

Universidad Austral de Chile

Facultad de Ciencias Escuela de Química y Farmacia

PROFESOR PATROCINANTE: Dra. Susan Hess F.

INSTITUTO: Química. **FACULTAD:** Ciencias.

PROFESOR CO-PATROCINANTE: Prof. Magdalena

Romero A.

INSTITUTO: Botánica. **FACULTAD:** Ciencias.

"EFECTO DE LA RADIACIÓN UV-B EN LA SÍNTESIS DE PIGMENTOS PROTECTORES Y FOTOSINTÉTICOS EN PLÁNTULAS DE Aextoxicon punctatum".

Tesis de Grado presentada como parte de los requisitos para optar al Título de Químico Farmacéutico.

XIMENA DEL CARMEN AICHELE ALVARADO

VALDIVIA-CHILE

2006

A mi Abuelita, mamá y a mi recordada Profesora Carin Akesson...

> "Dios es nuestro amparo y fortaleza, nuestro pronto auxilio en las tribulaciones.

> Por tanto, no temeremos, aunque la tierra sea removida, y se traspasen los montes al corazón del mar, aunque bramen y se turben sus aguas, y tiemblen los montes a causa de su braveza".

Salmos 46:1-3.

AGRADECIMIENTOS

En primer lugar debo agradecer a la Universidad Austral de Chile y a la Escuela de Química y Farmacia por darme la oportunidad de ser una profesional, agradecer al Dr. Humberto Dölz y a las circunstancias de la vida por haberme dado la posibilidad de conocerlo.

Al Instituto de Química especialmente a la Dra. Susan Hess por su disposición, tiempo y por la fuerza con que me empujó en momentos dificultosos a terminar este trabajo de Tesis. Al Prof. Juan Carlos Paredes quien me apoyó en todo momento alentándome a continuar y conseguir finalmente los mejores resultados, agradezco su disponibilidad de espacio y de tiempo y el haberme facilitado todo lo necesario para cumplir con mis objetivos. Agradezco además a Joel Pardo del Instituto de Farmacia, quién me ayudo a superar algunas "faltas". A la Prof. Magdalena Romero del Instituto de Botánica por su dedicación y paciencia. Le doy gracias por haberme ayudado tanto.

En forma muy especial y con todo mi cariño agradezco a mi Prof. Carin Akesson quien me acompaño en los comienzos de la Tesis dándome todas las facilidades y disposición dentro del Instituto de Farmacia. Para mí, fue y sigue siendo aunque no esté con nosotros un ejemplo de dedicación y amor por su trabajo, un modelo a seguir como persona y como profesional Químico Farmacéutico.

Por último, y lo más importante debo dar gracias al Señor por haberme ayudado a concluir mi proceso formativo y culminar con este trabajo de Tesis. Agradecer a mi abuelita Lila, mamá Angélica, hermana Andrea y tía Inés por darme su apoyo en todo momento y tener tanta paciencia.

ÍNDICE DE CONTENIDOS

	Pág	
Dedicatoria		
Agradecimientos		
Índice de contenidos	II	
Índice de figuras		
Índice de tablas		
1. RESUMEN	1	
SUMMARY	2	
2. INTRODUCCIÓN		
2.1. Energía solar	3	
2.2. Flavonoides	8	
2.3. Pigmentos fotosintetizadores	12	
3. MATERIALES Y MÉTODOS	21	
3.1. Material vegetal y características generales	21	
3.1.1. Lugar de trabajo	22	
3.2. Tratamiento ultravioleta tipo B	22	
3.3. Metodología	24	
3.3.1. Determinación de parámetros fisiológicos	24	
3.3.2 Determinación de contenido hídrico total	24	

3.3.3. Determinación de la estructura histologica	
de las hojas	25
3.3.4. Determinación del contenido de cenizas	25
3.3.5 Determinación de pH y conductividad en suelo	26
3.4. Reactivos empleados en análisis de pigmentos	
foliares	28
3.5. Determinación de pigmentos foliares	29
3.5.1. Extracción de pigmentos foliares	29
3.5.2. Separación de pigmentos foliares	31
3.5.3. Hidrólisis de flavonoides	35
3.5.4. Determinación de pigmentos fotosintéticos	38
3.5.5. Utilización cromatografía de capa fina en la	
identificación de flavonoides y sus azúcares	
sustituyentes	39
3.5.6. Identificación de flavonoides	41
3.5.7. Identificación de azúcares	42
4. RESULTADOS	43
4.1. Determinación de parámetros morfológicos	
en Aextoxicon punctatum	43
4.1.1. Número de hojas	43
4.1.2. Altura de tallo	43
4.1.3. Crecimiento de raíz	43
4.1.4. Histología de la hoja	46

4.2. Cont	enido hídrico y biomasa	49
4.2.1.	Redistribución de biomasa	50
4.3. Cont	enido de cenizas	51
4.4. pH y	Conductividad del suelo	53
4.5. Anál	isis de pigmentos foliares en Aextoxicon punctatum	55
4.5.1.	Determinación de pigmentos foliares totales	55
4.5.2.	Determinación de clorofila y carotenos	57
4.5.3.	Hidrólisis	59
4.5.4.	Identificación de flavonoides	61
4.5.5.	Identificación de azúcares	64
5. DISCUSIÓN		67
6. CONCLUSIÓN		74
7. GLOSAR	IO	75
8. BIBLIOGI	RAFÍA	76
ANEXO 1	Preparación Oxalato de anilina	82
ANEXO 2	Tabla pH en suelo	83
ANEXO 3	Tabla absorbancia máxima flavonoides,	
	Clorofila y caroteno	84

ÍNDICE DE FIGURAS

Figura 1	Espectro electromagnético y región de UV visible	7
Figura 2	Estructura básica de los flavonoides y sistema de	
	numeración	9
Figura 3	Estructuras básicas de los principales grupos de flavonoides	10
Figura 4	Estructuras de algunos carotenoides	14
Figura 5	Estructura de clorofila a y b	19
Figura 6	Cámara de tratamiento de radiación UV-B	23
Figura 7	Espectrofotómetro UNICAM (serie UV 500)	30
Figura 8	Embudos de decantación cubiertos con papel aluminio	32
Figura 9	Espectros de absorción de carotenos y clorofilas	33
Figura 10	Espectro de absorción de flavonoides	34
Figura 11	Organigrama de hidrólisis	37
Figura 12	Efecto del exceso de radiación UV-B en el número de	
	hojas en plántulas de A. punctatum	44
Figura 13	Efecto del exceso de radiación UV-B en la tasa de	
	crecimiento de tallo y raíz en plántulas de A. punctatum	45
Figura 14	Corte transversal de lámina foliar	48
Figura 15	Efecto de la radiación UV-B en el Peso Seco	
	y contenido hídrico	49
Figura 16	Redistribución de biomasa	50
Figura 17	Efecto de la radiación UV-B en el contenido de cenizas	52

Figura 18	pH y Conductividad en suelos de cultivo de	
	plántulas de <i>A. punctatum</i>	54
Figura 19	Contenido de flavonoides totales en extracto foliar	
	de plántulas de <i>A. punctatum</i>	56
Figura 20	Concentración de clorofilas y carotenos en µg/ml	
	de extracto foliar	58
Figura 21	Espectro de absorción de flavonoides hidrolizados	60
Figura 22	Cromatoplaca de poliamida bajo lámpara UV	
	para identificación de flavonoides	63
Figura 23	Cromatoplaca de celulosa usada para identificar	
	Azúcares	66

ÍNDICE DE TABLAS

TABLA 1	Parámetros morfométricos de lámina foliar	
	de plántulas de A. punctatum	47
TABLA 2	Distancias de migración (Rf) de estándares	
	puros de flavonoides	61
TABLA 3	Distancias de migración (Rf) de muestras	
	de extractos foliares de plántulas de A. punctatum	62
TABLA 4	Distancias de migración (Rf) de estándares	
	puros de glúcidos y de muestras de extractos	
	foliares de plántulas de A. punctatum	65