberá estar dotado de otros tipos de sensores y relés.

Observación: (En atención a la sobrecarga deberá tenerse en cuenta la presión de entrada o succión.)

Conceptos de caudal - gasto - perdida de carga - golpe de ariete - conservación de la energía y comportamiento en sistemas hidráulicos.

Las instalaciones eléctricas deberán ser construidas de acuerdo a la reglamentación vigente usando materiales aprobados y proyectos registrados en la S.E.C.

USO DE INTERRUPTORES Y OTROS

Los interruptores eléctricos se usan para conectar o desconectar un circuito o un equipo.

Se clasifican como interruptores de maniobra o interruptores de protección.

Los interruptores de maniobra sólo conectan o desconectan.

Los interruptores automáticos se usan para conectar desconectar y protegen, limitando el paso de la corriente, produciendo la desconexión automática cuando la corriente sobrepasa el valor indicado en la palanca de operación o en la placa característica.

Existen en versión Magnetoternico o Termomagnetico. Su respuesta es rápida, o levemente más lenta, respectivamente. No son adecuados como protección de motores.

Los motores deben protegerse con guardamotores o relés de sobrecorriente, correctamente ajustados en el momento de la instalación y pruebas del equipo.

GOLPES DE CORRIENTE

Técnicamente los golpes de corriente no existen, es común que la gente use esta expresión cuando observa parpadeos en la intensidad de la luz de una lampara, o escucha chasquidos en algún equipo de sonido.

Técnicamente si existen variaciones de voltaje y en consideración a que no es posible obtener un sistema absolutamente estable, por lo impredecible de la conexión o desconexión de consumos importantes, la legislación considera una tolerancia de +/- 7.5% lo que significa que para un sistema de 220 volts, la variación aceptada es entre 203 y 237 volts.

En cuanto al rango de variación de voltaje que un artefacto debe ser capaz de tolerar por norma de fabricación es de +/- 10% respecto del nominal.

Un relé es un deposito eléctrico o electrónico que en función de un sensor integrado o separado discrimina produciendo un cambio de estado que por lo general se usa para detener el funcionamiento de una máquina, o emitir una señal para alertar al operador en aviso de que ciertos límites fueron sobrepasados; por ejemplo: voltaje, amperaje, temperatura, nivel, velocidad, etc., de acuerdo al tipo y finalidad para el que fue diseñado y que además su umbral de operación deberá ser ajustado a cada necesidad.

TARIFAS ELECTRICAS

Precios de nudo, fijación de precios, tarifa a clientes.

BT-1 - Límite de Invierno

BT-2 - Parcial / Presente Punta

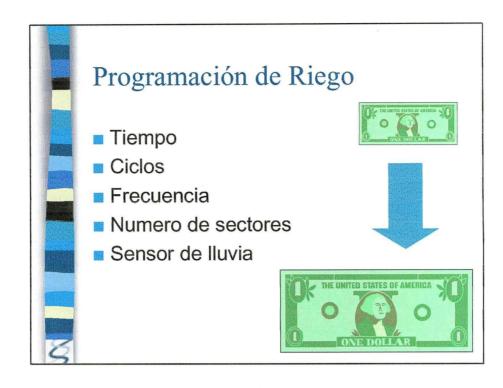
BT-3 - Parcial / Presente Punta

BT-4.1, BT-4.2, BT-4.3


AT-2, AT-3

AT-4.1, AT-4.2, AT-4.3

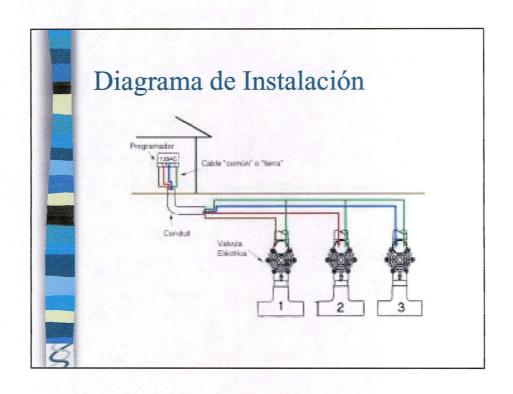
CLIENTES LIBRES

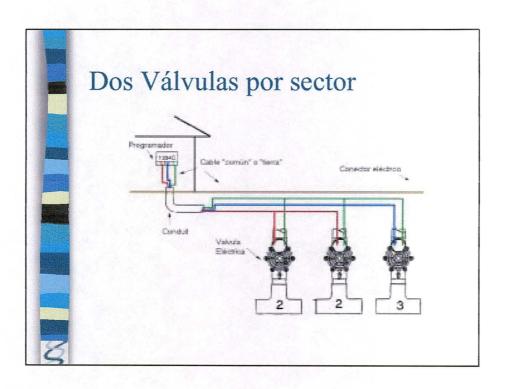

POTENCIAS

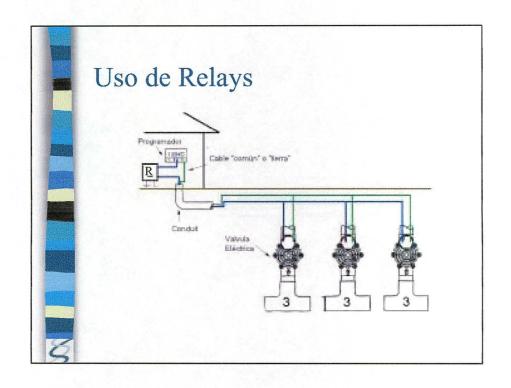
- * Contratadas, Suministradas
- * Declaradas, Conectadas
- * Potencia Remanente
- * Demanda en Punta. Fuera de Punta
- * Uso eficiente de la Tarifa
- * Factor de Carga
- * Factor de Potencia

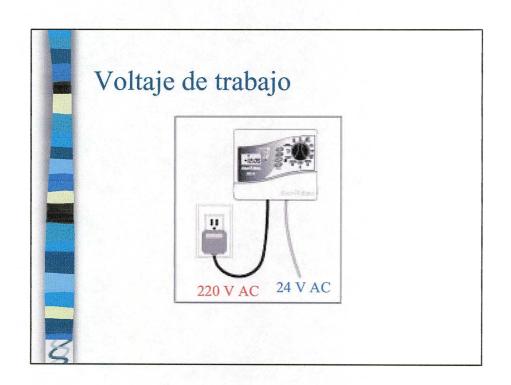
Automatización y Control

 Definición: Utilización de dispositivos mecánicos o electrónicos para operar mecanismos complejos rutinarios.




Otros procesos mas complejos Fertirrigación Operación de Bombas (sensores de nivel) Medición de Caudales, presiones, voltajes, pH, Estado hídrico del suelo, Clima


Función del Programador Abrir y cerrar las válvulas en


- Abrir y cerrar las válvulas en secuencias predeterminadas
- Encender la bomba (master valve)

