

GOBIERNO DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN GENERAL DE AGUAS UNIDAD DE GLACIOLOGÍA Y NIEVES

"ESTIMACIÓN DE VOLÚMENES DE HIELO MEDIANTE SONDAJES DE RADAR EN ZONAS NORTE, CENTRAL Y SUR"

INFORME FINAL

REALIZADO POR:

GEOESTUDIOS LTDA.

S.I.T. Nº 338

Santiago, Mayo 2014

MINISTERIO DE OBRAS PÚBLICAS

Ministro de Obras Públicas Ing. Comercial Sr. Alberto Undurraga Vicuña

Director General de Aguas Abogado Sr. Carlos Estévez Valencia

Jefe Unidad Glaciología y Nieves Dr. Gonzalo Barcaza Sepúlveda

Inspector Fiscal Ing. Civil Sr. Armando Peña González

GEOESTUDIOS LTDA.

Jefe de Proyecto Dr. Gino Casassa Rogazinski Dr. Cedomir Marangunic Damianovic

Profesionales

Dr. Norbert Blindow, asesor en geofísica Ing. Electrónico Bernhard Bömer, asesor en electrónica Dr. Carlos Cárdenas, asesor en electrónica, Universidad de Magallanes Ing. Electrónico Rubén Carvallo, asesor en electrónica, Universidad de Magallanes Ing. Forestal Sr. José Luis Rodríguez Lagos Ing. Informático Sra. Ana María Marangunic Vrsalovic Geomensor Sr. Cristián Peralta Abasolo Geógrafo Sr. Martín Bustamante Domic Geólogo Sr. José Becerra Rivera Ing. Civil Hidráulica, M.Sc. Srta. Gabriela Collao Barrios Ing. Civil Hidráulica Sra. Carolina Amigo Finger Ing. Ej. Prevención de Riesgos Sra. Claudia Schönffeldt Palma Técnico Sr. Andrés Marangunic Vrsalovic Técnico Sr. Nelson Cvitanic Bravo Técnico Sr. Claudio Iglesias Scepanovic Técnico Sr. Carlos Fernández Fernández Técnico Sr. Arturo Carrasco Olguín Técnico Sr. Héctor González Tapia Técnico Sr. Miguel Ledda Verchere

<u>ÍNDICE</u>

ÍN	DICE		İ
ÍN	DICE I	DE TABLAS	111
ÍN	DICE I	DE FIGURAS	V
RE	SUME	Ν	1
1.		INTRODUCCIÓN GENERAL	3
2.		ÁREA DE ESTUDIO	7
3.		CRONOGRAMA DE ACTIVIDADES	9
4.		METODOLOGÍA	. 11
	4.1.	RADAR AEROTRANSPORTADO	. 11
	4.2.	RES TERRESTRE	. 14
	4.3.	VELOCIDAD DE PROPAGACIÓN DE LA ONDA ELECTROMAGNÉTICA	. 15
	4.4.	PROCESAMIENTO DE DATOS DE RADAR AÉREO	. 15
	4.5.	PROCESAMIENTO DE DATOS DE RADAR TERRESTRE	. 16
	4.6.	MEDICIÓN DE LA CAPA DE NIEVE INVERNAL	. 16
	4.7.	MEDICIONES GPS	. 17
5.		MEDICIONES AÉREAS Y TERRESTRES	. 19
	5.1.	VUELO DE PRUEBA EN EL EMBALSE EL YESO	. 19
	5.2.	GLACIAR DEL POTRO	. 21
	5.3.	GLACIAR TRONQUITOS	. 23
	5.4.	GLACIAR TAPADO	. 24
	5.	4.1. Radar aéreo	. 24
	5.	4.2. Mediciones terrestres	. 25
	5.5.	GLACIAR JUNCAL NORTE	. 30
	5.6.	GLACIAR RÍO BLANCO	. 31
	5.7.	GLACIAR TUPUNGATITO	. 32
	5.	7.1. Radar aéreo	. 32
	5.	7.2. Mediciones terrestres	. 33
	5.8.	GLACIAR MARMOLEJO	. 34
	5.9.	GLACIAR TINGUIRIRICA 3	. 35
	5.10.	GLACIAR TINGUIRIRICA 4	. 36
	5.11.	GLACIAR TINGUIRIRICA 1	. 37
	5.	11.1. Radar aéreo	. 37
	5.	11.2. Mediciones terrestres	. 38
	5.12.	GLACIAR SIERRA VELLUDA	. 41
	5.13.	GLACIAR CALLAQUI	. 42
	5.14.	GLACIAR LLAIMA	. 43
	5.15.	GLACIAR SOLLIPULLI	. 44
	5.16.	GLACIAR VILLARRICA	. 45
	5.	16.1. Radar aéreo	. 45
	5.	16.2. Mediciones terrestres	. 46
	5.17.	GLACIAR MOCHO-CHOSHUENCO	. 47
	5.	17.1. Radar aéreo	. 47
	5.	17.2. Mediciones terrestres	. 48
	5.18.	GLACIAR OSORNO	. 50
	5.19.	GLACIAR I RONADOR	. 51
6.		RESULTADOS	. 53
	6.1.	SELECCION DE PERFILES AEREOS Y RADAR TERRESTRE	. 53
	6.2.	PERFILES SELECCIONADOS	. /2
	6.	2.1. Glaciar Del Potro	. /3

6.2.2.	Glaciar Tronquitos	
6.2.3.	Glaciar Tapado	
6.2.4.	Glaciar Juncal Norte	
6.2.5.	Glaciar Río Blanco	101
6.2.6.	Glaciar Tupungatito	109
6.2.7.	Glaciar Marmolejo	116
6.2.8.	Glaciar Tinguiririca 3	124
6.2.9.	Glaciar Tinguiririca 4	132
6.2.10.	Glaciar Tinguiririca 1	139
6.2.11.	Glaciar Sierra Velluda	
6.2.12.	Glaciar Volcán Callaqui	
6.2.13.	Glaciar Volcán Llaima	
6.2.14.	Glaciar Nevado Sollipulli	176
6.2.15.	Glaciar Volcán Villarrica	
6.2.16.	Glaciar Volcán Mocho-Choshuenco	
6.2.17.	Glaciar Volcán Osorno	
6.2.18.	Glaciar Monte Tronador	210
6.3. ANÁI	LISIS DE CRUCES	219
6.4. CÁLC	CULO DE VOLÚMENES	230
6.4.1.	Método de interpolación	230
6.4.2.	Cálculo de volúmenes	
6.4.3.	Resumen de resultados	
7.	PERSONAL	271
8.	CONCLUSIONES Y RECOMENDACIONES	273
9.	BIBLIOGRAFÍA	275
ANEXO I		279
ANEXO II		
ANEXO III		325

<u>ÍNDICE DE TABLAS</u>

Tabla 2-A. Lista de glaciares a prospectar mediante RES. 7
Tabla 3-A. Resumen de las horas de vuelo empleadas durante la campaña aérea RES
2013
Tabla 5.4.2-A. Mediciones de densidad de nieve mediante taladro Monte Rosa
Tabla 5.4.2-B. Mediciones de profundidad de nieve mediante sonda para avalanchas,
Tabla E 11.2 A Madicionas da dancidad da niova madianta taladra Manta Dasa 40
Tabla 5.11.2-A. Mediciones de profundidad de nieve mediante taldulo Monte Rosa
ol alaciar Tinguiririca 1
Tabla 5 17 2 A Modición do donsidad do niovo on baliza PO2
Tabla 5.17.2-A. Medición de densidad de nieve en baliza B02
Tabla 6.2 A Posumon do los porfilos aóroos ofoctuados on los 18 glaciaros considerados
en el estudio 72
Tabla 6 3-A Análisis de cruces para el radar aéreo, glaciar Del Potro 219
Tabla 6.3-R Análisis de cruces para el radar aéreo, glaciar Tronquitos 219
Tabla 6.3-C. Análisis de cruces para el radar aéreo y el radar terrestre, glaciar Tapado 220
Tabla 6.3-D Análisis de cruces para el radar aéreo, glaciar Juncal Norte 220
Tabla 6.3-E Análisis de cruces para el radar aéreo, glaciar Río Blanco 221
Tabla 6.3-E. Análisis de cruces para el radar aéreo y el radar terrestre, glaciar
Tupungatito 221
Tabla 6 3-G Análisis de cruces para el radar aéreo, glaciar Marmoleio 222
Tabla 6.3-H. Análisis de cruces para el radar aéreo, glaciar Tinguiririca 3
Tabla 6.3-1. Análisis de cruces para el radar aéreo, glaciar Tinguiririca 4
Tabla 6.3-J. Análisis de cruces para el radar aéreo, glaciar Tinguiririca 1
Tabla 6.3-K. Análisis de cruces para el radar aéreo, glaciar Sierra Velluda 224
Tabla 6.3-L. Análisis de cruces para el radar aéreo, glaciar Callagui
Tabla 6.3-M. Análisis de cruces para el radar aéreo, glaciar Sollipulli
Tabla 6.3-N. Análisis de cruces para los radares aéreo y terrestre, glaciar Villarrica 226
Tabla 6.3-0. Análisis de cruces para el radar aéreo y el radar terrestre, glaciar Mocho-
Choshuenco
Tabla 6.3-P. Análisis de cruces para el radar aéreo, glaciar Osorno 228
Tabla 6.3-Q. Resumen del análisis de cruces de radar para los 16 glaciares 229
Tabla 6.4.1.1-A. Espesor medio y volumen obtenido en cada prueba realizada 234
Tabla 6.4.1.1-B. Espesor medio y diferencia con datos de radar obtenido en franja de
10 m a ambos lados de las transectas de radar
Tabla 6.4.1.2-A. Espesor medio y volumen obtenido en cada prueba realizada, glaciar
Tinguiririca 3
Tabla 6.4.1.2-B. Espesor medio y volumen obtenido en cada prueba realizada, glaciar
Juncal Norte
Tabla 6.4.1.2-C. Espesor medio y diferencia con datos de radar obtenido en franja de
10 m a ambos lados de las transectas de radar, glaciar l'inguiririca 3.239
Tabla 6.4.1.2-D. Espesor medio y diferencia con datos de radar obtenido en franja de
10 m a ambos lados de las transectas de radar, glaciar Juncal Norte. 239
Tabla 6.4. T.2-E. Areas con datos negativos o ceros para cada metodo de interpolación,
giacial linguinica 3
Tabla 0.4. T.Z-F. Aleas con uatos negativos o ceros para caua metodo de interpolación,
Tabla 6.4.2.A. Padio de húsqueda aplicado en interpolación LDW en los diferentes
alaciares
yiaบ่ai t5

Tabla 6.4.3.1-A.	Resumen de las mediciones aéreas efectuadas en los 18 glaciares
	considerados en el estudio
Tabla 6.4.3.2-A.	Resumen de espesores medidos mediante radar y volúmenes calculados
	en los 18 glaciares, considerando toda el área glaciar 267
Tabla 6.4.3.2-B.	Resumen de espesores medidos mediante radar y volúmenes calculados
	en los 18 diaciares, considerando cálculos con las áreas de exclusión, 268

ÍNDICE DE FIGURAS

Figura 4.1-A. Radar aerotransportado con antena modelo BGR-P30 13
Figura 4.2-A. Esquema general de empleo terrestre del radar para medir espesor del
hielo
Figura 5.1-A. Tracks efectuados en el sector del Embalse El Yeso y Laguna Negra el 18 de
agosto
Figura 5. I-B. Helipuerto Embaise El Yeso, Aguas Andinas. Antena de 50 MHZ y
nelicoptero Ecureuli AS350 B3 empleado durante el vuelo de prueba el día
Figure 5.2 A. Helipuerte Jupta de Menteca, Antona de 50 MHz al memorte del despegue
rigura 5.2-A. Helipuerto Julita de Molitosa. Anteria de 50 Minz al molhemo del despegue,
Figura 5.2 R. Holipuorto Jupta do Montosa. Antona do 50 MHz Juogo dol dospoguo
Figura 5.2-C. Glaciar Del Potro. Líneas de vuelo realizadas el 29 de agosto.
Figura 5.3-A. Glaciar Tronquitos. Línea de vuelo realizadas el 27 de agosto.
Figura 5.4 1-A Glaciar Tanado. Líneas de vuelo realizadas el 30 de agosto. 27
Figura 5.4.2-A. Glaciar Tapado. El track roio illustra los perfiles realizados mediante radar
terrestre 26
Figura 5.4.2-B. Sector somital del Glaciar Tapado, cota 5.500 m s n m
Figura 5.4.2-C. Lengua superior del Glaciar Tapado fotografiado desde el helicóptero 28
Figura 5.4.2-D. Realizando mediciones de radar durante la travesía del glaciar Tapado en
esquís
Figura 5.4.2-E. Realizando mediciones de densidad de nieve mediante tubo muestreador
Monte Rosa en el glaciar Tapado
Figura 5.5-A. Líneas de vuelo sobre el glaciar Juncal Norte
Figura 5.6-A. Líneas de vuelo sobre el glaciar Río Blanco 31
Figura 5.7.1-A. Líneas de vuelo sobre el glaciar Tupungatito 32
Figura 5.7.2-A. Glaciar Tupungatito. El track rojo ilustra los perfiles realizados mediante
radar terrestre en enero de 2010.
Figura 5.8-A. Líneas de vuelo sobre el glaciar Marmolejo
Figura 5.9-A. Líneas de vuelo sobre el glaciar Tinguiririca 3
Figura 5.10-A. Líneas de vuelo sobre el glaciar Tinguiririca 4
Figura 5.11.1-A. Líneas de vuelo sobre el glaciar Tinguiririca 1
Figura 5.11.2-A. Mediciones de nieve en el glaciar l'inguiririca 1
Figura 5.11.2-B. Mediciones de profundidad de nieve mediante sonda para avalanchas en
El glaciar l'Inguiririca I
Figura 5.12-A. Líneas de Vuelo sobre el glaciar Sierra Venuda
Figura 5.13-A. Líneas de vuelo sobre el volcán Callaqui.
Figura 5.14-A. Líneas de vuelo sobre el Volcan Liama
Figura 5.15-A. Lineas de vuelo sobre el velcóp Villarrica
Figura 5.10.1-A. Lilleas de vuelo soble el voldal villarida
Figura 5. To.2-A. Permes de radar terrestre medidos en el volcan villamica en reprero
Figura 5 17 1- Δ L (neas de vuelo sobre el volcán Mocho-Choshuenco 47
Figura 5.17.1 A. Encas de Vacio sobre el Volcan Mocho-enositacineo
Choshuenco //
Figura 5.18-A. Líneas de vuelo sobre el volcán Osorno 50
Figura 5.19-A. Líneas de vuelo sobre los glaciares del Monte Tronador.
Figura 6.1-A. Glaciar Del Potro. Perfil longitudinal (L1). transversales (T1, T2, T3) v
diagonales (D1 y D2)

Figura 6.1-B.	Glaciar Tronquitos. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1 y D2)
Figura 6.1-C.	Glaciar Tapado. Perfil longitudinal (L1), transversales (T1, T2, T3, T4) y
Figura 6.1-D.	Glaciar Juncal Norte. Perfil longitudinal (L1), transversales (T1, T2, T3 y T4)
Figura 6.1-E.	Glaciar Río Blanco. Perfil longitudinal (L1), transversales (T1, T2, T3 y T4) y
Figura 6.1-F.	diagonales (D1, D2, D3)
Figura 6.1-G.	diagonales (D1, D2 y D3)
Figura 6.1-H.	diagonales (D1, D2 y D3)
Figura 6.1-I.	diagonales (D1, D2, D3 y D4)
Figura 6.1-J.	diagonales (D1, D2, D3 y D4)
Figura 6.1-K.	T2, T3) y diagonales (D1, D2, D3 y D4)
Figura 6.1-L.	(E1, E2, E3, E4, E5, E6, E7)
Figura 6.1-M.	Glaciar Llaima. Perfiles radiales (R1, R2, R3, R4, R5, R5e, R6) 66
Figura 6.1-N.	Glaciar Sollipulli. Perfiles radiales (R1-R4, R3-R6 y R5-R2) y diagonales
Figure 6 1 O	(Diag y Rolad)
Figura 6.1-0.	Glaciar Mocho_Choshuenco, Perfiles radiales (R1 a R7) y radial terrestre
rigula 0. i i .	con radar terrestre 69
Figura 6.1-0.	Glaciar Osorno, Perfiles espirales (F1 a F10) y radiales (Asc y Des), 70
Figura 6.1-R.	Glaciar Tronador. Perfiles radiales (R1 a R8)
Figura 6.2.1-	A. Perfil longitudinal L1 del glaciar Del Potro
Figura 6.2.1-	B. Perfil transversal T1 del glaciar Del Potro
Figura 6.2.1-	C. Perfil diagonal D1 del glaciar Del Potro
Figura 6.2.1-	D. Perfil transversal T2 del glaciar Del Potro
Figura 6.2.1-	E. Perfil transversal T3 del glaciar Del Potro
Figura 6.2.2-	A. Perfil longitudinal L1 del glaciar Tronquitos
Figura 6.2.2-	B. Perfil transversal T1 del glaciar Tronquitos
Figura 6.2.2-	C. Perfil diagonal D1 del glaciar Tronquitos
Figura 6.2.2-	D. Perfil transversal T2 del glaciar Tronquitos
Figura 6.2.2-	E. Perfil diagonal D2 del glaciar Tronquitos
Figura 6.2.2-	F. Perfil transversal T3 del glaciar Tronquitos
Figura 6.2.3	A. Perfil longitudinal L1 del glaciar Tapado
Figura 6.2.3-	B. Perfil transversal T1 del glaciar Tapado
Figura 6.2.3-	C. Perfil diagonal D1 del glaciar Tapado
Figura 6.2.3-	D. Perfil transversal T2 del glaciar Tapado
Figura 6.2.3-	E. Perfil diagonal D2 del glaciar Tapado
Figura 6.2.3-	F. Perfil transversal T3 del glaciar Tapado
Figura 6.2.3-	G. Perfil diagonal D3 del glaciar Tapado
Figura 6.2.3-	H. Perfil transversal T4 del glaciar Tapado
Figura 6.2.3-	I. Perfil diagonal D4 del glaciar Tapado
Figura 6.2.4-	A. Perfil longitudinal L1 del glaciar Juncal Norte
Figura 6.2.4-	B. Perfil transversal T1 del glaciar Juncal Norte
Figura 6.2.4-	C. Perfil diagonal D1 del glaciar Juncal Norte

Figura 6.2.4-D. Perfil transversal T2 del glaciar Juncal Norte	. 96
Figura 6.2.4-E. Perfil diagonal D2 del glaciar Juncal Norte.	. 97
Figura 6.2.4-F. Perfil transversal T3 del glaciar Juncal Norte	. 98
Figura 6.2.4-G. Perfil diagonal D3 del glaciar Juncal Norte.	. 99
Figura 6.2.4-H. Perfil transversal T4 del glaciar Juncal Norte	100
Figura 6.2.5-A. Perfil longitudinal L1 del glaciar Río Blanco	101
Figura 6.2.5-B. Perfil transversal T1 del glaciar Río Blanco.	102
Figura 6.2.5-C. Perfil diagonal D1 del glaciar Río Blanco	103
Figura 6.2.5-D. Perfil transversal T2 del glaciar Río Blanco.	104
Figura 6.2.5-E. Perfil diagonal D2 del glaciar Río Blanco	105
Figura 6.2.5-F. Perfil transversal T3 del glaciar Río Blanco.	106
Figura 6.2.5-G. Perfil diagonal D3 del glaciar Río Blanco	107
Figura 6.2.5-H. Perfil transversal T4 del glaciar Río Blanco.	108
Figura 6.2.6-A. Perfil longitudinal L1 del glaciar Tupungatito	109
Figura 6.2.6-B. Perfil transversal T1 del glaciar Tupungatito.	110
Figura 6.2.6-C. Perfil diagonal D1 del glaciar Tupungatito	111
Figura 6.2.6-D. Perfil transversal T2 del glaciar Tupungatito.	112
Figura 6.2.6-E. Perfil diagonal D2 del glaciar Tupungatito	113
Figura 6.2.6-F. Perfil transversal T3 del glaciar Tupungatito.	114
Figura 6.2.6-G. Perfil diagonal D3 del glaciar Tupungatito	115
Figura 6.2.7-A. Perfil longitudinal L1 del glaciar Marmolejo	116
Figura 6.2.7-B. Perfil longitudinal L1e del glaciar Marmolejo.	117
Figura 6.2.7-C. Perfil transversal T1 del glaciar Marmolejo.	118
Figura 6.2.7-D. Perfil diagonal D1 del glaciar Marmolejo	119
Figura 6.2.7-E. Perfil transversal T2 del glaciar Marmolejo.	120
Figura 6.2.7-F. Perfil diagonal D2 del glaciar Marmolejo	121
Figura 6.2.7-G. Perfil transversal 13 del glaciar Marmolejo.	122
Figura 6.2.7-H. Pertil diagonal D3 del glaciar Marmolejo	123
Figura 6.2.8-A. Pertil longitudinal LT del glaciar Tinguiririca 3.	124
Figura 6.2.8-B. Petril diagonal DT del glaciar Tinguirina 3.	120
Figura 6.2.8-C. Petril transversal 11 del glaciar Tinguiririca 2	120
Figura 6.2.8 E. Derfil transversel T2 del glaciar Tinguiririca 2	127
Figura 6.2.8 E. Porfil diagonal D2 dol glaciar Tinguiririca 3	120
Figura 6.2.8 C. Porfil transvorsal T3 dol glaciar Tinguiririca 3	129
Figura 6.2.8 H. Porfil diagonal D4 dol glaciar Tinguiririca 3	121
Figura 6.2.9-A. Perfil longitudinal L1 del glaciar Tinguiririca 7	122
Figura 6.2.9-8. Perfil transversal T1 del glaciar Tinguiririca 4	132
Figura 6.2.9-C. Perfil diagonal D1 del glaciar Tinguinica 4	130
Figura 6.2.9-D. Perfil transversal T2 del glaciar Tinguiririca 4	135
Figura 6.2.9-E. Perfil diagonal D3 del glaciar Tinguinica 4	136
Figura 6 2 9-F. Perfil transversal T3 del glaciar Tinguiririca 4	137
Figura 6.2.9-G. Perfil diagonal D4 del glaciar Tinguiririca 4	132
Figura 6 2 10-A Perfit longitudinal L1 del glaciar Tinguiririca 1	139
Figura 6 2 10-B. Perfil longitudinal 1 th del glaciar Tinguirrica 1	140
Figura 6 2 10-C. Perfil transversal T1 del glaciar Tinguiririca 1	141
Figura 6.2.10-D. Perfil diagonal D1 del glaciar Tinguirrica 1	142
Figura 6.2.10-E. Perfil diagonal D2 del glaciar Tinguirrica 1	143
Figura 6.2.10-F. Perfil transversal T2 del glaciar Tinguiririca 1	144
Figura 6.2.10-G. Perfil diagonal D3 del glaciar Tinguiririca 1.	145
Figura 6.2.10-H. Perfil transversal T3 del glaciar Tinguiririca 1	146
Figura 6.2.10-I. Perfil diagonal D4 del glaciar Tinguiririca 1	147

Figura 6.2.11-A. Perfil radial R1 del glaciar Sierra Velluda	148
Figura 6.2.11-B. Perfil radial R2 del glaciar Sierra Velluda	149
Figura 6.2.11-C. Perfil radial R3 del glaciar Sierra Velluda	150
Figura 6.2.11-D. Perfil radial R4 del glaciar Sierra Velluda	151
Figura 6.2.11-E. Perfil radial R5 del glaciar Sierra Velluda	152
Figura 6.2.11-F. Perfil radial R6 del glaciar Sierra Velluda	153
Figura 6.2.11-G. Perfil espiral E1 del glaciar Sierra Velluda	154
Figura 6.2.11-H. Perfil espiral E2 del glaciar Sierra Velluda	155
Figura 6.2.11-I. Perfil espiral E3 del glaciar Sierra Velluda	156
Figura 6.2.11-J. Perfil espiral E4 del glaciar Sierra Velluda	157
Figura 6.2.11-K. Perfil espiral E5 del glaciar Sierra Velluda	158
Figura 6.2.11-L. Perfil espiral E6 del glaciar Sierra Velluda	159
Figura 6.2.11-M. Perfil espiral E7 del glaciar Sierra Velluda	160
Figura 6.2.12-A. Perfil radial R1 del glaciar Callaqui.	161
Figura 6.2.12-B. Perfil radial R6a del glaciar Callaqui	162
Figura 6.2.12-C. Perfil radial R6b del glaciar Callaqui	163
Figura 6.2.12-D. Perfil radial R5 del glaciar Callaqui.	164
Figura 6.2.12-E. Perfil radial R4a del glaciar Callaqui	165
Figura 6.2.12-F. Perfil radial R2 del glaciar Callaqui.	166
Figura 6.2.12-G. Perfil radial R4b del glaciar Callaqui	167
Figura 6.2.12-H. Perfil radial R3 del glaciar Callaqui.	168
Figura 6.2.13-A. Perfil radial R4 del glaciar Volcán Llaima.	169
Figura 6.2.13-B. Perfil radial R5e del glaciar Volcán Llaima.	170
Figura 6.2.13-C. Perfil radial R5 del glaciar Volcán Llaima.	171
Figura 6.2.13-D. Perfil radial R6 del glaciar Volcán Llaima.	172
Figura 6.2.13-E. Perfil radial R1 del glaciar Volcán Llaima.	173
Figura 6.2.13-F. Perfil radial R2 del glaciar Volcán Llaima	174
Figura 6.2.13-G. Perfil radial R3 del glaciar Volcán Llaima.	175
Figura 6.2.14-A. Perfil radial R1-R4 del glaciar Nevado Sollipulli	176
Figura 6.2.14-B. Perfil radial R5-R2 del glaciar Nevado Sollipulli.	177
Figura 6.2.14-C. Perfil radial R3-R6 del glaciar Nevado Sollipulli.	178
Figura 6.2.14-D. Perfil radial R6lad del glaciar Nevado Sollipulli.	179
Figura 6.2.14-E. Perfil diagonal D1 del glaciar Nevado Sollipulli.	180
Figura 6.2.15-A. Perfil radial R1 del glaciar Volcán Villarrica.	181
Figura 6.2.15-B. Perfil radial R7 del glaciar Volcán Villarrica.	182
Figura 6.2.15-C. Perfil radial R6 del glaciar Volcán Villarrica.	183
Figura 6.2.15-D. Perfil radial R2 del glaciar Volcán Villarrica.	184
Figura 6.2.15-E. Perfil radial R3 del glaciar Volcán Villarrica.	185
Figura 6.2.15-F. Perfil radial R4 del glaciar Volcán Villarrica.	186
Figura 6.2.15-G. Perfil radial R5 del glaciar Volcán Villarrica.	187
Figura 6.2.16-A. Perfil radial R1a del glaciar Volcán Mocho-Choshuenco.	188
Figura 6.2.16-B. Perfil radial R2 del glaciar Volcán Mocho-Choshuenco.	189
Figura 6.2.16-C. Perfil radial R3 del glaciar Volcán Mocho-Choshuenco.	190
Figura 6.2.16-D. Perfil radial R4 del glaciar Volcán Mocho-Choshuenco.	191
Figura 6.2.16-E. Perfil radial R7 del glaciar Volcán Mocho-Choshuenco.	192
Figura 6.2.16-F. Perfil radial R5 del glaciar Volcán Mocho-Choshuenco.	193
Figura 6.2.16-G. Perfil radial R6 del glaciar Volcán Mocho-Choshuenco.	194
Figura 6.2.16-H. Perfil radial R1 del glaciar Volcán Mocho-Choshuenco.	195
Figura 6.2.17-A. Perfil cumbre C del glaciar Volcán Osorno.	196
Figura 6.2.17-B. Perfil espiral E1 del glaciar Volcán Osorno.	197
Figura 6.2.17-C. Perfil espiral E2 del glaciar Volcán Osorno.	198
Figura 6.2.17-D. Perfil espiral E3 del glaciar Volcán Osorno.	199

Figura 6	6.2.17-E.	Perfil	espiral E4 del glaciar Volcán Osorno.	200
Figura 6	6.2.17-F.	Perfil	espiral E5 del glaciar Volcán Osorno.	201
Figura 6	6.2.17-G.	Perfil	espiral E6 del glaciar Volcán Osorno.	202
Figura 6	6.2.17-H.	Perfil	espiral E7 del glaciar Volcán Osorno.	203
Figura e	6.2.17-I.	Perfil	espiral E8 del glaciar Volcán Osorno.	204
Figura 6	6.2.17-J.	Perfil	espiral E9 del glaciar Volcán Osorno.	205
Figura 6	6.2.17-K.	Perfil	espiral E10 del glaciar Volcán Osorno.	206
Figura 6	6.2.17-L.	Perfil	ascendente Asc del glaciar Volcán Osorno	207
Figura 6	6.2.17-M.	Perfil	descendente Des del glaciar Volcán Osorno	208
Figura 6	6.2.17-N.	Perfil	espiral E11 del glaciar Volcán Osorno.	209
Figura 6	6.2.18-A.	Perfil	radial R1 del glaciar Monte Tronador.	210
Figura 6	6.2.18-B.	Perfil	radial R2 del glaciar Monte Tronador.	211
Figura 6	6.2.18-C.	Perfil	radial R3 del glaciar Monte Tronador.	212
Figura 6	6.2.18-D.	Perfil	radial R4 del glaciar Monte Tronador.	213
Figura 6	6.2.18-E.	Perfil	radial R5a del glaciar Monte Tronador	214
Figura 6	6.2.18-F.	Perfil	radial R5b del glaciar Monte Tronador	215
Figura 6	6.2.18-G.	Perfil	radial R6 del glaciar Monte Tronador.	216
Figura 6	6.2.18-H.	Perfil	radial R7 del glaciar Monte Tronador.	217
Figura 6	6.2.18-I.	Perfil	radial R8 del glaciar Monte Tronador.	218
Figura 6	6.4.1.1-A	. Ejen	nplo en el glaciar Tinguiririca 3 de datos de espesor de hielo	
-		utiliz	zados en la interpolación.	232
Figura 6	6.4.1.1-B	. Ejen	nplo extracción de banda de 10 m a lado y lado de las transectas	s de
0		rada	ar. Ejemplo de tamaño de celda 5 m	235
Figura 6	6.4.1.2-A	. Ejen	nplo de errores de interpolación de "natural neighbour" por	
0		inter	rpolación solo con valores cero	240
Figura 6	6.4.1.2-B	Fien	nlo de variaciones del radio de búsqueda para evitar la	
<u> </u>		jon	npiù de variaciones dei radio de busqueda para evitar la	
		inter	rpolación con valores cero.	243
Figura 6	6.4.1.2-C	inter	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector	243 del
Figura (6.4.1.2-C	inter . Com glaci	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks	243 del 245
Figura 6 Figura 6	6.4.1.2-C 6.4.2-A.C	inter . Com glaci Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks	243 del 245 247
Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-B. C	inter inter . Com glaci Glaciar Glaciar	rpolación con valores cero. nparativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores.	243 del 245 247 248
Figura d Figura d Figura d Figura d	6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (inter inter glaci Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores.	243 del 245 247 248 249
Figura (Figura (Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-B. C 6.4.2-C. C 6.4.2-D. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores.	243 del 245 247 248 249 250
Figura (Figura (Figura (Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-B. C 6.4.2-C. C 6.4.2-D. C 6.4.2-E. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores.	243 del 245 247 248 249 250 251
Figura (Figura (Figura (Figura (Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-B. C 6.4.2-C. C 6.4.2-D. C 6.4.2-E. C 6.4.2-F. C	inter inter glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores.	243 del 245 247 248 249 250 251 252
Figura (Figura (Figura (Figura (Figura (Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-D. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-G. (inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores.	243 del 245 247 248 249 250 251 252 253
Figura (Figura (Figura (Figura (Figura (Figura (Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-B. C 6.4.2-C. C 6.4.2-D. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-G. C 6.4.2-H. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores.	243 del 245 247 248 249 250 251 252 253 254
Figura (Figura (Figura (Figura (Figura (Figura (Figura (Figura (Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-C. C 6.4.2-C. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-G. C 6.4.2-H. C 6.4.2-H. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores.	243 del 245 247 248 249 250 251 252 253 253 254 255
Figura (Figura (6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-D. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-G. (6.4.2-H. (6.4.2-I. (6.4.2-J. (inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Tinguiririca 1. Datos interpolados de espesores.	243 del 245 247 248 250 251 252 253 254 255 256
Figura (Figura (6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-C. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-H. (6.4.2-I. (6.4.2-J. (6.4.2-K. (inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Tinguiririca 1. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores.	243 del 245 247 248 249 250 251 252 253 254 255 256 257
Figura (Figura (Fig	6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-C. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-H. (6.4.2-I. (6.4.2-J. (6.4.2-K. (6.4.2-L. (inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores.	243 del 245 247 248 250 251 252 253 255 255 255 255 257 258
Figura (Figura (Fig	6.4.1.2-C 6.4.2-A. C 6.4.2-C. C 6.4.2-C. C 6.4.2-C. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-H. C 6.4.2-I. C 6.4.2-J. C 6.4.2-K. C 6.4.2-L. C 6.4.2-M. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores. Llaima. Datos interpolados de espesores. Laima. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores. Laima. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores.	243 del 245 247 248 249 250 251 252 253 254 255 256 257 258 259
Figura (Figura (Fig	6.4.1.2-C 6.4.2-A. C 6.4.2-C. C 6.4.2-C. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-J. C 6.4.2-J. C 6.4.2-J. C 6.4.2-J. C 6.4.2-L. C 6.4.2-N. C 6.4.2-N. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Liaima. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Sierra Velluda. Interpolados de espesores. Sollipulli. Datos interpolados de espesores. Sollipulli.	243 del 245 247 248 249 250 251 252 255 254 255 256 257 258 259 260
Figura (Figura (Fig	6.4.1.2-C 6.4.2-A. C 6.4.2-B. C 6.4.2-C. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-F. C 6.4.2-H. C 6.4.2-J. C 6.4.2-J. C 6.4.2-L. C 6.4.2-L. C 6.4.2-N. C 6.4.2-N. C 6.4.2-N. C 6.4.2-O. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Kío Blanco. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Laima. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica.	243 del 245 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
Figura (Figura (6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-C. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-G. (6.4.2-J. (6.4.2-J. (6.4.2-L. (6.4.2-L. (6.4.2-N. (6.4.2-N. (6.4.2-O. (6	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Mator de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Mator de espesores. Mator de espesores. Mator de espesores. Mator de espesores. Sollipulli. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Mator d	243 del 245 247 248 250 251 252 253 255 255 256 257 258 259 260 261 262
Figura (Figura (6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-C. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-H. (6.4.2-H. (6.4.2-L. (6.4.2-K. (6.4.2-N. (6.4.2-N. (6.4.2-N. (6.4.2-O. (inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Osorno.	243 del 245 247 248 250 251 252 253 254 255 256 257 258 259 260 261 262 263
Figura (Figura (6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-C. (6.4.2-E. (6.4.2-F. (6.4.2-F. (6.4.2-F. (6.4.2-H. (6.4.2-I. (6.4.2-K. (6.4.2-N. (6.4.2-N. (6.4.2-N. (6.4.2-O. (6.4.2-P. (6.4.2-R. (6.4.2-R. (inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Marmolejo. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Toronador. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Tronador.	243 del 245 247 248 249 250 251 252 255 255 255 256 257 258 259 260 261 262 263 264
Figura (Figura (6.4.1.2-C 6.4.2-A. C 6.4.2-D. C 6.4.2-D. C 6.4.2-D. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-J. C 6.4.2-J. C 6.4.2-J. C 6.4.2-N. C 6.4.2-N. C 6.4.2-N. C 6.4.2-O. C 6.4.2-O. C 6.4.2-O. C 6.4.2-C. C 6.4.2-R. N AII-A. CL	inter inter glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	 Inplote value values del facto de basqueda para evitar la repolación con valores cero. Inparativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Tinguiririca 1. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Sorno. Datos interpolados de espesores. Tonador. Datos interpolados de espesores. Tonador. Datos interpolados de espesores. 	243 del 245 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 289
Figura 6 Figura 7 Figura 7	6.4.1.2-C 6.4.2-A. C 6.4.2-D. C 6.4.2-D. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-J. C 6.4.2-J. C 6.4.2-J. C 6.4.2-J. C 6.4.2-L. C 6.4.2-N. C 6.4.2-N. C 6.4.2-P. C 6.4.2-P. C 6.4.2-P. C 6.4.2-R. N AII-A. CL AII-B. Ra	inter inter glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	 rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Tinguiririca 1. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Sorno. Datos interpolados de espesores. Tonador. Datos interpolados de espesores. 	243 del 245 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 289 290
Figura 6 Figura 7 Figura 7 Figura 7	6.4.1.2-C 6.4.2-A. C 6.4.2-D. C 6.4.2-D. C 6.4.2-E. C 6.4.2-F. C 6.4.2-F. C 6.4.2-G. C 6.4.2-J. C 6.4.2-J. C 6.4.2-J. C 6.4.2-L. C 6.4.2-N. C 6.4.2-N. C 6.4.2-N. C 6.4.2-P. C 6.4.2-P. C 6.4.2-R. N AII-A. CL AII-B. Ra AII-C. C	inter inter glaci Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Tinguiririca 1. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Llaima. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Tornador. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Tornador. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. t ornador. Datos interpol	243 del 245 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 289 290 291
Figura 6 Figura 7 Figura 7 Figura 7 Figura 7	6.4.1.2-C 6.4.2-A. (6.4.2-B. (6.4.2-C. (6.4.2-C. (6.4.2-C. (6.4.2-F. (6.4.2-F. (6.4.2-G. (6.4.2-G. (6.4.2-L. (6.4.2-L. (6.4.2-K. (6.4.2-N. (6.4.2-N. (6.4.2-N. (6.4.2-Q. (6.4.2-Q. (6.4.2-Q. (6.4.2-Q. (6.4.2-R. N AII-A. CL AII-B. Ra AII-C. CU AII-D. CL	inter inter glaci Glaciar	rpolación con valores cero. parativa entre métodos "natural neighbour" e IDW en un sector iar Tinguiririca 3 entre nunataks. Del Potro. Datos interpolados de espesores. Tronquitos. Datos interpolados de espesores. Tapado. Datos interpolados de espesores. Juncal Norte. Datos interpolados de espesores. Río Blanco. Datos interpolados de espesores. Tupungatito. Datos interpolados de espesores. Tinguiririca 3. Datos interpolados de espesores. Tinguiririca 4. Datos interpolados de espesores. Sierra Velluda. Datos interpolados de espesores. Callaqui. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Villarrica. Datos interpolados de espesores. Sollipulli. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Tronador. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Toronador. Datos interpolados de espesores. Toronador. Datos interpolados de espesores. Mocho-Choshuenco. Datos interpolados de espesores. Mocho-Choshuenco de atos de Reflexw. Mama en Reflew del perfil longitudinal del glaciar Tronquitos. Me eflexw que ilustra el directorio de archivos de radar.	243 del 245 247 248 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 289 290 291 292

Figura AII-G. Cuadro de Reflexw para conversión de coordenadas a proyección UTM. 295 Figura AII-H. Cuadro de Reflexw donde se elige visualizar las coordenadas con el encabezado ("header") de trazas. 296 Figura AII-J. Gráfico de Reflexw que muestra las coordenadas UTM del perfil. 297 Figura AII-J. Cuadro de Reflexw para concatenar archivos de trazas. 298 Figura AII-K. Radargrama de Reflexw con archivos concatenados. 299 Figura AII-M. Radargrama de Reflexw con archivos concatenados. 300 Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 301 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-P. Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-R. Cuadro de Reflexw donde se aplica el filtro DEWOW. 305 Figura AII-R. Cuadro de Reflexw donde se aplica el filtro DEWOW. 306 Figura AII-L. Radargrama de Reflexw con el filtro pasabanda. 306 Figura AII-L. Cuadro de Reflexw donde se aplica el filtro DEWOW. 305 Figura AII-L. Cuadro de Reflexw con el filtro pasabanda. 306 Figura AII-L.	Figura All-F.	Cuadro de Reflexw donde se decide convertir las coordenadas a proyección UTM
Figura AII-H. Cuadro de Reflexw donde se elige visualizar las coordenadas con el encabezado ("header") de trazas. 296 Figura AII-J. Gráfico de Reflexw que muestra las coordenadas UTM del perfil. 297 Figura AII-J. Cuadro de Reflexw que muestra las coordenadas UTM del perfil. 297 Figura AII-L. Cuadro de Reflexw para concatenar archivos de trazas. 298 Figura AII-L. Cuadro de Reflexw para concatenar archivos concatenados. 299 Figura AII-L. Cuadro de Reflexw para convertir a trazas equidistantes. 300 Figura AII-N. Radargrama de Reflexw con trazas equidistantes. 301 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro DEWOW. 305 Figura AII-S. Radargrama de Reflexw donde se aplica el filtro DEWOW. 305 Figura AII-S. Radargrama de Reflexw corregido al tiempo cero. 308 Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales. 310 Figura AII-V. Cuadro de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-V. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick.	Figura AII-G.	Cuadro de Reflexw para conversión de coordenadas a proyección UTM 295
Figura AII-I. Gráfico de Reflexw que muestra las coordenadas UTM del perfil. 297 Figura AII-J. Cuadro de Reflexw para concatenar archivos de trazas. 298 Figura AII-K. Radargrama de Reflexw con archivos concatenados. 299 Figura AII-L. Cuadro de Reflexw para convertir a trazas equidistantes. 300 Figura AII-N. Radargrama de Reflexw con trazas equidistantes. 301 Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 302 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-C. Radargrama de Reflexw donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-V. Radargrama de Reflexw corregido al tiempo cero. 308 Figura AII-V. Radargrama de Reflexw con una buena parte de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-X. Radargrama de Reflexw con los datos migrados. 313	Figura AII-H.	Cuadro de Reflexw donde se elige visualizar las coordenadas con el encabezado ("header") de trazas. 296
Figura AII-J. Cuadro de Reflexw para concatenar archivos de trazas. 298 Figura AII-K. Radargrama de Reflexw con archivos concatenados. 299 Figura AII-L. Cuadro de Reflexw para convertir a trazas equidistantes. 300 Figura AII-N. Cuadro de Reflexw con trazas equidistantes. 301 Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 302 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro pasabanda. 306 Figura AII-D. Cuadro de Reflexw donde se aplica el filtro pasabanda. 306 Figura AII-D. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-D. Radargrama de Reflexw con el filtro pasabanda aplicado. 309 Figura AII-U. Radargrama de Reflexw con ua buena parte de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 313 Figura AII-X. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. </td <td>Figura All-I.</td> <td>Gráfico de Reflexw que muestra las coordenadas UTM del perfil</td>	Figura All-I.	Gráfico de Reflexw que muestra las coordenadas UTM del perfil
Figura AII-K. Radargrama de Reflexw con archivos concatenados. 299 Figura AII-L. Cuadro de Reflexw para convertir a trazas equidistantes. 300 Figura AII-M. Radargrama de Reflexw con trazas equidistantes. 301 Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 302 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-D. Radargrama de Reflexw donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda. 307 Figura AII-S. Radargrama de Reflexw corregido al tiempo cero. 308 Figura AII-V. Cuadro de Reflexw con una buena parte de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de	Figura AII-J.	Cuadro de Reflexw para concatenar archivos de trazas
Figura AII-L. Cuadro de Reflexw para convertir a trazas equidistantes. 300 Figura AII-M. Radargrama de Reflexw con trazas equidistantes. 301 Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 302 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 304 Figura AII-O. Radargrama de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-R. Cuadro de Reflex W donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 306 Figura AII-V. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-V. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-V. Radargrama de Reflexw con una buena parte de las bandas horizontales 310 Figura AII-X. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con los datos migrados. 315	Figura AII-K.	Radargrama de Reflexw con archivos concatenados
Figura AII-M. Radargrama de Reflexw con trazas equidistantes. 301 Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 302 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-P. Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-R. Cuadro de Reflexw donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-U. Radargrama de Reflexw corregido al tiempo cero. 308 Figura AII-V. Cuadro de Reflexw corregido al tiempo cero. 309 Figura AII-V. Radargrama de Reflexw con una buena parte de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-X. Radargrama de Reflexw para migración de datos. 315 Figura AII-A. Radargrama de Reflexw con los datos migrados. 314	Figura AII-L.	Cuadro de Reflexw para convertir a trazas equidistantes
Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar. 302 Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-P. Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-O. Radargrama de Reflexw donde se ha aplicado el filtro DEWOW. 305 Figura AII-R. Cuadro de Reflex W donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-U. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-V. Cuadro de Reflexw donde se descuenta el tiempo cero. 308 Figura AII-V. Radargrama de Reflexw corregido al tiempo cero. 309 Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-X. Radargrama de Reflexw para migración de datos. 314 Figura AII-A. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. </td <td>Figura AII-M.</td> <td>Radargrama de Reflexw con trazas equidistantes</td>	Figura AII-M.	Radargrama de Reflexw con trazas equidistantes
capturadas sobre el glaciar.302Figura AII-O.Radargrama del perfil correspondiente a la sección del glaciar.303Figura AII-P.Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos.304Figura AII-Q.Radargrama de Reflexw donde se ha aplicado el filtro DEWOW.305Figura AII-R.Cuadro de Reflex W donde se aplica el filtro pasabanda.306Figura AII-S.Radargrama de Reflexw con el filtro pasabanda aplicado.307Figura AII-T.Cuadro de Reflexw donde se descuenta el tiempo cero.308Figura AII-V.Radargrama de Reflexw corregido al tiempo cero.309Figura AII-V.Cuadro de Reflexw para remoción de las bandas horizontales.310Figura AII-V.Radargrama de Reflexw con la interpretación de la superficie mediante la función pick.311Figura AII-X.Radargrama de Reflexw con la interpretación de la superficie mediante la función pick.313Figura AII-Z.Modelo de velocidades utilizado para la migración.313Figura AII-Z.Modelo de velocidades utilizado para la migración.313Figura AII-AB.Radargrama de Reflexw con los datos migrados.316Figura AII-AB.Radargrama de Reflexw con los datos en nivel 0 m.317Figura AII-AD.R	Figura AII-N.	Cuadro de Reflexw donde se elige cortar el perfil con las mediciones
Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar. 303 Figura AII-P. Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-O. Radargrama de Reflexw donde se ha aplicado el filtro DEWOW. 305 Figura AII-R. Cuadro de Reflex W donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-T. Cuadro de Reflexw donde se descuenta el tiempo cero. 308 Figura AII-V. Radargrama de Reflexw corregido al tiempo cero. 309 Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con una buena parte de las bandas horizontales 311 Figura AII-X. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-Z. Modelo de velocidades utilizado para la migración. 314 Figura AII-AA. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. 317 Figura AII-AB. Radargrama de Reflexw con los datos migrados. 316 Figura AII-AA. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. 317 Figura AII-AD. Radargrama de Reflexw con los datos en ni		capturadas sobre el glaciar
Figura AII-P. Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos. 304 Figura AII-Q. Radargrama de Reflexw donde se ha aplicado el filtro DEWOW. 305 Figura AII-R. Cuadro de Reflex W donde se aplica el filtro pasabanda. 306 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado. 307 Figura AII-T. Cuadro de Reflexw donde se descuenta el tiempo cero. 308 Figura AII-U. Radargrama de Reflexw corregido al tiempo cero. 309 Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales. 310 Figura AII-V. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 311 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-Z. Modelo de velocidades utilizado para la migración. 314 Figura AII-AA. Cuadro de Reflexw para migración de datos. 315 Figura AII-AB. Radargrama de Reflexw con los datos migrados. 316 Figura AII-AA. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. 317 Figura AII-AB. Radargrama de Reflexw con los datos en nivel 0 m. 316 Figura AII-AC.	Figura AII-O.	Radargrama del perfil correspondiente a la sección del glaciar 303
Figura AII-Q.Radargrama de Reflexw donde se ha aplicado el filtro DEWOW.305Figura AII-R.Cuadro de Reflex W donde se aplica el filtro pasabanda.306Figura AII-S.Radargrama de Reflexw con el filtro pasabanda aplicado.307Figura AII-T.Cuadro de Reflexw donde se descuenta el tiempo cero.308Figura AII-U.Radargrama de Reflexw corregido al tiempo cero.309Figura AII-V.Cuadro de Reflexw para remoción de las bandas horizontales.310Figura AII-W.Radargrama de Reflexw con una buena parte de las bandas horizontales removidas.311Figura AII-X.Radargrama de Reflexw con la interpretación de la superficie mediante la función pick.312Figura AII-Y.Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick.313Figura AII-Z.Modelo de Reflexw para migración de datos.314Figura AII-AA.Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.317Figura AII-AB.Radargrama de Reflexw con los datos en nivel 0 m.318Figura AII-AF.Radargrama de Reflexw con los datos en nivel 0 m.318Figura AII-AF.Radargrama de Reflexw con la nuevo tiempo máximo determinado.320Figura AII-AG.Cuadro de Reflexw para aplicar la función de ganancia.321	Figura AII-P.	Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos
Figura AII-R. Cuadro de Reflex W donde se aplica el filtro pasabanda.306Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado.307Figura AII-T. Cuadro de Reflexw donde se descuenta el tiempo cero.308Figura AII-U. Radargrama de Reflexw corregido al tiempo cero.309Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales.310Figura AII-V. Radargrama de Reflexw con una buena parte de las bandas horizontales311Figura AII-X. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick.312Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick.313Figura AII-Z. Modelo de velocidades utilizado para la migración.314Figura AII-A. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.315Figura AII-A. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.317Figura AII-A. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-A. Radargrama de Reflexw con los datos en nivel 0 m.313Figura AII-A. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-A. Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura AII-A. Radargrama de Reflexw con la datos en nivel 0 m.313Figura AII-A. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-A. Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura AII-A. Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura	Figura AII-Q.	Radargrama de Reflexw donde se ha aplicado el filtro DEWOW 305
 Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado	Figura AII-R.	Cuadro de Reflex W donde se aplica el filtro pasabanda
 Figura AII-T. Cuadro de Reflexw donde se descuenta el tiempo cero	Figura AII-S.	Radargrama de Reflexw con el filtro pasabanda aplicado 307
 Figura AII-U. Radargrama de Reflexw corregido al tiempo cero. 309 Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales. 310 Figura AII-W. Radargrama de Reflexw con una buena parte de las bandas horizontales removidas. 311 Figura AII-X. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-Z. Modelo de velocidades utilizado para la migración. 314 Figura AII-AA. Cuadro de Reflexw para migración de datos. 315 Figura AII-AB. Radargrama de Reflexw con los datos migrados. 316 Figura AII-AD. Radargrama de Reflexw con los datos en nivel 0 m. 318 Figura AII-AE. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza. 319 Figura AII-AF. Radargrama de Reflexw con el nuevo tiempo máximo determinado. 320 Figura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia. 321 	Figura AII-T.	Cuadro de Reflexw donde se descuenta el tiempo cero
 Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales	Figura AII-U.	Radargrama de Reflexw corregido al tiempo cero
 Figura AII-W. Radargrama de Reflexw con una buena parte de las bandas horizontales removidas	Figura AII-V.	Cuadro de Reflexw para remoción de las bandas horizontales
 Figura AII-X. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. Figura AII-Z. Modelo de velocidades utilizado para la migración. Sigura AII-AA. Cuadro de Reflexw para migración de datos. Figura AII-AB. Radargrama de Reflexw con los datos migrados. Sigura AII-AC. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. Sigura AII-AD. Radargrama de Reflexw con los datos en nivel 0 m. Sigura AII-AE. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza. Sigura AII-AF. Radargrama de Reflexw con el nuevo tiempo máximo determinado. Sigura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia. Sigura AII-AH. Radargrama de Reflexw de datos con ganancia. 	Figura AII-W.	Radargrama de Reflexw con una buena parte de las bandas horizontales
Figura AII-X. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick. 312 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. 313 Figura AII-Z. Modelo de velocidades utilizado para la migración. 314 Figura AII-AA. Cuadro de Reflexw para migración de datos. 315 Figura AII-AB. Radargrama de Reflexw con los datos migrados. 316 Figura AII-AC. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. 317 Figura AII-AD. Radargrama de Reflexw con los datos en nivel 0 m. 318 Figura AII-AE. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza. 319 Figura AII-AE. Radargrama de Reflexw con el nuevo tiempo máximo determinado. 320 Figura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia. 321 Figura AII-AH. Radargrama de Reflexw de datos con ganancia. 321		removidas
 Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick. Sigura AII-Z. Modelo de velocidades utilizado para la migración. Sigura AII-AA. Cuadro de Reflexw para migración de datos. Figura AII-AB. Radargrama de Reflexw con los datos migrados. Sigura AII-AC. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m. Sigura AII-AD. Radargrama de Reflexw con los datos en nivel 0 m. Sigura AII-AE. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza. Figura AII-AF. Radargrama de Reflexw con el nuevo tiempo máximo determinado. Sigura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia. Sigura AII-AH. Radargrama de Reflexw de datos con ganancia. 	Figura AII-X.	Radargrama de Reflexw con la interpretación de la superficie mediante la
Figura AII-Y.Radal grama de Reflexw con la interpretación de la indestra innai de cada traza mediante la función pick.313Figura AII-Z.Modelo de velocidades utilizado para la migración.314Figura AII-AA.Cuadro de Reflexw para migración de datos.315Figura AII-AB.Radargrama de Reflexw con los datos migrados.316Figura AII-AC.Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.317Figura AII-AD.Radargrama de Reflexw con los datos en nivel 0 m.318Figura AII-AE.Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-AF.Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura AII-AG.Cuadro de Reflexw para aplicar la función de ganancia.321Figura AII-AH.Radargrama de Reflexw de datos con ganancia.322		Padargrama de Deflevue con la interpretación de la muestra final de cada
Figura AII-Z.Modelo de velocidades utilizado para la migración.314Figura AII-AA.Cuadro de Reflexw para migración de datos.315Figura AII-AB.Radargrama de Reflexw con los datos migrados.316Figura AII-AC.Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.317Figura AII-AD.Radargrama de Reflexw con los datos en nivel 0 m.318Figura AII-AE.Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-AF.Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura AII-AG.Cuadro de Reflexw para aplicar la función de ganancia.321Figura AII-AH.Radargrama de Reflexw de datos con ganancia.322	Figura Alt-Y.	traza mediante la función nick
Figura AII-AA.Cuadro de Reflexw para migración de datos.315Figura AII-AB.Radargrama de Reflexw con los datos migrados.316Figura AII-AC.Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.317Figura AII-AD.Radargrama de Reflexw con los datos en nivel 0 m.318Figura AII-AE.Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-AF.Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura AII-AG.Cuadro de Reflexw para aplicar la función de ganancia.321Figura AII-AH.Radargrama de Reflexw de datos con ganancia.322	Figura ΔΠ-7	Modelo de velocidades utilizado para la migración 314
Figura AII-AB.Radargrama de Reflexw con los datos migrados.316Figura AII-AC.Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.317Figura AII-AD.Radargrama de Reflexw con los datos en nivel 0 m.318Figura AII-AE.Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.319Figura AII-AF.Radargrama de Reflexw con el nuevo tiempo máximo determinado.320Figura AII-AG.Cuadro de Reflexw para aplicar la función de ganancia.321Figura AII-AH.Radargrama de Reflexw de datos con ganancia.322	Figura All-AA	Cuadro de Reflexw para migración de datos
Figura AII-AC.Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m	Figura All-AB	Radargrama de Reflexw con los datos migrados 316
Figura AII-AD. Radargrama de Reflexw con los datos en nivel 0 m	Figura All-AC	Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m 317
Figura AII-AE. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza 319 Figura AII-AF. Radargrama de Reflexw con el nuevo tiempo máximo determinado 320 Figura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia	Figura All-AD	Radargrama de Reflexw con los datos en nivel 0 m 318
Figura AII-AF. Radargrama de Reflexw con el nuevo tiempo máximo determinado 320 Figura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia	Figura All-AF	Cuadro de Reflexw para cortar el exceso de tiempo de cada traza 319
Figura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia	Figura All-AF	Radargrama de Reflexw con el nuevo tiempo máximo determinado 320
Figura AII-AH. Radargrama de Reflexw de datos con ganancia	Figura AII-AG	6. Cuadro de Reflexw para aplicar la función de ganancia
	Figura AII-AH	I. Radargrama de Reflexw de datos con ganancia

RESUMEN

El objetivo del presente estudio, "Estimación de volúmenes de hielo mediante sondajes de radar en zonas norte, central y sur", Resolución DGA (exenta) Nº 1.591 de 29 Mayo 2013, consistió en la determinación, mediante radar aéreo, de volúmenes de hielo equivalente en agua en dieciocho (18) glaciares distribuidos en las zonas glaciológicas Norte, Centro y Sur de Chile, desde la cuenca del río Copiapó (28º22'S) a la cuenca del río Petrohué (41º13'S). Para los glaciares fríos, tal como aquellos en cotas altas de las zonas Norte y Centro, se utilizó un radar de 50 MHz, mientras que en cotas más bajas en las zonas centro y sur, donde se anticipaba hielo temperado, se usó un radar de 25 MHz.

Los glaciares tienen superficies que varían entre 2,1 km² (glaciar Tapado en la cuenca del Elqui) a 38,6 km² (glaciar Tronador en la cuenca del Petrohué), con un promedio de 8 perfiles en cada glaciar. En los glaciares de las zonas Norte y Centro, donde predominan los glaciares de valle, se optó por un perfil longitudinal, 3 perfiles transversales y 3 perfiles diagonales. En la zona Sur, donde los glaciares cubren conos volcánicos, se prefirió perfiles radiales, y en un par de casos (Sierra Velluda, Osorno) también perfiles espirales. Se voló una distancia total de 358 km de perfiles sobre los glaciares. En los glaciares Tapado y Mocho-Choshuenco se realizaron mediciones terrestres de radar para calibrar y validar los datos de radar aéreo, mientras que en los glaciares Tupungatito y Villarrica se utilizaron datos anteriores de radar para el mismo propósito.

Se determinó un espesor medio de 64 m para los 18 glaciares de estudio, con un espesor medio mínimo de 16 m para el Llaima y un espesor medio máximo de 324 m para el Sollipulli. El espesor máximo fue 775 m en el Sollipulli. Los resultados de espesores fueron extrapolados de manera confiable a la mayor parte del área de los glaciares, donde existía buena cobertura de datos aéreos de espesores. Los volúmenes interpolados de hielo resultan en un valor mínimo de 57 millones de m³ para el glaciar Tapado y un máximo de 3.929 millones de m³ para el volcán Sollipulli. El volumen total de hielo para los 18 glaciares es de 11.798 millones de m³, con un equivalente en agua total de 10.619 millones de m³. A partir de un análisis de 243 cruces para los 16 glaciares donde existen cruces se obtiene una diferencia promedio de espesores de 2,6 m para los 16 glaciares, vale decir un 3,8% de diferencia, que refleja la consistencia interna promedio de los datos de espesor. Los resultados permiten establecer los equivalentes en agua para estos 18 glaciares de la zona Norte, Centro y Sur de Chile.

1. INTRODUCCIÓN GENERAL

El objetivo general del presente estudio consiste en la determinación de volúmenes de hielo equivalente en agua en dieciocho (18) glaciares distribuidos en las zonas glaciológicas Norte, Centro y Sur de Chile. Los objetivos específicos incluyen:

a) Realizar mediciones mediante RES en 18 glaciares, mediante perfiles longitudinales, transversales y/o radiales, según la geometría de cada glaciar en particular.

b) Determinar el espesor y la topografía subglacial para la superficie total de los 18 glaciares mediante RES.

El estudio se enmarca en el proyecto "Estimación de volúmenes de hielo mediante sondajes de radar en zonas norte, central y sur", cuyas bases administrativas y técnicas fueron aprobadas por la Resolución DGA (exenta) N° 1.591, de 29 Mayo 2013. En adelante denominaremos a este proyecto "RES", según la sigla en inglés de "Radio Echo Sounding" (radio eco sondaje).

El espesor de hielo es un parámetro esencial para determinar el estado actual de los glaciares y proyectar cambios futuros. Conforme a los lineamientos establecidos en la Estrategia Nacional de Glaciares (ENG) (DGA, 2009b), la Unidad de Glaciología y Nieves (UGN) de la Dirección General de Aguas (DGA) licita el presente estudio (DGA, 2013) con la finalidad de medir los espesores de hielo en 18 glaciares de las zonas glaciológicas Norte, Centro y Sur, y estimar los volúmenes respectivos de hielo. Las mediciones se enmarcan en el cumplimiento del Nivel 3 de la ENG.

Existen varios métodos geofísicos para la determinación de espesores de hielo, por ejemplo, en orden creciente de precisión, la magnetometría, gravimetría, sísmica y radioeco sondaje (RES). Estos últimos dos métodos tienen una precisión similar, mejor al 10% por lo general, sin embargo el método logísticamente más simple es el RES, que constituye la metodología seleccionada por la UGN para estudiar los glaciares en la presente propuesta pública.

En los glaciares de los Andes chilenos se ha aplicado exitosamente el método de RES terrestre y aéreo, tanto en el marco de estudios de la UGN (ej. DGA, 2009a, 2011, 2012)

como en otros estudios científicos (ej., Casassa y Rivera, 1998; Rivera, Casassa y Acuña, 2001; Rivera y Casassa 2002; Zamora et al., 2009).

De acuerdo a las Bases Técnicas de la DGA, se debe incluir en este Informe Final los "tópicos detallados para el Informe 1", a saber:

- un "...reporte de todos los vuelos realizados a la fecha. Incorporará imágenes con las transectas realizadas y tablas que den cuenta de la altitud de la antena y vuelos, capacidad de penetración para cada glaciar, días de vuelo por glaciar, tiempos de traslado entre cada zona glaciológica, entre otros que el adjudicatario estime conveniente informar."
- Adicionalmente se debe incluir el "reporte de las campañas de terreno, el procesamiento y análisis de los datos, gráficos, mapas, conclusiones, y el 100% de los productos señalados en los números 5.1 y5.2."

A su vez, los números 5.1 y 5.2 indican:

"5.1. Productos relacionados al levantamiento RES.
 Los productos que debe entregar el adjudicatario son los siguientes:
 Perfiles esquemáticos con la topografía subglacial para cada transecta realizada, con el espesor de hielo y el espesor de nieve.
 Radargramas georeferenciados con las profundidades del hielo, incluyendo un perfil longitudinal a lo largo del flujo central del glaciar y tres perfiles transversales que cubrirán desde el área de acumulación y hasta el área de ablación para cada glaciar monitoreado. Se deberá 'utilizar la superficie determinada por la DGA en el inventario y/o se entregará la imagen reciente de donde se obtenga la nueva superficie.

Los radargramas obtenidos serán entregados en el formato digital correspondiente, según el programa utilizado, junto con toda la información digital generada para el procesamiento y depuración de los datos.

Líneas de vuelo en formato *.shape con escala de colores que indique las profundidades medidas y la elevación del glaciar en superficie.

Estimación de errores de medición mediante la comparación de radar terrestre y radar aéreo en un mismo glaciar. De utilizarse un único sistema, se deberá incluir la comparación de distintas frecuencias para un mismo glaciar. Repetición de perfiles en caso que el trazado no haya sido completo en el levantamiento inicial. Se podrá utilizar radar terrestre para eventual relleno de datos en puntos en los que el levantamiento no fue óptimo o no hubo cobertura."

• "5.2. Productos relacionados al análisis de los datos

Determinación de los espesores máximos, mínimos y medios de los glaciares en estudio; estimación del espesor de la capa nival suprayacente si correspondiere. Estimación del volumen de hielo y su equivalente en agua para cada glaciar en estudio, indicando los errores asociados. Esta estimación **deberá** ser extrapolada a la superficie total de los glaciares en estudio mediante interpolación digital."

2. <u>ÁREA DE ESTUDIO</u>

De los 18 glaciares incluidos en este estudio, 3 están ubicados en la Zona Norte, 7 en la Zona Centro y 8 en la Zona Sur (Tabla 2-A).

Tabla 2-A. Lista de glaciares a prospectar mediante RES. Las coordenadas UTM se refieren al datum WGS 84, Huso 19S, excepto los volcanes Mocho-Choshuenco y Osorno que pertenecen al Huso 18S. "Sup. Orig." denota la superficie original entregada por la DGA en el Inventario de Glaciares. "Sup. Mod." Refleja la superficie modificada en este estudio de acuerdo a la interpretación de imágenes satelitales recientes. "Porc." es el cociente entre la superficie modificada y la superficie original, expresado en porcentaje.

Nº	Nombre Glaciar	Zona Glaciológica	Sup. Orig. (km²)	Sup. Mod. (km²)	Porc. %	Huso	UTM N (m)	UTM E (m)
1	Del Potro	Zona Norte	4,88	4,78	98,0	19S	6.860.367	440.365
2	Tronquitos	Zona Norte	2,78	2,49	89,6	19S	6.842.969	428.450
3	Tapado	Zona Norte	2,24	2,05	91,5	19S	6.664.227	410.992
4	Juncal Norte	Zona Centro	9,38	8,44	90,0	19S	6.345.235	397.334
5	Río Blanco	Zona Centro	15,81	21,11	133,5	19S	6.342.770	392.936
6	V. Tupungatito	Zona Centro	6,89	7,67	111,3	19S	6.303.655	423.443
7	Marmolejo	Zona Centro	9,22	9,67	104,9	19S	6.266.483	415.287
8	Tinguiririca 3	Zona Centro	3,56	3,66	102,8	19S	6.150.327	380.139
9	Tinguiririca 4	Zona Centro	2,09	2,08	99,5	19S	6.149.855	382.023
10	Tinguiririca 1	Zona Centro	4,52	4,34	96,0	19S	6.146.300	378.295
11	Sierra Velluda	Zona Sur	14,54	14,33	98,6	19S	5.850.219	286.008
12	Volcán Callaqui	Zona Sur	9,00	7,33	81,4	19S	5.799.156	285.189
13	Volcán Llaima	Zona Sur	14,05	20,57	146,4	19S	5.712.424	262.435
14	Nevado Sollipulli	Zona Sur	15,42	12,13	78,7	19S	5.682.561	281.314
15	Volcán Villarrica	Zona Sur	28,82	28,12	97,6	19S	5.631.232	248.772
16	V. Mocho-Chosh.	Zona Sur	16,96	15,22	89,7	18S	5.574.908	241.533
17	Volcán Osorno	Zona Sur	5,87	5,45	92,8	18S	5.443.608	206.390
18	Monte Tronador	Zona Sur	38,72	38,55	99,6	19S	5.439.128	255.842

Se cuenta con los polígonos en formato shape para cada glaciar, subidos al portal Mercado Público por la DGA, correspondientes a la versión actualizada del inventario oficial de glaciares ("Sup. Orig." En Tabla 2-A). Se inspeccionaron detalladamente los

polígonos de cada glaciar en base a recientes imágenes satelitales visibles de alta resolución (<30 m) disponibles en Google Earth y Bing Maps, y se realizaron **modificaciones a dichas áreas ("Sup. Mod.").** Estas modificaciones, de carácter preliminar pues un inventario detallado no es objeto de este estudio, reflejan variaciones y en algunos casos también diferencias con el inventario oficial. Las diferencias de las áreas modificadas con el inventario oficial son en general menores al 10% de las áreas originales (Tabla 2-A), excepto en los siguientes 4 glaciares: Río Blanco, Callaqui, Llaima y Sollipulli. En el Río Blanco y Sollipulli se agregaron áreas cubiertas de detritos que se consideraron parte íntegra de los glaciares, mientras que en el Callaqui y Sollipulli se estimó que el inventario oficial sobreestimaba las áreas glaciares.

Los glaciares de la Zona Norte se ubican por sobre los 4.400 m s.n.m. (glaciar Tapado), alcanzando hasta los 5.700 m de altitud (glaciar Del Potro), mientras que los de la Zona Centro tienen un rango altitudinal entre los 3.100 m (glaciar Tinguiririca 1) y los 6.000 m s.n.m. (glaciar Marmolejo). Basado en la experiencia de la DGA en la medición de los glaciares de las zonas Norte y Centro (DGA, 2009, 2011, 2012), y debido a la altitud de los glaciares en dichas zonas, los 3 glaciares de la Zona Norte (Del Potro, Tronquitos y Tapado) y al menos las zonas altas de los 4 glaciares septentrionales de la Zona Centro (Juncal Norte, Río Blanco, Volcán Tupungatito y Marmolejo) son probablemente fríos, vale decir el hielo se encuentra bajo el punto de fusión. Los tres glaciares Tinguiririca (Tinguiririca 1, 3 y 4) en cambio posiblemente son temperados, al menos en sus zonas inferiores, vale decir el hielo estaría al punto de fusión. En la Zona Sur el rango altitudinal de los glaciares varía entre 1.300 y 3.500 m, por lo cual el hielo es probablemente temperado, según ha sido comprobado por perforaciones de testigos de hielo (Santibáñez et al., 2008), excepto quizás por los sectores somitales de las montañas más altas (Monte Tronador en este caso por ejemplo). La naturaleza fría o temperada del hielo es relevante para el RES puesto que condiciona la presencia o ausencia de agua de fusión. En efecto, el agua inhibe la penetración de las ondas electromagnéticas de radar en el hielo provocado por la mayor absorción y dispersión, esto último debido a cuerpos de agua intraglacial que normalmente pueden existir en el interior de los glaciares temperados (Bogorodsky et al., 1985; Plewes and Hubbard, 2001; Nobes, 2011). Debido a lo anterior, y tal como se describe en 4. Metodología, en el presente proyecto se realizan mediciones con un radar aéreo que opera a un frecuencia de 50 MHz para los glaciares fríos, y 25 MHz para los glaciares temperados (Watts and England, 1976; Watts and Isherwood, 1978; Watts and Wright, 1981).

3. CRONOGRAMA DE ACTIVIDADES

En el Anexo I se presenta un cronograma detallado de actividades de las campañas aéreas y terrestres a los 18 glaciares. Se comenzó con un vuelo de prueba en la zona centro, luego los glaciares de la zona norte, parte de los glaciares de la zona centro, los glaciares de la zona sur y finalmente terminar con los glaciares de la zona centro. El resumen de las fechas, los vuelos y horas de vuelo se presenta en la Tabla 3-A.

Tabla 3-A. Resumen de las horas de vuelo empleadas durante la campaña aérea RES 2013.

VUELO	HORAS
18 agosto. Vuelo de prueba Aeródromo Eulogio Sánchez (Tobalaba, SCTB)-El Yeso-SCTB.	1,8
27 agosto. Vuelo desde Copiapó Chamonate (SCHA) a glaciares Del Potro y Tronquitos, regreso a SCHA.	5,0
29 agosto. Vuelo desde SCHA a glaciares Del Potro y Tronquitos y traslado a Pisco Elqui.	3,5
30 agosto. Vuelo desde Pisco Elqui a glaciar Tapado, retorno a Valle Nevado.	6,3
4 septiembre. Vuelo de prueba en Las Vizcachas.	0,7
6 octubre. Vuelo desde SCTB a Viña Concha y Toro (VCT) (5 octubre), vuelo desde VCT a Alfalfal y glaciares Tupungatito y Marmolejo, regreso a SCTB.	4,2
11 octubre. Vuelo desde Petrohué a glaciares Osorno y Tronador, regreso a Petrohué.	3,8
12 octubre. Vuelo desde Petrohué a Huilo-Huilo, vuelo al glaciar Mocho- Choshuenco y traslado a Pucón.	3,5
14 octubre. Vuelo desde Pucón al glaciar Villarrica, vuelo al glaciar Sollipulli y traslado a Melipeuco km 18.	3,5
15 octubre. Vuelo desde Melipeuco km 18 al volcán Llaima y aterrizaje en helipuerto Tenencia de Carabineros Alto Bío Bío. Vuelo al volcán Callaqui, retorno a la Tenencia Alto Bio Bío y traslado a Antuco.	5,0
16 octubre. Vuelo desde Antuco al glaciar Sierra Velluda, retorno a Antuco y traslado al Aeródromo San Fernando (SCSD).	3,6
17 octubre. Vuelo desde SCSD a helipuerto río Tinguiririca y luego glaciares Tinguiririca, retorno a río Tinguiririca y traslado a SCTB.	5,9
20 noviembre. Vuelo desde SCTB a helipuerto Guardia Vieja y luego a glaciares Juncal Norte y Río Blanco, retorno a SCTB.	3,6
TOTAL	50,4
SUBTOTAL ZONA NORTE	14,8
SUBTOTAL ZONA CENTRO	10,3
SUBTOTAL ZONA SUR	25,3

4. METODOLOGÍA

Se emplea en este proyecto un sistema de radar aéreo para medir los 18 glaciares propuestos por la DGA. Este sistema es una modificación de los radares aéreos que han sido exitosamente aplicados en dos proyectos anteriores de la DGA (DGA, 2011; DGA, 2012), donde participó parte del equipo de trabajo propuesto para este estudio. Para este efecto participa en este estudio el Dr. Norbert Blindow de Alemania, geofísico inventor de los radares aéreos utilizados en los proyectos mencionados.

Los datos aéreos se validan con mediciones mediante RES terrestre que se realizarán en este proyecto en un glaciar frío en la Zona Norte (glaciar Tapado), y un glaciar temperado en la Zona Sur (glaciar Volcán Mocho-Choshuenco). Además se cuenta con datos de espesores de radar terrestre para el glaciar del Volcán Tupungatito, Zona Centro, adquiridos el año 2010 por personal actualmente en Geoestudios en el marco de una campaña glaciológica de la Universidad de Maine, EE.UU. con el Centro de Estudios Científicos (CECs).

Tanto en el radar aéreo como en el terrestre (Casassa y Rivera, 1998) se transmite una onda electromagnética hacia el glaciar, la cual rebota en la base rocosa y es capturada por el receptor (Rx). El espesor se calcula a partir del tiempo (*two-way travel time*) que demora la onda transmitida en viajar entre el transmisor (Tx) y la base subglacial, y su posterior reflejo hacia el Rx. En el caso del radar aéreo el Rx y el Tx se ubican sobre una estructura de antena colgante a unos 20-50 m sobre la superficie, mientras que en el radar terrestre el Rx y Tx están localizados sobre la superficie.

4.1. RADAR AEROTRANSPORTADO

El radar aéreo es una modificación del modelo BGR-P30, de una frecuencia central de 30 MHz, diseñado por el Dr. Norbert Blindow, y originalmente construido en la Universidad de Münster (UM), Alemania (Blindow, 2009; Blindow et al., 2010; Blindow et al., 2011). El modelo BGR-P30 fue construido por la UM para el Instituto Federal de Geociencias y Recursos Naturales de Hannover, Alemania, y utilizado por el Dr. Blindow y colegas del CECs en julio de 2011 para un estudio anterior de la DGA (DGA, 2011). En el proyecto de la DGA del año 2012 (DGA, 2012), se utilizaron dos modelos de antena aerotransportada

diseñados por el Dr. Blindow; una antena de 25 MHz, similar al modelo BGR-P30, pero de dimensiones algo mayores que permite bajar la frecuencia desde 30 MHz, y una antena de 50 MHz de dimensiones bastante menores.

Estos 3 modelos de antena son aerotransportadas como carga colgante mediante un helicóptero. En 2011 se utilizó un Ecureuil AS350 B3 de la empresa SumaAir, mientras que en 2012 se utilizó un Lama de la empresa helicopters.cl. Anteriormente se había usado el radar BGR-P30 en la Patagonia, en 2007 y 2008 (Glaciar Tyndall y Glaciar Grey, Torres del Paine) y 2010 (glaciares Nef y Colonia, Campo de Hielo Patagónico Norte), pudiéndose medir un espesor máximo de 750 m (Blindow et al., 2010; Blindow et al., 2012). Versiones anteriores del radar BGR-P30 habían sido probadas con éxito por el Dr. Blindow desde 2006 en glaciares de los Alpes suizos, en el casquete de hielo Collins de la **Isla Rey Jorge (Blindow et al., 2010), y en los glaciares aledaños a Base O'Higgins en la** Península Antártica.

La experiencia adquirida por el Dr. Blindow y el Dr. Casassa en el desarrollo de los estudios de 2011 y 2012 (DGA, 2011 y 2012) en la Zona Centro de Chile indican que el radar aerotransportado BGR-P30 a una frecuencia central de 25 MHz, que tiene un peso de 350 kg incluyendo la electrónica y la estructura de antena, es adecuado para sondear el espesor de los glaciares temperados, tal como existen en el sur de la Zona Centro y en la Zona Sur. Sin embargo, en la Zona Norte y el sector septentrional de la Zona Centro, la experiencia demuestra que es preferible utilizar una antena más liviana, tal como se utilizó en **2012, denominada "Carlina I" (CI), con una frecuencia central de 50 MHz y un** peso de 150 kg. En este estudio se utiliza la misma estructura de antena del radar CI, pero con un receptor modificado que permite obtener resultados con menos ruido.

Los distintos modelos del transmisor del radar aéreo son del tipo impulso y constan de una antena colgante tipo **bow-tie**, de aproximadamente 6x4x0,8 m y un peso de unos 350 kg para la frecuencia central de 30 MHz correspondiente al modelo BGR-P30 (Figura 4.1-A), y dimensiones de 4x2,7x0,5 m y un peso de unos 150 kg para el modelo CI de una frecuencia central de 50 MHz. Cada uno de estos radares utilizan un transmisor similar, de 50 y 30 MHz, que generan un pulso de 3 a 4 kV con una PRF (*Pulse Repetition Frequency*) de 6 a 3,5 kHz, respectivamente, ambos diseñados por el Ingeniero Bernhard Bömer de la Universidad de Münster. En la antena se adiciona un receptor GPS de doble frecuencia y un altímetro láser puntual que indica, por medio de un visor en cabina, en tiempo real, la altura de la antena sobre la superficie. En tierra se instala un receptor

base GPS durante cada vuelo para posteriormente aplicar DGPS. El computador central, que consta de un digitalizador análogo-digital de 500 MS/s (millones de muestras por segundo), se instala en la antena, con una conexión de fibra óptica y un monitor instalado en la cabina del helicóptero. El sistema de navegación consta de un navegador GPS Garmin modelo Montana 600 instalado en una ventosa del parabrisas delantero del helicóptero. La velocidad de crucero durante las mediciones debe ser del orden de 40 nudos, lo que asegura aproximadamente 1 traza de radar cada 2 m sobre el terreno. Velocidades menores son favorables pues se obtiene una resolución espacial mejor a 2 m, mientras que velocidades mayores a 40 nudos no son recomendables puesto que se degrada la resolución. En este estudio se utilizó una resolución espacial de 1 m entre trazas. La altura de vuelo óptima sobre el glaciar está comprendida entre 30 m a 50 m sobre la superficie del hielo, medidos bajo la base de la antena de radar, pero se pueden obtener retornos de fondo desde incluso más de 100 m de altura de vuelo dependiendo de las condiciones del hielo.

Figura 4.1-A. Radar aerotransportado con antena modelo BGR-P30.

4.2. RES TERRESTRE

La empresa Geoestudios cuenta con un radar terrestre de una frecuencia central de 9 MHz construido por la empresa Unmanned de Valdivia, que es en esencia una versión mejorada de los modelos anteriores de radar de impulso (e.g. Casassa y Rivera, 1998). Las antenas son dipolos simples cargados resistivamente, que se insertan en cintas tubulares de escalada, tiradas por 3 personas que transitan a pie a través de un glaciar. Las antenas empleadas tienen un largo de medio dipolo de 8 m, con una separación de 8 m entre las antenas Tx y Rx, vale decir el largo total de las antenas es de 40 m. El Tx levanta un pulso de una amplitud de unos 1.000 V. El receptor es un conversor análogodigital que es capaz de promediar hasta 1.024 trazas. Típicamente se obtiene 1 traza promediada cada 2 segundos. La sincronía entre el Tx y el Rx la proveen sendos GPS de frecuencia simple instalados respectivamente en el Rx y el Tx. El personal de Geoestudios tiene amplia experiencia en la medición de espesores de hielo mediante este radar terrestre, tanto en glaciares de la Zona Centro (cuencas del río Aconcagua y el río Maipo) como en glaciares de la Zona Sur (Volcán Villarrica).

La idea de las mediciones con radar terrestre es que sean útiles para calibrar y validar los datos de radar aéreo. En este proyecto se realizaron mediciones con radar terrestre en los glaciares Tapado y Mocho-Choshuenco. En el glaciar Tupungatito se contó con información de espesores medidos con radar terrestre el año 2010 por personal actualmente en Geoestudios.

Figura 4.2-A. Esquema general de empleo terrestre del radar para medir espesor del hielo, por personas transitando a pie. Transmisor, receptor, antenas dipolo, antenas GPS (fotografía adquirida por Geoestudios, en un glaciar de la cordillera del centro de Chile, 2011).

4.3. VELOCIDAD DE PROPAGACIÓN DE LA ONDA ELECTROMAGNÉTICA

Se emplea una velocidad de propagación de la onda electromagnética en hielo v de 168 m/µs (Gades, 1998), tanto para hielo frío como hielo temperado (Bogorodsky *et al.*, 1985; Evans, 1965). v se calcula basado en **la relación v = c/v** ϵ , donde c es la velocidad de propagación de la onda electromagnética en el vacío (300 m/µs) (Bogorodsky *et al.*, 1985; Nobes, 2011). Se puede efectar una corrección de v considerando el espesor de la capa de nieve y neviza sobre cada glaciar en el momento de la medición, y su correspondiente velocidad, en base a la relación empírica de Kovacs (1995):

$$\epsilon = (1+0.845\rho)^2$$

donde ρ es la densidad de la nieve/neviza expresada en g/cm³.

4.4. PROCESAMIENTO DE DATOS DE RADAR AÉREO

De manera general, las etapas del procesamiento y análisis de datos de radar son las siguientes:

- a) Importación de los datos de radar al software Reflexw (Sandmeier, 2004).
- b) Georeferenciación de las trazas de radar a partir del procesamiento DGPS.
- c) Unión de archivos correspondientes a cada perfil del glaciar, ya sean transversales o longitudinales.
- d) Interpolación equidistante con 1 traza cada 1 m.
- e) Seleccionar la porción del perfil con mediciones sobre el glaciar.
- f) Filtrar los datos para una mejor visualización: pasa banda.
- g) Definición de tiempo cero.
- h) Filtrar bandas horizontales.
- i) Migración utilizando un modelo de velocidad 2D.
- j) Cortar el tiempo excesivo del fondo del perfil.
- k) Control de ganancia.
- Identificación de la superficie del glaciar y el fondo rocoso, vectorización y obtención de espesores.
- m) Traspaso de datos interpretados a formato ASCII.

n) Exportación de los datos a ArcGIS.

En el Anexo II se ilustran los procesos para el perfil longitudinal del glaciar Tronquitos.

4.5. PROCESAMIENTO DE DATOS DE RADAR TERRESTRE

De manera general los pasos del procesamiento de los datos de radar terrestre son los siguientes:

- a) Importación de los datos de radar al software Reflexw (Sandmeier, 2004).
- b) Georeferenciación de las trazas de radar.
- c) Unión de archivos correspondientes a cada perfil.
- d) Determinacion del tiempo cero.
- e) Remuestreo de datos.
- f) Interpolación equidistante con una traza cada 1 m.
- g) Correccion dinámica según distancia Rx-Tx y velocidad.
- h) Filtro pasa banda.
- i) Compensación de las pérdidas de divergencia geométrica.
- j) Migración utilizando modelo de velocidad constante.
- k) Identificación de la superficie del glaciar y el fondo rocoso, vectorización y obtención de espesores.
- I) Traspaso de datos a formato ASCII.
- m) Exportación de los datos en formato ArcGIS.

En el anexo II se indican los parámetros utilizados en la importación y proceso de los datos de radar terrestre.

4.6. MEDICIÓN DE LA CAPA DE NIEVE INVERNAL

En invierno y primavera, cuando se realizaron las mediciones mediante RES aéreo y terrestre en el presente proyecto, existía una capa de nieve de espesor variable sobre los glaciares en estudio, tanto en la zona de acumulación como de ablación. Se midió el espesor de esta capa de nieve mediante sondas para avalanchas en 3 glaciares: el glaciar Tapado en la Zona Norte; el glaciar Tinguiririca 1 en la Zona Centro; y el glaciar del

Volcán Mocho-Choshuenco en la Zona Sur. Los resultados obtenidos para estos 3 glaciares se pueden extrapolar para los distintos glaciares de cada Zona Glaciológica basado en consideraciones de altitud y exposición. De esta manera se puede determinar el espesor de la capa de nieve invernal y el espesor de la neviza suprayacente al hielo glaciar. También se determinó la densidad de nieve de la capa superficial mediante un taladro Monte Rosa en los glaciares Tapado y Tinguiririca 1, y mediante un pozo glaciológico en el glaciar Mocho-Choshuenco.

4.7. MEDICIONES GPS

El posicionamiento preciso de los datos de radar se logró mediante el procesamiento diferencial de mediciones GPS (DGPS). Para ello se instaló un receptor GPS base montado sobre un trípode topográfico con base nivelante en el helipuerto de origen, donde despegaba el helicóptero hacia el glaciar. El receptor GPS móvil se montó sobre la antena **de radar, apernando una copla de acero a la estructura, con un perno de 5/8" en un** extremo donde se atornillaba el receptor GPS. Ambos receptores GPS eran marca Trimble modelo R8, con una tasa de captura de datos de 10 Hz. El procesamiento de los datos GPS se realizó mediante el software Trimble Business Center (TBC). Los tiempos de ocupación de la estación base fueron del orden de 2 a 6 horas, dependiendo de la duración de los vuelos, mientras que para la estación móvil los tiempos de medición para cada línea de vuelo fueron como máximo 2,5 horas. Las líneas base fueron siempre menores a 50 km, y los errores asociados a las soluciones cinemáticas son menores a 20 cm en las coordenadas horizontales y 40 cm en la elevación.

5. MEDICIONES AÉREAS Y TERRESTRES

Se entrega a continuación un reporte de todos los vuelos realizados, incorporando mapas con las transectas realizadas. La línea fronteriza es solo esquemática, obtenida a partir de Google Earth.

5.1. VUELO DE PRUEBA EN EL EMBALSE EL YESO

El 18 de agosto se armó la antena de 50 MHz en el campamento Embalse El Yeso, helipuerto de Aguas Andinas, efectuando un vuelo de prueba sobre el Embalse El Yeso y Laguna Negra, cuyo objetivo fue evaluar el correcto funcionamiento del sistema, tanto bajo el punto de vista de las antenas, la etapa transmisora y la etapa receptora. En forma inmediatamente posterior se intentó sin éxito realizar mediciones de prueba sobre el glaciar Echaurren Sur o Echaurren Norte, debiendo abandonar debido a condiciones de turbulencia. En todo caso los resultados del vuelo de prueba sobre el Embalse El Yeso fueron totalmente satisfactorios y el radar quedó aprobado para su uso sobre los glaciares. La Figura 5.1-A ilustra los tracks realizados, la Figura 6.1-B muestra la antena de 50 MHz utilizada y el helicóptero, y la Figura 6.1-C muestra la antena en vuelo.

Figura 5.1-A. Tracks efectuados en el sector del Embalse El Yeso y Laguna Negra el 18 de agosto.

Figura 5.1-B. Helipuerto Embalse El Yeso, Aguas Andinas. Antena de 50 MHz y helicóptero Ecureuil AS350 B3 empleado durante el vuelo de prueba el día 18 de agosto.

5.2. GLACIAR DEL POTRO

Para el glaciar Del Potro se utilizó un helipuerto ubicado en la Junta De Montosa, en la confluencia de los ríos Montosa y Pulido. La antena de 50 MHz en tierra y en vuelo puede observarse en las Figuras 5.2-A y 5.2-B.

Figura 5.2-A. Helipuerto Junta de Montosa. Antena de 50 MHz al momento del despegue, siendo levantada por el helicóptero.

Figura 5.2-B. Helipuerto Junta de Montosa. Antena de 50 MHz luego del despegue. La Figura 5.2-C muestra las líneas de vuelo de los perfiles, longitudinal, transversales y diagonales, realizados el día jueves 29 de agosto en el glaciar Del Potro.

Figura 5.2-C. Glaciar Del Potro. Líneas de vuelo realizadas el 29 de agosto. Algunos tramos del glaciar no se pudieron cubrir como estaba planificado debido a la topografía abrupta y las condiciones críticas de viento existentes. Coordenadas UTM Huso 19S, WGS84.
5.3. GLACIAR TRONQUITOS

Para el glaciar Tronquitos también se utilizó un helipuerto ubicado en la Junta De Montosa, en la confluencia de los ríos Montosa y Pulido, y las mediciones se realizaron con la antena de 50 MHz. La Figura 5.3-A muestra los tracks del perfil longitudinal, transversales y diagonales realizados el día martes 27 de agosto y el jueves 29 de agosto en el Glaciar Tronquitos.

Figura 5.3-A. Glaciar Tronquitos. Línea de vuelo realizadas el 27 y 29 de agosto. Algunos sectores no se pudieron volar debido a la topografía abrupta y las condiciones críticas de viento existentes. Coordenadas UTM Huso 19S, WGS84.

5.4. GLACIAR TAPADO

5.4.1. Radar aéreo

La Figura 5.4.1-A muestra los tracks transversales y diagonales realizados el día viernes 30 de agosto en el Glaciar Tapado. Se utilizó el helipuerto del Complejo Fronterizo Juntas del Toro en la ruta internacional La Serena-San Juan. En este glaciar no se pudo volar el perfil longitudinal debido a la abrupta topografía y las condiciones críticas de viento. Para remediar esta situación se optó por densificar los perfiles transversales, tal como se ilustra en la Figura 5.4.1-A.

Figura 5.4.1-A. Glaciar Tapado. Líneas de vuelo realizadas el 30 de agosto. El perfil longitudinal no se pudo volar debido a la topografía abrupta y las condiciones críticas de viento existentes, optándose por densificar los perfiles transversales. Coordenadas UTM Huso 19S, WGS84.

5.4.2. Mediciones terrestres

La Figura 5.4.2-A muestra los perfiles realizados mediante radar terrestre el día viernes 30 de agosto en el Glaciar Tapado. Para este efecto un equipo conformado por 3 personas fue depositado por el helicóptero, uno a la vez, en el sector somital del Cerro Tapado, a cota de 5.500 m s.n.m., descendiendo en esquís por el glaciar. Luego de las mediciones el equipo de 3 personas fue evacuado (todos juntos esta vez) desde la cota de 4.500 m s.n.m. (Figs. 5.4.2-B, 5.4.2-C y 5.4.2-D).

Junto con las mediciones de radar terrestre se realizaron mediciones de nieve, con sondajes verticales con sonda para avalanchas y densidad mediante taladro Monte Rosa, ver Figura 5.4.2-E, Tabla 5.4.2-A y Tabla 5.4.2-B.

Tabla 5.4.2-A. Mediciones de densidad de nieve mediante taladro Monte Rosa efectuadas en el sitio marcado como MR en la Figura 5.4.2-A, 30°8,576'S, 69°55,742'W (E 410.526, N 6.665.008). El diámetro representa diámetro interior del taladro Monte Rosa. Se utilizaron 3 secciones de taladro, con un largo total de 3 m. "Largo tubo" indica la profundidad del tubo insertado en la nieve. "Largo muestra" es el largo de la muestra efectivamente recuperada. La profundidad de nieve controlada mediante sonda para avalanchas en ese sitio fue de 267 cm. Ø es el diámetro del testigo de nieve.

Ø	Área	Largo tubo	Largo muestra	Volumen	Peso total	Tara	Peso neto	Densidad
cm	cm ²	cm	cm	cm ³	g	g	g	g/cm ³
4,1	13,0	110	85	1.103	3.165	2.685	480	O,44
4,1	13,0	200	81	1.051	3.215	2.685	530	0,50
4,1	13,0	280	66	856	3.085	2.685	400	0,47
						PROM	IEDIO	0,47

Tabla	5.4.2-B.	Mediciones	de	profundidad	de	nieve	mediante	sonda	para
avalan	chas, gla	ciar Tapado.	Ver	Figura 5.4.2-	Α.				

Punto	E	N	Profundidad
	m	m	m
S1	410.777	6.664.606	0,8
S2	410.750	6.664.609	1,6
S3	410.676	6.664.549	2,4
S4A	410.619	6.664.431	2,8
S4B	410.597	6.664.455	1,3
S5	410.783	6.664.335	1,6

Figura 5.4.2-A. Glaciar Tapado. El track rojo ilustra los perfiles realizados mediante radar terrestre. Los puntos S1, S2, S3, S4a, S4b y S5 indican mediciones de profundidad de nieve, hasta tocar una superficie dura que correspondía a una capa de hielo interpretada de fines del verano anterior, efectuadas mediante sonda para avalancha. Las profundidades obtenidas fueron de 0,8 m, 1,6 m, 2,4 m, 2,8 m, 1,3 m y 1,6 m, respectivamente. En el sector somital, hacia arriba de MR, había sectores sin nieve, con afloramiento de hielo, debido a condiciones habituales de fuerte viento, con una profundidad promedio de nieve estimada en 30 cm. MR indica el punto de medición de 3 datos de densidad de nieve mediante taladro Monte Rosa, con una densidad promedio de $0,47 \text{ g/cm}^3$ (Tabla 5.4.2-A).

Figura 5.4.2-B. Sector somital del Glaciar Tapado, cota 5.500 m s.n.m. Se aprecia el grupo terrestre de 3 personas que se apronta a comenzar con las mediciones mediante radar y las mediciones de nieve.

Figura 5.4.2-C. Lengua superior del Glaciar Tapado fotografiado desde el helicóptero.

Figura 5.4.2-D. Realizando mediciones de radar durante la travesía del glaciar Tapado en esquís.

Figura 5.4.2-E. Realizando mediciones de densidad de nieve mediante tubo muestreador Monte Rosa en el glaciar Tapado.

5.5. GLACIAR JUNCAL NORTE

Para el glaciar Juncal Norte se ocupó un helipuerto ubicado en Guardia Vieja, a un costado del Camino Internacional Los Andes-Mendoza. Se utilizó la antena de 50 MHz y las líneas de vuelo efectuadas el 20 de noviembre se presentan en la Figura 5.5-A.

Figura 5.5-A. Líneas de vuelo sobre el glaciar Juncal Norte. Coordenadas UTM Huso 19S, WGS84.

5.6. GLACIAR RÍO BLANCO

Para el glaciar Río Blanco también se ocupó el helipuerto ubicado en Guardia Vieja, a un costado del Camino Internacional Los Andes-Mendoza. Se utilizó la antena de 50 MHz y las líneas de vuelo efectuadas el 20 de noviembre se presentan en la Figura 5.6-A.

Figura 5.6-A. Líneas de vuelo sobre el glaciar Río Blanco. Coordenadas UTM Huso 19S, WGS84.

5.7. GLACIAR TUPUNGATITO

5.7.1. Radar aéreo

Para el glaciar Tupungatito se ocupó el helipuerto ubicado en Agua Rica, Central Hidroeléctrica Alfalfal, a un costado del camino que remonta el río Colorado. Se utilizó la antena de 50 MHz y las líneas de vuelo efectuadas el 6 de octubre se presentan en la Figura 5.7.1-A.

Figura 5.7.1-A. Líneas de vuelo sobre el glaciar Tupungatito. Coordenadas UTM Huso 19S, WGS84.

5.7.2. Mediciones terrestres

La Figura 5.7.2-A muestra los perfiles realizados mediante radar terrestre en enero 2010, en una campaña efectuada por la Universidad de Maine en conjunto con el Centro de Estudios Científicos (CECs).

Figura 5.7.2-A. Glaciar Tupungatito. El track rojo ilustra los perfiles realizados mediante radar terrestre en enero de 2010.

5.8. GLACIAR MARMOLEJO

Para el glaciar Marmolejo también se ocupó el helipuerto ubicado en Agua Rica, Central Hidroeléctrica Alfalfal, a un costado del camino que remonta el río Colorado. Se utilizó la antena de 50 MHz y las líneas de vuelo efectuadas el 6 de octubre se presentan en la Figura 5.8-A.

Figura 5.8-A. Líneas de vuelo sobre el glaciar Marmolejo. Coordenadas UTM Huso 19S, WGS84.

5.9. GLACIAR TINGUIRIRICA 3

Para el glaciar Tinguiririca 3 se ocupó un helipuerto ubicado en margen sur del río Tinguiririca, a un costado del camino a Termas del Flaco. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 17 de octubre se presentan en la Figura 5.9-A.

Figura 5.9-A. Líneas de vuelo sobre el glaciar Tinguiririca 3. Coordenadas UTM Huso 19S, WGS84.

5.10. GLACIAR TINGUIRIRICA 4

Para el glaciar Tinguiririca 4 se ocupó un helipuerto ubicado en margen sur del río Tinguiririca, a un costado del camino a Termas del Flaco. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 17 de octubre se presentan en la Figura 5.10-A.

Figura 5.10-A. Líneas de vuelo sobre el glaciar Tinguiririca 4. Coordenadas UTM Huso 19S, WGS84.

5.11. GLACIAR TINGUIRIRICA 1

5.11.1. Radar aéreo

Para el glaciar Tinguiririca 1 se ocupó un helipuerto ubicado en margen sur del río Tinguiririca, a un costado del camino a Termas del Flaco. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 17 de octubre se presentan en la Figura 5.11.1-A.

Figura 5.11.1-A. Líneas de vuelo sobre el glaciar Tinguiririca 1. Coordenadas UTM Huso 19S, WGS84.

5.11.2. Mediciones terrestres

En el glaciar Tinguiririca 1 se realizaron mediciones de nieve el 17 de octubre de 2013, con sondajes verticales con sonda para avalanchas y densidad mediante taladro Monte Rosa, ver Figura 5.11.2-A, Figura 5.11.2-B, Tabla 5.11.2-A y Tabla 5.11.2-B.

Figura 5.11.2-A. Mediciones de nieve en el glaciar Tinguiririca 1. MR1 a MR4 son las mediciones de densidad con taladro Monte Rosa (Tabla 5.11.2-A). S1 a S7 son las mediciones de profundidad de nieve mediante sonda para avalanchas (Tabla 5.11.2-B).

Figura 5.11.2-B. Mediciones de profundidad de nieve mediante sonda para avalanchas en el glaciar Tinguiririca 1.

Tabla 5.11.2-A. Mediciones de densidad de nieve mediante taladro Monte Rosa, efectuadas en los sitios marcados como MR1, MR2, MR3 y MR4 en la Figura 5.11.2-A, glaciar Tinguiririca 1. El diámetro \emptyset representa el diámetro interior del taladro Monte Rosa. Se utilizaron 3 secciones de taladro, con un largo total de 3 m. "Sonda" indica la profundidad de nieve controlada mediante sonda para avalanchas en cada sitio. "Largo tubo" indica la profundidad del tubo insertado en la nieve. "Largo mues." es el largo de la muestra efectivamente recuperada. "Vol." es el volumen. ρ es la densidad.

Sitio	Ø	Área	Sonda	Largo tubo	Largo mues.	Vol.	Peso total	Tara	Peso neto	ρ
	cm	cm ²	cm	cm	cm	cm ³	g	g	g	g/cm ³
MR1	4,1	13,0	83	83	83	1.076,7	3.070	2.685	385	0,36
MR2	4,1	13,0	80	80	80	1.037,7	2.980	2.685	295	0,28
MR3	4,1	13,0	195	145	105	1.362,0	3.395	2.685	710	0,52
MR4	4,1	13,0	175	175	165	2.140,3	3.620	2.685	935	0,44
								PROM	EDIO	0,40

Tabla 5.11.2-B. Mediciones de profundidad de nieve mediante sonda para avalanchas en el glaciar Tinguiririca 1. Ver Figura 5.11.2-A.

Punto	E	N	Profundidad
	m	m	m
MR1	377.640	6.147.050	0,83
MR2	378.496	6.145.721	0,80
MR3	378.365	6.144.583	1,95
MR4	378.446	6.143.727	1,75
S1	377.640	6.147.050	0,83
S2	378.382	6.146.131	1,25
S3	378.496	6.145.721	0,80
S4	378.729	6.145.522	1,93
S5	378.683	6.144.769	1,95
S6	378.446	6.143.727	1,95
S7	378.446	6.143.727	1,75

5.12. GLACIAR SIERRA VELLUDA

Para el glaciar Sierra Velluda se ocupó un helipuerto ubicado en la Tenencia de Carabineros de Antuco. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 16 de octubre se presentan en la Figura 5.12-A.

Figura 5.12-A. Líneas de vuelo sobre el glaciar Sierra Velluda. Coordenadas UTM Huso 19S, WGS84.

5.13. GLACIAR CALLAQUI

Para el glaciar del volcán Callaqui se ocupó el helipuerto de Carabineros ubicado en la Tenencia de Alto Bío Bío. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 15 de octubre se presentan en la Figura 5.13-A.

Figura 5.13-A. Líneas de vuelo sobre el volcán Callaqui. Coordenadas UTM Huso 19S, WGS84.

5.14. GLACIAR LLAIMA

Para el glaciar del volcán Llaima se ocupó, a la ida, el helipuerto ubicado en las Cabañas Santa Elvira de Tracura, en el km 18 del camino de Melipeuco a Icalma, y al regreso el helipuerto de Carabineros ubicado en Melipeuco. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 15 de octubre se presentan en la Figura 5.14-A.

Figura 5.14-A. Líneas de vuelo sobre el volcán Llaima. Coordenadas UTM Huso 19S, WGS84.

5.15. GLACIAR SOLLIPULLI

Para el glaciar del volcán Sollipuilli se ocupó, a la ida, un helipuerto ubicado en la losa de estacionamiento del Aeródromo de Pucón, y al regreso el helipuerto de las Cabañas Santa Elvira de Tracura, en el km 18 del camino de Melipeuco a Icalma. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 14 de octubre se presentan en la Figura 5.15-A.

Figura 5.15-A. Líneas de vuelo sobre el Nevado de Sollipulli. Coordenadas UTM Huso 19S, WGS84.

5.16. GLACIAR VILLARRICA

5.16.1. Radar aéreo

Para el glaciar del volcán Villarrica se ocupó un helipuerto ubicado en la losa de estacionamiento del Aeródromo de Pucón. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 14 de octubre se presentan en la Figura 5.16.1-A.

Figura 5.16.1-A. Líneas de vuelo sobre el volcán Villarrica. Coordenadas UTM Huso 19S, WGS84.

5.16.2. Mediciones terrestres

Para el glaciar Villarrica se cuenta con datos terrestres de radar medidos por Geoestudios con su radar de impulso de 9 MHz en febrero de 2013. Dichas mediciones fueron parte del **proyecto "Construcción, Mitigación Riesgo Volcánico y Geológicos Asociados, C**omunas de Villarrica, Pucón y Curarrehue, etapa de Pre-**factibilidad**" de la Dirección de Obras Hidráulicas (DOH), Ministerio de Obras Públicas, financiado por MOP-MINVU-GORE Araucanía y Municipios de Villarrica y Pucón. Gracias a la gentil autorización de la DOH se presentan en este estudio dichos datos que complementan y mejoran la base de datos aéreos medidos en este proyecto, con la cual se interpolan los espesores de hielo a todo el glaciar. En la Figura 5.16.2-A se indican los perfiles de radar terrestres medidos en el volcán Villarrica.

Figura 5.16.2-A. Perfiles de radar terrestre medidos en el volcán Villarrica en febrero 2013.

5.17. GLACIAR MOCHO-CHOSHUENCO

5.17.1. Radar aéreo

Para el glaciar del volcán Mocho-Choshuenco se ocupó un helipuerto ubicado en la Reserva Huilo Huilo. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 12 de octubre se presentan en la Figura 5.17.1-A.

Figura 5.17.1-A. Líneas de vuelo sobre el volcán Mocho-Choshuenco. Coordenadas UTM Huso 18S, WGS84.

5.17.2. Mediciones terrestres

En el volcán Mocho-Choshuenco se realizaron mediciones terrestres de espesor de hielo mediante el radar de impulso de 9 MHz de Geoestudios, transportado mediante esquís y moto de nieve. También se efectuaron mediciones de densidad y estratigrafía de nieve en 2 pozos. Los perfiles efectuados se ilustran en la Figura 5.17.2-A.

Figura 5.17.2-A. Mediciones con radar terrestre efectuadas en el volcán Mocho-Choshuenco. Se realizaron asimismo dos pozos someros de nieve (1 m profundidad) en B02 y B08.

Tabla 5.17.2-A. Medición de densidad (Dens.) de nieve en baliza B02 (cumbre Mocho, E 754.003 m, N 5.575.661 m) en intervalos de profundidades (Prof.) de 20 cm.

Prof.	Peso	muestra	(g)	Volumen	Densidad	Tipo de nieve	
(cm)	Bruto	Tara	Neto	(cm³)	(g/cm³)		
0-20	458	246	212	497	0,43	Nieve granular	
20-40	520	246	274	497	0,55	Nieve granular	
40-60	512	246	266	497	0,54	Nieve granular, lente de hielo de 2,5 cm a los 46 cm	
60-80	465	246	219	497	0,44	Nieve granular, lente de hielo de 2,8 cm a los 71 cm	
80-100	458	246	212	497	0,43	Nieve granular, lente de hielo de 1 cm a los 86 cm	

Tabla 5.17.2-B. Medición de densidad (Dens.) de nieve en baliza B18 (2000 m s.n.m., E 754.709 m, N 5.574.338 m) en intervalos de profundidades (Prof.) de 20 cm.

Prof.	Peso	muestra	a (g)	Volumen	Densidad	Tipo de nieve	
(cm)	Bruto	Tara	Neto	(cm³)	(g/cm³)		
0-20	508	246	262	497	0,53	Nieve granular 0,2 cm, lente de hielo de 1 cm a los 86 cm	
20-40	476	246	230	497	0,46	Nieve granular 0,2 - 0,3 cm	
40-60	485	246	239	497	0,48	Nieve granular 0,2 - 0,3 cm, lente de hielo de 2 cm a los 50 cm	
60-80	493	246	247	497	0,50	Nieve granular 0,2 - 0,3 cm, lente de hielo de 0,5 cm a los 72 cm	
80-100	452	246	206	497	0,41	Nieve granular 0,2 cm, lente de hielo de 1 cm a los 87 cm	

5.18. GLACIAR OSORNO

Para el glaciar del volcán Osorno se ocupó un helipuerto ubicado en Petrohué Lodge, en el margen occidental del lago Todos los Santos. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 11 de octubre se presentan en la Figura 5.18-A.

Figura 5.18-A. Líneas de vuelo sobre el volcán Osorno. Coordenadas UTM Huso 18S, WGS84.

5.19. GLACIAR TRONADOR

Para los glaciares del Monte Tronador se utilizó también el helipuerto ubicado en Petrohué Lodge, en el margen occidental del lago Todos los Santos. Se utilizó la antena de 25 MHz y las líneas de vuelo efectuadas el 11 de octubre se presentan en la Figura 5.19-A.

Figura 5.19-A. Líneas de vuelo sobre los glaciares del Monte Tronador. Coordenadas UTM Huso 19S, WGS84.

6. <u>RESULTADOS</u>

Se presentan los resultados finales del radar aéreo para los 18 glaciares, de norte a sur; Del Potro, Tronquitos, Tapado, Juncal Norte, Río Blanco, Tupungatito, Marmolejo, Tinguiririca 3, Tinguiririca 4, Tinguiririca 1, Sierra Velluda, Callaqui, Llaima, Sollipulli, Villarrica, Mocho-Choshuenco, Osorno y Tronador. Para cada glaciar se procesaron primero los datos GPS, luego se importaron dichos datos al programa de procesamiento de Reflexw en conjunto con los datos de radar, de acuerdo a la metodología presentada en la sección 4. En los glaciares Tapado, y Mocho-Choshuenco se realizaron mediciones terrestres de radar para calibrar y validar los datos de radar aéreo. En los glaciares Tupungatito y Villarrica se utilizaron datos anteriores de radar para calibrar y validar los datos de radar aéreo. En los glaciares Tapado, Tinguiririca 1 y Mocho-Choshuenco se realizaron mediciones de espesor de nieve estacional y su densidad para evaluar la cobertura de nieve y su eventual impacto en el cálculo de las velocidades de propagación de la onda electromagnética.

6.1. SELECCIÓN DE PERFILES AÉREOS Y RADAR TERRESTRE

Los perfiles aéreos y terrestres escogidos para cada glaciar se muestran en las Figuras 6.1-A a 6.1-R, con los resultados de los espesores ilustrados mediante trayectorias con código de colores. El criterio escogido obedece a la estrategia indicada en las Bases Técnicas y la Oferta Técnica correspondiente. Para los glaciares de valle y de ladera se escogió 1 perfil longitudinal, 3 perfiles transversales y 3 perfiles diagonales. Para los glaciares emplazados sobre volcanes, de forma más concéntrica alrededor de un cráter normalmente de posición central, se escogieron perfiles radiales, excepto por los glaciares de Sierra Velluda y Osorno donde debido a las condiciones topográficas y meteorológicas no se pudo volar algunos perfiles radiales, los que fueron reemplazados por líneas de vuelo de forma espiral. Debido a condiciones topográficas y meteorológicas, varias veces no se pudieron recorrer las líneas de vuelo según estaba planificado, y se tomaron decisiones *in situ* por parte del piloto y del navegante que modificaron dichas líneas, pero manteniendo el objetivo principal de lograr una cobertura representativa de cada glaciar.

Figura 6.1-A. Glaciar Del Potro. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1 y D2).

Figura 6.1-B. Glaciar Tronquitos. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1 y D2).

Figura 6.1-C. Glaciar Tapado. Perfil longitudinal (L1), transversales (T1, T2, T3, T4) y diagonales (D1, D2, D3, D4).

Figura 6.1-D. Glaciar Juncal Norte. Perfil longitudinal (L1), transversales (T1, T2, T3 y T4) y diagonales (D1, D2 y D3).

Figura 6.1-E. Glaciar Río Blanco. Perfil longitudinal (L1), transversales (T1, T2, T3 y T4) y diagonales (D1, D2, D3).

Figura 6.1-F. Glaciar Tupungatito. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1, D2 y D3). Los 2 perfiles de radar terrestre se indican como Rt1 y Rt2.

Figura 6.1-G. Glaciar Marmolejo. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1, D2 y D3).

Figura 6.1-H. Glaciar Tinguiririca 3. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1, D2, D3 y D4).

Figura 6.1-I. Glaciar Tinguiririca 4. Perfil longitudinal (L1), transversales (T1, T2, T3) y diagonales (D1, D2, D3 y D4).

Figura 6.1-J. Glaciar Tinguiririca 1. Perfiles longitudinales (L1 y L1b), transversales (T1, T2, T3) y diagonales (D1, D2, D3 y D4).

Figura 6.1-K. Glaciar Sierra Velluda. Perfiles radiales (R1, R2, R3, R4, R5, R6) y espirales (E1, E2, E3, E4, E5, E6, E7).

Figura 6.1-L. Glaciar Callaqui. Perfiles radiales (R1, R2, R3, R4a, R4b, R5, R6a y R6b).

Figura 6.1-M. Glaciar Llaima. Perfiles radiales (R1, R2, R3, R4, R5, R5e, R6).

Figura 6.1-N. Glaciar Sollipulli. Perfiles radiales (R1-R4, R3-R6 y R5-R2) y diagonales (Diag y R6lad).

Figura 6.1-O. Glaciar Villarrica. Perfiles radiales (R1 a R7) y radar terrestre. Coordenadas UTM Huso 19, WGS84.

Figura 6.1-P. Glaciar Mocho-Choshuenco. Perfiles radiales (R1 a R7) y perfiles realizados con radar terrestre. Coordenadas UTM Huso 18S, WGS84.

Figura 6.1-Q. Glaciar Osorno. Perfiles espirales (E1 a E10) y radiales (Asc y Des). Coordenadas UTM Huso 18S, WGS84.

Figura 6.1-R. Glaciar Tronador. Perfiles radiales (R1 a R8). Coordenadas UTM Huso 18S, WGS84.

6.2. PERFILES SELECCIONADOS

Para cada uno de los perfiles indicados en las Figuras 6.1-A a 6.1-R se muestran en las Figuras 6.2.1-A a 6.2.18-I; los radargramas procesados (letra "b"), los radargramas con la interpretación del retorno de fondo en línea roja (letra "c") y el perfil correspondiente de topografía superficial (línea azul) y basal (línea roja) (letra "a"). En total son 146 perfiles para los 18 glaciares, ver Tabla 6.2-A. En los radargramas la superficie del glaciar se representa plana. En los glaciares de las zonas norte y centro (excepto los glaciares Tinguiririca) se utilizó el radar y antena de 50 MHz, mientras que en los glaciares Tinguiririca y los glaciares de la zona sur se utilizó el radar y antena de 25 MHz. En los radargramas el eje de ordenadas izquierdo representa el tiempo de retorno en ns, y el eje de ordenadas derecho la profundidad de hielo en m considerando una velocidad de propagación de la onda en hielo de 168 m/us.

N٥	Nombre glaciar	Perfiles	Fecha	Nº perfiles
1	Tronquitos	Longitudinal, diagonales y transversales	27 y 29 agosto	5
2	Del Potro	Longitudinal, diagonales y transversales	29 agosto	6
3	Tapado	Longitudinal, diagonales y transversales	30 agosto	9
4	Juncal Norte	Longitudinal, diagonales y transversales	20 noviembre	8
5	Río Blanco	Longitudinal, diagonales y transversales	20 noviembre	8
6	Tupungatito	Longitudinal, diagonales y transversales	6 octubre	7
7	Marmolejo	Longitudinal, diagonales y transversales	6 octubre	8
8	Tinguiririca 3	Longitudinal, diagonales y transversales	17 octubre	8
9	Tinguiririca 4	Longitudinal, diagonales y transversales	17 octubre	7
10	Tinguiririca 1	Longitudinal, diagonales y transversales	17 octubre	9
11	Sierra Velluda	Radiales, diagonales y espirales	16 octubre	13
12	Volcán Callaqui	Radiales y diagonales	15 octubre	8
13	Volcán Llaima	Radiales	15 octubre	7
14	Nevado Sollipulli	Radiales	14 octubre	5
15	Volcán Villarrica	Radiales	14 octubre	7
16	V. Mocho-Choshuenco	Radiales	12 octubre	8
17	Volcán Osorno	Radiales y espirales	11 octubre	14
18	Monte Tronador	Radiales	11 octubre	9
			TOTAL	146

Tabla 6.2-A. Resumen de los perfiles aéreos efectuados en los 18 glaciares considerados en el estudio.

6.2.1. Glaciar Del Potro

Figura 6.2.1-A. Perfil longitudinal L1 del glaciar Del Potro. Ver Figura 6.1-A para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_163335.trc.

Figura 6.2.1-B. Perfil transversal T1 del glaciar Del Potro. Ver Figura 6.1-A para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_164315.trc.

Figura 6.2.1-C. Perfil diagonal D1 del glaciar Del Potro. Ver Figura 6.1-A para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_164315.trc.

Figura 6.2.1-D. Perfil transversal T2 del glaciar Del Potro. Ver Figura 6.1-A para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_164315.trc.

Figura 6.2.1-E. Perfil transversal T3 del glaciar Del Potro. Ver Figura 6.1-A para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_164315.trc.

6.2.2. Glaciar Tronquitos

Figura 6.2.2-A. Perfil longitudinal L1 del glaciar Tronquitos. Ver Figura 6.1-B para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 270813_184202.trc.

Figura 6.2.2-B. Perfil transversal T1 del glaciar Tronquitos. Ver Figura 6.1-B para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_160933.trc.

Figura 6.2.2-C. Perfil diagonal D1 del glaciar Tronquitos. Ver Figura 6.1-B para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_160933.trc.

Figura 6.2.2-D. Perfil transversal T2 del glaciar Tronquitos. Ver Figura 6.1-B para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_160933.trc.

Figura 6.2.2-E. Perfil diagonal D2 del glaciar Tronquitos. Ver Figura 6.1-B para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_160933.trc.

Figura 6.2.2-F. Perfil transversal T3 del glaciar Tronquitos. Ver Figura 6.1-B para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 290813_160933.trc.

Figura 6.2.3-A. Perfil longitudinal L1 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_135948.trc.

Figura 6.2.3-B. Perfil transversal T1 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_135456_A.trc.

Figura 6.2.3-C. Perfil diagonal D1 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_134034.trc.

Figura 6.2.3-D. Perfil transversal T2 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_135456_A.trc.

Figura 6.2.3-E. Perfil diagonal D2 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_140931.trc.

Figura 6.2.3-F. Perfil transversal T3 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_135456.trc.

Figura 6.2.3-G. Perfil diagonal D3 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_140931.trc.

Figura 6.2.3-H. Perfil transversal T4 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_135456.trc.

Figura 6.2.3-I. Perfil diagonal D4 del glaciar Tapado. Ver Figura 6.1-C para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 300813_135948.trc.

Figura 6.2.4-A. Perfil longitudinal L1 del glaciar Juncal Norte. Ver figura 6.1-d para la ubicación del perfil. el eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_150404.trc.

Figura 6.2.4-B. Perfil transversal T1 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_152744.trc.

Figura 6.2.4-C. Perfil diagonal D1 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_153231.trc.

Figura 6.2.4-D. Perfil transversal T2 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_153715.trc.

Figura 6.2.4-E. Perfil diagonal D2 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_154202.trc.

Figura 6.2.4-F. Perfil transversal T3 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_154652.trc.

Figura 6.2.4-G. Perfil diagonal D3 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_154652.trc.

Figura 6.2.4-H. Perfil transversal T4 del glaciar Juncal Norte. Ver Figura 6.1-D para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_154652.trc.

6.2.5. Glaciar Río Blanco

Figura 6.2.5-A. Perfil longitudinal L1 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_140700.trc.

Figura 6.2.5-B. Perfil transversal T1 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_142553.trc.

Figura 6.2.5-C. Perfil diagonal D1 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_142553.trc.

Figura 6.2.5-D. Perfil transversal T2 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_142553.trc.

Figura 6.2.5-E. Perfil diagonal D2 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_144504.trc.

Figura 6.2.5-F. Perfil transversal T3 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_144504.trc.

Figura 6.2.5-G. Perfil diagonal D3 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_144504.trc.

Figura 6.2.5-H. Perfil transversal T4 del glaciar Río Blanco. Ver Figura 6.1-E para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 201113_144504.trc.

6.2.6. Glaciar Tupungatito

Figura 6.2.6-A. Perfil longitudinal L1 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_131012.trc.

Figura 6.2.6-B. Perfil transversal T1 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_132910.trc.

Figura 6.2.6-C. Perfil diagonal D1 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_132910.trc.

Figura 6.2.6-D. Perfil transversal T2 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_132910.trc.

Figura 6.2.6-E. Perfil diagonal D2 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_133845.trc.

Figura 6.2.6-F. Perfil transversal T3 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_133845.trc.

Figura 6.2.6-G. Perfil diagonal D3 del glaciar Tupungatito. Ver Figura 6.1-F para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_133845.trc.

Figura 6.2.7-A. Perfil longitudinal L1 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_150619.trc.

Figura 6.2.7-B. Perfil longitudinal L1e del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_151555.trc.

Figura 6.2.7-C. Perfil transversal T1 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_153007.trc.

Figura 6.2.7-D. Perfil diagonal D1 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_153449.trc.

Figura 6.2.7-E. Perfil transversal T2 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_153936.trc.

Figura 6.2.7-F. Perfil diagonal D2 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_154910.trc.

Figura 6.2.7-G. Perfil transversal T3 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_155841.trc.

Figura 6.2.7-H. Perfil diagonal D3 del glaciar Marmolejo. Ver Figura 6.1-G para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 061013_155841.trc.

Figura 6.2.8-A. Perfil longitudinal L1 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_150201.trc.

Figura 6.2.8-B. Perfil diagonal D1 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_135211.trc.

Figura 6.2.8-C. Perfil transversal T1 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_145414.trc.

Figura 6.2.8-D. Perfil diagonal D2 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_145414.trc.

Figura 6.2.8-E. Perfil transversal T2 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_145414.trc.

Figura 6.2.8-F. Perfil diagonal D3 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_145414.trc.

Figura 6.2.8-G. Perfil transversal T3 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_145414.trc.

Figura 6.2.8-H. Perfil diagonal D4 del glaciar Tinguiririca 3. Ver Figura 6.1-H para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_145414.trc.

Figura 6.2.9-A. Perfil longitudinal L1 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_163128.trc.

Figura 6.2.9-B. Perfil transversal T1 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_163128.trc.

Figura 6.2.9-C. Perfil diagonal D1 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_163128.trc.

Figura 6.2.9-D. Perfil transversal T2 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_152518.trc.

Figura 6.2.9-E. Perfil diagonal D3 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_152518.trc.

Figura 6.2.9-F. Perfil transversal T3 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_152518.trc.

Figura 6.2.9-G. Perfil diagonal D4 del glaciar Tinguiririca 4. Ver Figura 6.1-I para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_152518.trc.

Figura 6.2.10-A. Perfil longitudinal L1 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_133642.trc.

6.2.10. Glaciar Tinguiririca 1

Figura 6.2.10-B. Perfil longitudinal L1b del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132855A.trc.

Figura 6.2.10-C. Perfil transversal T1 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_131328.trc.

Figura 6.2.10-D. Perfil diagonal D1 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132109A.trc.

Figura 6.2.10-E. Perfil diagonal D2 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132109.trc.

Figura 6.2.10-F. Perfil transversal T2 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132109.trc.

Figura 6.2.10-G. Perfil diagonal D3 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132109.trc.

Figura 6.2.10-H. Perfil transversal T3 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132109.trc.

Figura 6.2.10-I. Perfil diagonal D4 del glaciar Tinguiririca 1. Ver Figura 6.1-J para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 171013_132109.trc.

Figura 6.2.11-A. Perfil radial R1 del glaciar Sierra Velluda. Ver Figura .1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_123629.trc.

Figura 6.2.11-B. Perfil radial R2 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_124413.trc.

Figura 6.2.11-C. Perfil radial R3 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_125200.trc.

Figura 6.2.11-D. Perfil radial R4 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_125946.trc.

Figura 6.2.11-E. Perfil radial R5 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_125946A.trc.

Figura 6.2.11-F. Perfil radial R6 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_125946A.trc.

Figura 6.2.11-G. Perfil espiral E1 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_132301.trc.

Figura 6.2.11-H. Perfil espiral E2 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_132301.trc.

Figura 6.2.11-I. Perfil espiral E3 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_133047.trc.

Figura 6.2.11-J. Perfil espiral E4 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_133047.trc.

Figura 6.2.11-K. Perfil espiral E5 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_133834.trc.

Figura 6.2.11-L. Perfil espiral E6 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_133834.trc.

Figura 6.2.11-M. Perfil espiral E7 del glaciar Sierra Velluda. Ver Figura 6.1-K para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 161013_134621.trc.

Figura 6.2.12-A. Perfil radial R1 del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_170913.trc.

Figura 6.2.12-B. Perfil radial R6a del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_170913.trc.

Figura 6.2.12-C. Perfil radial R6b del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_171653.trc.

Figura 6.2.12-D. Perfil radial R5 del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_172441.trc.

Figura 6.2.12-E. Perfil radial R4a del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_173229.trc.

Figura 6.2.12-F. Perfil radial R2 del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_174802.trc.

Figura 6.2.12-G. Perfil radial R4b del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_175550.trc.

Figura 6.2.12-H. Perfil radial R3 del glaciar Callaqui. Ver Figura 6.1-L para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_180336.trc.

Figura 6.2.13-A. Perfil radial R4 del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_121546.trc.

Figura 6.2.13-B. Perfil radial R5e del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_123115.trc.

Figura 6.2.13-C. Perfil radial R5 del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_123115.trc.

Figura 6.2.13-D. Perfil radial R6 del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_124649.trc.

Figura 6.2.13-E. Perfil radial R1 del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_124649A.trc.

Figura 6.2.13-F. Perfil radial R2 del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_125436.trc.

Figura 6.2.13-G. Perfil radial R3 del glaciar Volcán Llaima. Ver Figura 6.1-M para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 151013_130223.trc.

Figura 6.2.14-A. Perfil radial R1-R4 del glaciar Nevado Sollipulli. Ver Figura 6.1-N para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_210754.trc.

6.2.14. Glaciar Nevado Sollipulli

Figura 6.2.14-B. Perfil radial R5-R2 del glaciar Nevado Sollipulli. Ver Figura 6.1-N para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_211539.trc.

Figura 6.2.14-C. Perfil radial R3-R6 del glaciar Nevado Sollipulli. Ver Figura 6.1-N para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_211539.trc.

Figura 6.2.14-D. Perfil radial R6lad del glaciar Nevado Sollipulli. Ver Figura 6.1-N para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_212326.trc.

Figura 6.2.14-E. Perfil diagonal D1 del glaciar Nevado Sollipulli. Ver Figura 6.1-N para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_212326.trc.

Figura 6.2.15-A. Perfil radial R1 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_170406.trc.

Figura 6.2.15-B. Perfil radial R7 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_171830.trc.

Figura 6.2.15-C. Perfil radial R6 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_172614.trc.

Figura 6.2.15-D. Perfil radial R2 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_172614.trc.

Figura 6.2.15-E. Perfil radial R3 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_174134.trc.

Figura 6.2.15-F. Perfil radial R4 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_175702.trc.

Figura 6.2.15-G. Perfil radial R5 del glaciar Volcán Villarrica. Ver Figura 6.1-O para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 141013_180444.trc.

6.2.16. Glaciar Volcán Mocho-Choshuenco

Figura 6.2.16-A. Perfil radial R1a del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_191312.trc.

Figura 6.2.16-B. Perfil radial R2 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_191312.trc.

Figura 6.2.16-C. Perfil radial R3 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_192053.trc.

Figura 6.2.16-D. Perfil radial R4 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_192834.trc.

Figura 6.2.16-E. Perfil radial R7 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_193616.trc.

Figura 6.2.16-F. Perfil radial R5 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_194358.trc.

Figura 6.2.16-G. Perfil radial R6 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_195139.trc.

Figura 6.2.16-H. Perfil radial R1 del glaciar Volcán Mocho-Choshuenco. Ver Figura 6.1-P para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 121013_195139.trc.

Figura 6.2.17-A. Perfil cumbre C del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_160040.trc.

Figura 6.2.17-B. Perfil espiral E1 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_160813.trc.

Figura 6.2.17-C. Perfil espiral E2 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_160813.trc.

Figura 6.2.17-D. Perfil espiral E3 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_160813.trc.

Figura 6.2.17-E. Perfil espiral E4 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_160813.trc.

Figura 6.2.17-F. Perfil espiral E5 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_162329.trc.

Figura 6.2.17-G. Perfil espiral E6 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_162329.trc.

Figura 6.2.17-H. Perfil espiral E7 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_162329.trc.

Figura 6.2.17-I. Perfil espiral E8 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_162329A.trc.

Figura 6.2.17-J. Perfil espiral E9 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_163852.trc.

Figura 6.2.17-K. Perfil espiral E10 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_163852.trc.

Figura 6.2.17-L. Perfil ascendente Asc del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_164633A.trc.

Figura 6.2.17-M. Perfil descendente Des del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_164633A.trc.

Figura 6.2.17-N. Perfil espiral E11 del glaciar Volcán Osorno. Ver Figura 6.1-Q para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_165413.trc.

6.2.18. Glaciar Monte Tronador

Figura 6.2.18-A. Perfil radial R1 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_183548.trc.

Figura 6.2.18-B. Perfil radial R2 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_185113.trc.

Figura 6.2.18-C. Perfil radial R3 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_185855.trc.

Figura 6.2.18-D. Perfil radial R4 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_190636.trc.

Figura 6.2.18-E. Perfil radial R5a del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_190636.trc.

Figura 6.2.18-F. Perfil radial R5b del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_191418.trc.

Figura 6.2.18-G. Perfil radial R6 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_192202.trc.

Figura 6.2.18-H. Perfil radial R7 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_192944.trc.

Figura 6.2.18-I. Perfil radial R8 del glaciar Monte Tronador. Ver Figura 6.1-R para la ubicación del perfil. El eje de las abscisas representa la distancia recorrida considerando el origen al principio del perfil 111013_193723.trc.

6.3. ANÁLISIS DE CRUCES

Con el fin de evaluar la consistencia interna de los datos interpretados de espesores de radar, se procedió a analizar los valores obtenidos en cruces donde 2 líneas de vuelo confluyeran. Este procedimiento se realizó gráficamente con el programa ArcGIS y Global Mapper. En una primera instancia, si los datos del cruce eran consistentes dentro de un rango de error del orden del 10%, se procedía a aceptar ambos valores. Si por el contrario había una diferencia mucho mayor al 10% entre ambos valores, se procedía a revisar ambas interpretaciones en los radargramas originales. En varias ocasiones este ejercicio generaba una corrección de la interpretación de al menos uno de los radargramas. En otros casos la revisión de la interpretación no generaba cambios y se aceptaban los resultados obtenidos originalmente, aunque en algunas pocas ocasiones los errores superaban el 10%. A continuación se presenta una tabla final de cruces para 16 glaciares. En el caso de los glaciares Llaima y Tronador no existen cruces.

Tabla 6.3-A. Análisis de cruces para el radar aéreo, glaciar Del Potro. El cruce AA denota un cruce entre radar aéreo ("radar 1") y radar aéreo ("radar 2"). La diferencia de profundidad promedia es de 0,0 m, equivalente a 0,0%.

Cruce	Coorder rada	nadas UTM r 1 (m)	Coordenadas UTM radar 2 (m)		Prof.	Prof. radar	Dif. de	Dist. entre	Dif.
Ciuce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	439.556	6.860.033	439.555	6.860.033	92,3	92,3	0,0	0,5	0,0
AA2	440.110	6.860.049	440.110	6.860.049	74,3	74,2	0,1	0,3	0,1
AA3	441.419	6.860.804	441.419	6.860.804	83,2	83,2	0,0	0,6	0,0

Tabla 6.3-B. Análisis de cruces para el radar aéreo, glaciar Tronquitos. El cruce AA denota un cruce entre radar aéreo ("radar 1") y radar aéreo ("radar 2"). La diferencia de profundidad promedia es de 10,4 m, equivalente a 21,9%.

Cruce	Coorden rada	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof. radar	Dif. de	Dist. entre	Dif.
Cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	428.590	6.843.950	428.590	6.843.950	53,0	40,4	12,7	0,3	27,1
AA2	428.781	6.843.192	428.781	6.843.192	78,5	73,9	4,6	0,5	6,0
AA3	428.550	6.842.723	428.550	6.842.723	70,7	73,2	2,5	0,4	3,5
AA4	428.233	6.842.056	428.234	6.842.055	54,0	32,1	22,0	0,2	51,0

Tabla 6.3-C. Análisis de cruces para el radar aéreo y el radar terrestre, glaciar Tapado. El cruce AA denota un cruce entre radar aéreo y radar aéreo, mientras que TA indica un cruce entre radar aéreo y terrestre. La diferencia de profundidad promedia es de 0,9 m, equivalente a 2,7%.

Cruco	Coorden radai	adas UTM r 1 (m)	Coorden radaı	Coordenadas UTM radar 2 (m)		Prof. radar	Dif. de	Dist. entre	Dif.
Cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
TA1	410.592	6.665.023	410.592	6.665.022	45,6	44,4	1,2	0,3	2,6
TA2	410.705	6.665.039	410.705	6.665.039	47,5	46,9	0,5	0,4	1,1
TA3	410.767	6.665.045	410.767	6.665.046	44,5	44,9	0,4	0,5	0,9
TA4	410.882	6.664.907	410.882	6.664.907	46,2	45,4	0,8	0,2	1,8
TA5	410.919	6.664.831	410.918	6.664.831	45,6	43,2	2,4	0,2	5,4
TA6	410.770	6.664.586	410.770	6.664.586	40,7	39,4	1,4	0,1	3,4
TA7	410.783	6.664.212	410.783	6.664.212	34,7	32,0	2,7	0,3	8,0
TA8	410.784	6.664.211	410.785	6.664.212	34,7	34,6	0,0	0,6	0,1
AA1	410.848	6.665.360	410.850	6.665.359	1,1	1,1	0,1	2,2	6,4
AA2	410.787	6.664.216	410.787	6.664.216	35,6	35,1	0,5	0,3	1,4
AA3	410.761	6.664.188	410.760	6.664.188	27,6	27,7	0,2	0,2	0,6
AA4	410.721	6.664.152	410.721	6.664.152	24,0	24,0	0,0	0,1	0,0
AA5	410.921	6.663.829	410.925	6.663.823	27,8	30,0	2,2	7,1	7,6
AA6	410.803	6.663.722	410.802	6.663.710	62,4	61,7	0,6	11,4	1,0
AA7	411.126	6.663.715	411.130	6.663.689	50,9	50,9	0,0	26,5	0,0

Tabla 6.3-D. Análisis de cruces para el radar aéreo, glaciar Juncal Norte. El cruce AA denota un cruce entre radar aéreo ("radar 1") y radar aéreo ("radar 2"). La diferencia de profundidad promedia es de 0,7 m, equivalente a 0,8%.

Cruco	Coorden radaı	adas UTM r 1 (m)	Coordenadas UTM radar 2 (m)		Prof.	Prof. radar	Dif. de	Dist. entre	Dif.
cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	397.814	6.343.611	397.814	6.343.611	48,1	47,8	0,4	0,04	0,7
AA2	397.958	6.343.897	397.958	6.343.898	139,9	140,0	0,1	0,3	0,1
AA3	397.841	6.344.162	397.841	6.344.163	55,1	54,7	0,5	0,7	0,8
AA4	397.390	6.344.766	397.389	6.344.765	91,0	91,0	0,0	0,3	0,0
AA5	397.691	6.345.712	397.690	6.345.712	99,1	99,7	0,5	0,4	0,5
AA6	396.645	6.348.905	396.645	6.348.905	192,4	190,3	2,1	0,3	1,1
AA7	396.774	6.349.046	396.774	6.349.046	56,4	55,4	1,0	0,2	1,7
AA8	396.596	6.348.956	396.596	6.348.957	188,1	189,3	1,2	0,2	0,6
AA9	395.953	6.349.538	395.953	6.349.538	71,3	72,6	1,3	0,2	1,8
AA10	396.109	6.349.563	396.110	6.349.562	123,2	122,4	0,8	0,4	0,6
AA11	396.079	6.349.650	396.079	6.349.651	120,5	120,9	0,4	0,6	0,3

Tabla 6.3-E. Análisis de cruces para el radar aéreo, glaciar Río Blanco. El cruce AA denota un cruce entre radar aéreo ("radar 1") y radar aéreo ("radar 2"). La diferencia de profundidad promedia es de 0,3 m, equivalente a 0,9%.

Cruce	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof.	Prof. radar	Dif. de	Dist. entre	Dif.
Giuce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	391.321	6.341.466	391.321	6.341.466	47,7	47,6	0,1	0,3	0,2
AA2	391.839	6.340.865	391.840	6.340.865	87,9	88,9	1,0	0,1	1,1
AA3	392.251	6.340.728	392.252	6.340.728	181,0	181,3	0,3	0,4	0,2
AA4	392.941	6.341.101	392.941	6.341.101	142,8	142,9	0,1	0,1	0,0
AA5	392.435	6.342.962	392.435	6.342.962	24,8	24,4	0,4	0,7	1,7
AA6	392.776	6.343.034	392.777	6.343.033	66,1	65,9	0,3	0,6	0,4
AA7	392.707	6.344.662	392.708	6.344.662	53,8	53,8	0,0	0,5	0,0
AA8	392.599	6.345.215	392.599	6.345.215	12,2	12,7	0,5	0,5	4,1
AA9	393.307	6.344.839	393.308	6.344.839	40,4	40,3	0,2	0,5	0,5

Tabla 6.3-F. Análisis de cruces para el radar aéreo y el radar terrestre, glaciar Tupungatito. El cruce AA denota un cruce entre radar aéreo y radar aéreo, TA indica un cruce entre radar aéreo y terrestre y TT para los cruces del radar terrestre. La diferencia de profundidad promedia es de 3,9 m, equivalente a 3,2%.

Cruce	Coorden radar	adas UTM [·] 1 (m)	Coordena radar	adas UTM [.] 2 (m)	Prof.	Prof.	Dif. de	Dist. entre	Dif.
Cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
TA1	425.252	6.303.177	425.252	6.303.177	182,1	179,5	2,5	0,2	1,4
TA2	424.909	6.303.601	424.909	6.303.601	107,7	107,8	0,1	0,1	0,1
TA3	424.909	6.303.601	424.909	6.303.601	107,7	107,8	0,1	0,1	0,1
TA4	425.252	6.303.177	425.252	6.303.177	182,1	179,5	2,5	0,2	1,4
AA1	424.515	6.303.286	424.515	6.303.287	210,4	210,6	0,2	0,4	0,1
AA2	423.339	6.303.645	423.339	6.303.645	229,7	230,2	0,5	0,6	0,2
AA3	423.572	6.304.418	423.572	6.304.418	169,1	166,1	3,0	0,4	1,8
AA4	423.260	6.304.061	423.259	6.304.061	149,6	152,4	2,8	0,3	1,9
AA5	422.804	6.303.786	422.804	6.303.786	127,4	127,4	0,0	0,3	0,0
AA6	422.164	6.303.987	422.164	6.303.988	55,8	70,9	15,1	0,4	23,9
AA7	421.123	6.304.425	421.123	6.304.425	76,7	77,0	0,3	0,1	0,4
AA8	420.434	6.304.901	420.434	6.304.901	79,4	79,5	0,1	0,3	0,1
AA9	419.998	6.305.321	419.998	6.305.321	82,0	81,8	0,2	0,5	0,2
TT1	425.168	6.303.281	425.169	6.303.281	195,7	172,1	23,6	1,0	12,8
TT2	425.243	6.303.189	425.243	6.303.189	173,9	185,9	12,0	0,4	6,7
TT3	425.593	6.302.765	425.593	6.302.766	114,3	114,3	0,0	0,7	0,0

Tabla 6.3-G. Análisis de cruces para el radar aéreo, glaciar Marmolejo. El cruce AA denota un cruce entre radar aéreo ("radar 1") y radar aéreo ("radar 2"). La diferencia de profundidad promedia es de 1,1 m, equivalente a 1,7%.

Cruce	Coorden radaı	adas UTM 1 (m)	Coorden radar	adas UTM 2 (m)	Prof. radar	Prof.	Dif. de	Dist. entre	Dif.
Cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	416.856	6.265.865	416.856	6.265.864	25,4	25,6	0,2	0,3	0,7
AA2	416.783	6.265.907	416.783	6.265.907	27,0	26,6	0,4	0,4	1,5
AA3	416.541	6.265.821	416.541	6.265.821	22,2	22,1	0,2	0,5	0,8
AA4	416.549	6.265.721	416.549	6.265.721	30,2	29,8	0,5	0,2	1,5
AA5	416.485	6.265.884	416.485	6.265.884	37,5	37,5	0,1	0,2	0,2
AA6	416.407	6.265.897	416.407	6.265.897	41,5	40,8	0,7	0,1	1,8
AA7	416.449	6.265.967	416.449	6.265.967	37,8	37,5	0,3	0,3	0,7
AA8	416.475	6.266.000	416.475	6.266.000	36,2	36,1	0,1	0,6	0,4
AA9	416.659	6.266.092	416.659	6.266.093	33,6	33,1	0,6	2,2	1,7
AA10	416.495	6.266.274	416.495	6.266.274	22,5	22,0	0,5	0,3	2,2
AA11	416.400	6.266.478	416.400	6.266.477	19,0	19,2	0,2	0,2	1,2
AA12	416.373	6.266.863	416.374	6.266.862	29,4	30,0	0,5	0,1	1,8
AA13	416.284	6.267.249	416.284	6.267.249	56,5	56,1	0,4	7,1	0,7
AA14	415.751	6.266.245	415.751	6.266.245	26,2	26,1	0,1	11,4	0,2
AA15	415.609	6.266.555	415.609	6.266.554	58,2	57,8	0,4	12,4	0,7
AA16	415.460	6.266.377	415.459	6.266.377	64,2	68,4	4,3	13,4	6,4
AA17	415.365	6.266.427	415.365	6.266.427	100,4	99,3	1,1	14,4	1,1
AA18	414.892	6.266.659	414.892	6.266.659	78,1	78,6	0,5	15,4	0,6
AA19	413.915	6.266.233	413.915	6.266.233	116,2	106,0	10,2	11,4	9,2
AA20	413.784	6.266.164	413.784	6.266.164	90,3	91,6	1,2	26,5	1,3

Tabla 6.3-H. Análisis de cruces para el radar aéreo, glaciar Tinguiririca 3. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 2,3 m, equivalente a 5,1%.

Cruce	Coorden radaı	adas UTM 1 (m)	Coordenadas UTM radar 2 (m)		Prof.	Prof.	Dif. de	Dist. entre	Dif.
cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	punto s (m)	(%)
AA1	380.366	6.151.220	380.367	6.151.219	13,1	12,6	0,5	2,0	4,0
AA2	379.146	6.150.702	379.146	6.150.701	28,7	28,7	0,0	0,4	0,0
AA3	379.082	6.150.603	379.082	6.150.603	43,9	44,9	1,0	0,4	2,3
AA4	379.037	6.150.483	379.038	6.150.484	11,0	11,7	0,6	0,6	5,7
AA5	380.359	6.150.612	380.359	6.150.611	36,2	36,9	0,6	0,4	1,7
AA6	380.167	6.150.502	380.167	6.150.502	47,0	47,6	0,6	0,4	1,2
AA7	379.690	6.149.917	379.690	6.149.916	18,5	17,7	0,8	0,2	4,4
AA8	380.099	6.149.972	380.100	6.149.972	84,0	84,5	0,5	0,3	0,6
AA9	380.395	6.149.354	380.396	6.149.354	48,0	68,7	20,6	0,4	35,4
AA10	380.516	6.149.043	380.516	6.149.043	56,1	56,1	0,0	0,3	0,1
AA11	380.719	6.148.411	380.718	6.148.411	69,6	70,0	0,5	0,3	0,7

Tabla 6.3-I. Análisis de cruces para el radar aéreo, glaciar Tinguiririca 4. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 1,0 m, equivalente a 3,0%.

Cruce	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof.	Prof. radar	Dif. de	Dist. entre	Dif.
Ciuce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	381.401	6.150.931	381.402	6.150.931	7,2	7,0	0,2	0,56	3,1
AA2	381.469	6.150.871	381.467	6.150.869	29,3	29,4	0,1	2,3	0,3
AA3	381.546	6.150.416	381.545	6.150.416	15,1	15,9	0,8	0,4	4,9
AA4	382.463	6.150.159	382.465	6.150.151	41,6	38,2	3,4	8,5	8,5
AA5	381.738	6.150.209	381.738	6.150.208	49,6	49,8	0,1	0,5	0,3
AA6	381.858	6.149.763	381.859	6.149.763	48,1	48,9	0,8	0,3	1,6
AA7	382.039	6.149.409	382.039	6.149.409	27,3	27,7	0,4	0,3	1,6
AA8	382.194	6.149.057	382.194	6.149.057	61,7	58,2	3,5	0,5	5,8
AA9	382.408	6.148.675	382.409	6.148.675	19,5	19,4	0,1	0,4	0,4

Tabla 6.3-J. Análisis de cruces para el radar aéreo, glaciar Tinguiririca 1. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 0,8 m, equivalente a 1,5%.

Cruce	Coorden radaı	adas UTM 1 (m)	Coorden radar	adas UTM 2 (m)	Prof.	Prof. radar	Dif. de	Dist. entre	Dif.
Ciuce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	378.107	6.147.258	378.107	6.147.258	6,2	5,7	0,4	0,2	7,4
AA2	378.134	6.146.786	378.135	6.146.786	185,2	185,5	0,3	0,5	0,2
AA3	378.253	6.146.442	378.253	6.146.442	127,2	127,4	0,2	0,3	0,2
AA4	378.275	6.146.347	378.275	6.146.347	126,8	124,9	2,0	0,4	1,5
AA5	378.351	6.146.009	378.351	6.146.009	108,1	106,5	1,6	0,3	1,5
AA6	378.333	6.146.001	378.333	6.146.000	105,2	105,7	0,6	0,5	0,5
AA7	378.361	6.145.921	378.361	6.145.921	95,9	95,1	0,9	0,5	0,9
AA8	378.364	6.145.887	378.364	6.145.886	85,7	86,6	1,0	0,8	1,1
AA9	378.373	6.145.888	378.373	6.145.888	91,7	91,8	0,1	0,5	0,1
AA10	378.435	6.145.320	378.435	6.145.320	42,9	41,9	1,0	0,3	2,3
AA11	378.400	6.144.873	378.400	6.144.873	34,9	35,2	0,3	0,6	0,7
AA12	378.415	6.144.702	378.414	6.144.702	54,9	54,8	0,1	0,2	0,2
AA13	378.426	6.144.465	378.426	6.144.464	56,6	55,3	1,3	0,3	2,3
AA14	378.384	6.144.375	378.383	6.144.375	54,0	53,1	0,9	0,2	1,6
AA15	379.237	6.146.752	379.237	6.146.752	48,7	49,8	1,1	0,3	2,3

Tabla 6.3-K. Análisis de cruces para el radar aéreo, glaciar Sierra Velluda. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 0,8 m, equivalente a 1,5%.

Cruce	Coorden radai	adas UTM 1 (m)	Coorden radar	adas UTM 2 (m)	Prof. radar	Prof. radar	Dif. de	Dist. entre	Dif.
oruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	285.862	5.852.358	285.862	5.852.358	28,6	26,8	1,7	0,2	6,2
AA2	286.004	5.852.054	286.004	5.852.054	84,9	84,3	0,5	0,2	0,6
AA3	286.018	5.851.166	286.018	5.851.166	14,9	14,8	0,1	0,2	0,5
AA4	285.903	5.850.951	285.903	5.850.951	37,0	37,0	0,0	0,3	0,1
AA5	285.873	5.850.887	285.874	5.850.887	27,2	26,7	0,5	0,5	1,7
AA6	285.723	5.850.722	285.723	5.850.721	74,1	71,0	3,1	0,7	4,3
AA7	286.902	5.852.133	286.902	5.852.133	21,2	21,3	0,2	0,3	0,7
AA8	287.647	5.851.153	287.647	5.851.153	38,2	38,7	0,5	0,7	1,2
AA9	287.966	5.849.898	287.966	5.849.898	63,9	63,7	0,2	0,1	0,3
AA10	287.434	5.849.745	287.435	5.849.743	28,0	27,7	0,3	2,4	1,0
AA11	286.339	5.848.881	286.339	5.848.880	17,5	17,9	0,4	0,4	2,0
AA12	286.032	5.849.218	286.033	5.849.217	19,9	20,2	0,3	0,8	1,6
AA13	284.814	5.849.379	284.814	5.849.379	136,3	136,2	0,1	0,6	0,1
AA14	285.539	5.850.191	285.539	5.850.191	86,4	87,6	1,2	0,3	1,4
AA15	285.449	5.850.262	285.449	5.850.262	80,1	81,2	1,0	0,3	1,3
AA16	285.607	5.850.447	285.607	5.850.447	81,9	79,8	2,0	0,2	2,5
AA17	283.846	5.849.987	283.846	5.849.987	86,0	85,3	0,7	0,2	0,8
AA18	285.324	5.850.476	285.324	5.850.476	40,8	40,6	0,2	0,5	0,5
AA19	285.229	5.850.605	285.229	5.850.605	47,7	48,3	0,7	0,3	1,4
AA20	285.353	5.850.632	285.352	5.850.632	60,9	60,4	0,5	0,3	0,8
AA21	285.357	5.850.661	285.357	5.850.661	58,0	59,8	1,8	0,4	3,1
AA22	285.415	5.850.646	285.415	5.850.646	70,0	68,8	1,2	0,3	1,7

Tabla 6.3-L. Análisis de cruces para el radar aéreo, glaciar Callaqui. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 0,5 m, equivalente a 1,1%.

Cruce	Coorden radaı	adas UTM r 1 (m)	Coorden radaı	adas UTM 2 (m)	Prof.	Prof. radar	Dif. de	Dist. entre	Dif.
er dee	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	ptos. (m)	%
AA1	285.362	5.800.074	285.361	5.800.074	63,8	63,2	0,6	0,6	1,0
AA2	285.324	5.800.062	285.324	5.800.062	63,8	63,0	0,8	0,2	1,3
AA3	285.323	5.799.880	285.323	5.799.880	51,8	49,8	2,0	0,6	3,9
AA4	285.263	5.799.885	285.264	5.799.885	45,9	45,8	0,1	0,4	0,2
AA5	284.906	5.799.471	284.906	5.799.471	101,0	101,5	0,5	0,2	0,5
AA6	284.878	5.799.523	284.878	5.799.523	109,6	109,6	0,0	0,0	0,0
AA7	284.863	5.799.493	284.863	5.799.493	111,2	110,5	0,7	0,5	0,6
AA8	284.859	5.799.504	284.860	5.799.503	111,6	111,5	0,2	0,5	0,2
AA9	284.931	5.799.324	284.931	5.799.320	29,3	29,3	0,0	3,8	0,1
AA10	284.618	5.799.309	284.618	5.799.309	64,2	63,3	0,9	0,2	1,4
AA11	284.428	5.798.996	284.428	5.798.996	9,1	9,1	0,0	0,5	0,4
AA12	284.306	5.798.749	284.306	5.798.748	30,7	29,7	0,9	0,4	3,1
AA13	284.057	5.798.530	284.059	5.798.528	48,6	47,5	1,1	2,2	2,2
AA14	285.042	5.798.235	285.052	5.798.236	19,2	19,1	0,1	9,9	0,7
AA15	285.101	5.798.017	285.101	5.798.017	23,4	23,5	0,1	0,1	0,3

Tabla 6.3-M. Análisis de cruces para el radar aéreo, glaciar Sollipulli. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 11,5 m, equivalente a 2,6%.

Cruce	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof.	Prof.	Dif. de	Dist. entre	Dif.
cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	280.441	5.683.433	280.442	5.683.433	353,3	337,6	15,7	0,7	4,6
AA2	281.924	5.684.454	281.925	5.684.455	131,3	126,7	4,6	0,8	3,6
AA3	281.363	5.683.205	281.362	5.683.205	729,8	749,5	19,7	1,0	2,7
AA4	281.306	5.683.187	281.306	5.683.187	742,5	740,2	2,2	0,3	0,3
AA5	281.334	5.683.172	281.334	5.683.171	728,2	743,4	15,2	1,0	2,1

Tabla 6.3-N. Análisis de cruces para los radares aéreo y terrestre, glaciar Villarrica. El cruce AA denota un cruce de radar aéreo-aéreo, TA indica un cruce entre radar aéreo y terrestre y TT para los cruces del radar terrestre-terrestre. La diferencia de profundidad promedia es de 1,0 m, equivalente a 2,5%.

Cruce	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof. radar	Prof.	Dif. de	Dist. entre	Dif.
cruce	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	246.942	5.632.300	246.942	5.632.300	16,7	16,5	0,2	0,5	1,2
AA2	247.029	5.632.287	247.030	5.632.286	21,5	22,1	0,6	0,4	2,6
AA3	247.049	5.632.287	247.049	5.632.287	21,1	20,7	0,4	0,4	2,0
AA4	247.398	5.632.406	247.398	5.632.406	9,1	8,9	0,2	0,3	2,1
AA5	247.309	5.631.956	247.309	5.631.956	23,1	23,2	0,1	0,4	0,6
AA6	247.003	5.632.782	247.003	5.632.781	8,0	7,9	0,0	0,6	0,6
AA7	247.158	5.633.343	247.158	5.633.342	29,4	29,3	0,0	0,5	0,2
AA8	247.971	5.633.649	247.971	5.633.649	16,7	16,9	0,2	0,4	1,2
AA9	248.589	5.632.822	248.589	5.632.821	57,9	55,3	2,6	0,5	4,6
AA10	249.036	5.632.807	249.036	5.632.807	64,9	66,6	1,7	0,4	2,6
AA11	249.560	5.631.656	249.560	5.631.656	27,6	27,3	0,3	0,2	1,1
AA12	250.491	5.630.455	250.492	5.630.455	77,6	80,9	3,3	0,3	4,2
AA13	251.041	5.629.778	251.041	5.629.778	25,3	25,7	0,4	0,4	1,4
AA14	247.885	5.628.984	247.885	5.628.984	26,0	24,5	1,4	0,3	5,6
AA15	247.904	5.628.775	247.904	5.628.775	9,1	9,3	0,2	0,4	2,3
TA1	246.397	5.632.086	246.396	5.632.086	34,8	34,8	0,0	0,5	0,0
TA2	246.299	5.632.015	246.299	5.632.014	23,4	23,6	0,2	1,1	0,7
TA3	246.511	5.632.936	246.512	5.632.936	16,0	15,1	0,9	0,6	5,7
TA4	246.433	5.633.027	246.433	5.633.027	25,7	25,3	0,4	0,6	1,4
TA5	247.170	5.633.411	247.171	5.633.410	31,9	32,6	0,8	1,1	2,4
TA6	247.236	5.633.395	247.236	5.633.395	31,9	30,9	1,0	0,6	3,3
TA7	247.232	5.633.547	247.233	5.633.547	30,2	30,7	0,5	1,0	1,6
TA8	247.427	5.633.515	247.426	5.633.515	26,7	26,0	0,6	0,6	2,4
TA9	247.503	5.633.270	247.503	5.633.271	28,7	30,2	1,5	0,8	5,0
TA10	247.641	5.633.391	247.642	5.633.390	34,0	34,5	0,5	1,2	1,4
TA11	248.593	5.633.114	248.594	5.633.114	35,5	33,7	1,8	0,4	5,2
TA12	248.614	5.632.891	248.614	5.632.890	62,0	62,2	0,2	0,8	0,3
TA13	248.791	5.632.858	248.792	5.632.857	61,5	60,6	0,9	1,1	1,6
TA14	248.827	5.632.764	248.826	5.632.764	71,6	67,3	4,3	0,4	6,2
TA15	248.990	5.632.840	248.990	5.632.840	64,9	62,3	2,6	0,3	4,1
TA16	249.008	5.632.798	249.008	5.632.799	70,4	66,8	3,5	1,0	5,1
TT1	247.989	5.633.118	247.988	5.633.117	52,5	50,6	1,9	0,6	3,6
TT2	246.542	5.631.980	246.543	5.631.976	38,8	39,4	0,6	4,0	1,5

Tabla 6.3-O. Análisis de cruces para el radar aéreo y el radar terrestre, glaciar Mocho-Choshuenco. El cruce AA denota un cruce entre radar aéreo y radar aéreo, mientras que TA indica el cruce entre radar terrestre y aéreo. La diferencia de profundidad promedia es de 6,6 m, equivalente a 10,6%.

	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof.	Prof.	Dif. de	Dist. entre	Dif.
Cruce	Este	Norte	Este	Norte	radar 1 (m)	radar 2 (m)	prof. (m)	puntos (m)	(%)
AA1	754.222	5.576.096	754.222	5.576.096	14,9	14,3	0,6	0,2	4,3
AA2	754.016	5.575.915	754.016	5.575.915	40,2	41,7	1,5	0,1	3,6
AA3	753.915	5.575.843	753.915	5.575.843	82,5	82,2	0,2	0,3	0,3
AA4	753.886	5.575.825	753.886	5.575.824	80,7	80,1	0,6	0,5	0,7
AA5	753.886	5.575.823	753.886	5.575.823	80,7	76,6	4,2	0,2	5,3
AA6	753.799	5.575.766	753.799	5.575.766	21,4	29,5	8,1	0,4	31,7
AA7	753.804	5.575.762	753.805	5.575.763	21,6	33,4	11,8	0,4	43,0
AA8	753.906	5.575.694	753.906	5.575.695	56,0	54,0	2,0	0,5	3,7
AA9	753.954	5.575.657	753.954	5.575.657	42,7	63,9	21,2	0,1	39,8
AA10	754.013	5.575.591	754.013	5.575.591	17,5	15,5	2,0	0,4	12,4
AA11	754.020	5.575.593	754.020	5.575.594	17,8	16,7	1,1	0,4	6,2
AA12	754.023	5.575.591	754.023	5.575.590	15,8	15,7	0,1	1,2	0,7
AA13	754.127	5.575.645	754.128	5.575.645	22,7	21,3	1,5	0,2	6,7
AA14	753.922	5.575.346	753.922	5.575.347	20,6	25,8	5,2	0,4	22,3
AA15	753.785	5.574.743	753.785	5.574.743	87,6	85,5	2,0	0,3	2,3
AA16	753.398	5.575.472	753.397	5.575.472	28,8	27,9	0,9	0,5	3,1
AA17	753.415	5.575.553	753.414	5.575.553	20,5	21,5	1,0	0,7	4,6
AA18	752.327	5.574.935	752.328	5.574.935	40,4	43,5	3,1	0,3	7,4
TA1	755.215	5.575.176	755.215	5.575.175	99,4	98,5	0,9	0,6	0,9
TA2	755.272	5.575.132	755.272	5.575.132	103,0	98,6	4,4	0,3	4,4
TA3	754.794	5.574.359	754.795	5.574.359	160,9	141,9	19,0	0,7	12,5
TA4	754.861	5.574.234	754.877	5.574.245	159,9	140,5	19,4	19,8	12,9
TA5	755.240	5.573.684	755.240	5.573.683	208,0	187,9	20,2	0,5	10,2
TA6	755.119	5.573.614	755.119	5.573.613	200,7	172,9	27,7	0,9	14,8

Tabla 6.3-P. Análisis de cruces para el radar aéreo, glaciar Osorno. El cruce AA denota un cruce entre radar aéreo y radar aéreo. La diferencia de profundidad promedia es de 0,2 m, equivalente a 1,2%.

Cruce	Coordenadas UTM radar 1 (m)		Coordenadas UTM radar 2 (m)		Prof. radar	Prof. radar	Dif. de	Dist. entre	Dif.
	Este	Norte	Este	Norte	1 (m)	2 (m)	prof. (m)	puntos (m)	(%)
AA1	710.701	5.447.693	710.701	5.447.693	12,9	12,9	0,0	0,1	0,0
AA2	710.674	5.447.608	710.674	5.447.607	23,9	23,9	0,0	0,2	0,2
AA3	710.647	5.447.489	710.647	5.447.489	18,1	18,0	0,1	0,1	0,4
AA4	710.856	5.447.568	710.856	5.447.567	0,3	0,4	0,0	1,5	2,5
AA5	711.062	5.447.325	711.062	5.447.325	4,9	4,8	0,0	0,5	0,6
AA6	711.144	5.447.334	711.145	5.447.334	7,6	7,3	0,2	0,4	3,3
AA7	711.177	5.447.336	711.177	5.447.336	6,4	6,4	0,0	0,3	0,5
AA8	711.214	5.447.256	711.214	5.447.256	4,3	4,3	0,0	0,2	0,4
AA9	711.234	5.447.197	711.235	5.447.197	4,5	4,6	0,0	0,2	0,6
AA10	711.381	5.446.970	711.381	5.446.970	7,9	7,9	0,1	0,2	1,2
AA11	711.486	5.446.107	711.486	5.446.107	15,3	15,3	0,0	0,3	0,1
AA12	710.944	5.446.338	710.945	5.446.338	26,9	26,4	0,4	0,3	1,6
AA13	710.200	5.445.421	710.201	5.445.421	11,1	11,2	0,1	0,5	0,9
AA14	709.887	5.445.620	709.887	5.445.620	19,2	19,4	0,2	0,1	0,9
AA15	709.518	5.446.131	709.519	5.446.131	26,3	26,7	0,4	0,2	1,6
AA16	708.899	5.446.460	708.900	5.446.460	8,2	8,1	0,1	0,3	1,6
AA17	709.046	5.446.819	709.046	5.446.819	3,2	3,3	0,1	0,4	1,9
AA18	709.042	5.446.841	709.042	5.446.841	4,7	4,5	0,2	0,2	3,6
AA19	709.067	5.446.861	709.068	5.446.862	6,2	6,3	0,1	0,3	1,5
AA20	709.680	5.447.363	709.680	5.447.363	20,0	19,9	0,2	0,4	0,9
AA21	709.759	5.447.435	709.759	5.447.435	23,6	23,5	0,0	0,4	0,2
AA22	710.359	5.447.314	710.359	5.447.314	13,6	13,5	0,1	0,2	0,7
AA23	710.510	5.447.218	710.510	5.447.218	11,0	11,1	0,0	0,3	0,4
AA24	710.292	5.447.089	710.292	5.447.089	2,9	3,0	0,0	0,2	1,5
AA25	709.899	5.446.963	709.900	5.446.963	22,1	22,7	0,5	0,5	2,4
AA26	710.034	5.446.834	710.035	5.446.834	18,6	18,4	0,2	0,4	1,0
AA27	709.774	5.446.723	709.774	5.446.723	3,2	3,3	0,0	0,2	0,9
AA28	710.296	5.446.654	710.296	5.446.653	50,5	50,2	0,3	0,4	0,6
AA29	710.226	5.446.666	710.226	5.446.665	34,2	35,2	1,0	0,3	2,9
AA30	710.054	5.446.482	710.054	5.446.481	10,1	10,0	0,1	0,4	0,7
AA31	710.298	5.446.260	710.301	5.446.253	28,7	28,5	0,2	7,1	0,7

Un resumen de la estadística de cruces se presenta en la Tabla 6.3-Q. El número total de ocurrencia de cruces es de 220 para los 16 glaciares donde existen cruces, vale decir un promedio de 14 cruces por glaciar. De éstos 220 cruces, 10 son cruces de radar aéreo con radar terrestre y el resto corresponden a radar aéreo con radar aéreo. En general las diferencias de cruces son razonables, con un valor promedio de 2,5 m para los 16 glaciares, que representa un 3,7%. Hay dos excepciones sin embargo que están por sobre el 5% de error en los cruces, los glaciares Tronquitos (promedio 22%) y Mocho-Choshuenco (promedio 11%). Es probable que en ambos casos haya contribuido el efecto de las curvas en las trayectorias que produce una desviación en la verticalidad de la antena y un consiguiente ángulo de iluminación lateral que resulta en una medición de espesor excéntrica a la vertical.

Nº	Nombre Glaciar	Nº de cruces	Diferencia promedio de profundidad en los cruces (m)	Diferencia promedio de profundidad en los cruces (%)
1	Del Potro	3	0,0	0,0
2	Tronquitos	4	10,5	21,9
3	Tapado	15	0,9	2,7
4	Juncal Norte	11	0,8	O, 7
5	Río Blanco	9	0,3	0,9
6	Volcán Tupungatito	11	3,9	3,2
7	Marmolejo	20	1,1	1,7
8	Tinguiririca 3	11	2,3	5,1
9	Tinguiririca 4	9	1,0	2,9
10	Tinguiririca 1	15	0,8	1,5
11	Sierra Velluda	22	0,8	1,5
12	Volcán Callaqui	15	0,5	1,1
13	Volcán Llaima	0	-	-
14	Nevado Sollipulli	5	11,5	2,7
15	Volcán Villarrica	15	1,0	2,5
16	Volcán Mocho-Choshuenco	24	6,6	10,6
17	Volcán Osorno	31	0,1	1,2
18	Monte Tronador	0	-	-
		PROMEDIO	2,6	3,8

Tabla 6.3-Q. Resumen del análisis de cruces de radar para los 16 glaciares.

6.4. CÁLCULO DE VOLÚMENES

6.4.1. Método de interpolación

Para estimar el volumen de hielo existente en cada glaciar se usó un método que permitiera interpolar el espesor de hielo a la mayor parte del área del glaciar a partir de los datos originales del radar. Para que la interpolación realizada fuese lo más consistente se realizó un análisis previo de los datos generados con los radares aéreo y terrestre (radar terrestre solamente en glaciares Tapado, Tupungatito, Villarrica y Mocho-Choshuenco). En este análisis se pudo comprobar que en diversos puntos de las transectas no se podía definir un reflector nítido que pudiera identificarse como la base del hielo, con lo cual se consideró que esos sectores no aportaban datos fiables y se optó por no tenerlos en cuenta. También se hizo una revisión para eliminar datos incongruentes con espesores someros (pocos metros) que no ofrecían consistencia interna o con datos reales en terreno (zonas que en verano aflora la roca y a los que los datos daban espesor, atribuyéndose este a la nieve de temporada). La consistencia interna de los datos también se verificó mediante el análisis de cruces presentado en la sección 6.3. Análisis de cruces.

Una vez corregidos los datos erróneos se realizaron pruebas para definir dos parámetros que se consideraron claves para la interpolación a realizar: resolución de salida del raster interpolado y el método de interpolación.

6.4.1.1. Pruebas resolución raster

Los datos de radar corresponden a puntos medidos en terreno a lo largo de las transectas realizadas. Para extrapolar estos puntos a todo el área del glaciar y poder obtener con ello una estimación del volumen de hielo existente se realizaron diferentes pruebas de interpolación. Estas pruebas se realizaron en base a dos variables: (1) los diferentes métodos de interpolación ofrecidos por el software ArcGIS y (2) la interpolación directa a partir de los datos de espesor medidos o bien a partir de las cotas del fondo subglacial, obtenidas éstas restando el espesor de hielo a las cotas superficiales de cada punto de radar.

Las cotas superficiales se obtuvieron del DEM (*Digital Elevation Model*) SRTM (Shuttle Radar Topography Mission) existente en cada zona, de acceso público y gratuito. Este

DEM presenta una resolución de celda de 90 m que consideramos excesivamente grande para representar adecuadamente muchas zonas de los glaciares estudiados, con relieve altamente variable y pendientes elevadas. Por ello se realizaron pruebas que permitieran valorar si esta resolución era adecuada para interpolar o bien era más apropiada otra. Se optó por realizar pruebas con diferentes tamaños de celda, 90, 25 y 5 m. Para ello se remuestreó el DEM original a los diferentes tamaños de celda y a partir de cada uno de ellos se interpoló la cota de los puntos de radar aéreo, de la cual se restó el espesor de hielo obteniendo con ello la cota del fondo subglacial. Se optó por realizar estas pruebas primero en un glaciar de geometría simple, con buena distribución de líneas de vuelo y disponibilidad de datos, y elevadas pendientes DEMs. Para este efecto se eligió el glaciar Tinguiririca 3 como glaciar piloto (Figura 6.4.1.1-A).

Figura 6.4.1.1-A. Ejemplo en el glaciar Tinguiririca 3 de datos de espesor de hielo utilizados en la interpolación.

Para interpolar cada raster se generó como dato de entrada una nube de puntos de la superficie de roca, ya sea en el límite del glaciar, en nunataks existentes dentro del hielo o de la topografía subglacial. Para la obtención de la cota subglacial a partir de los datos de radar se usó, para cada prueba, el valor interpolado a partir de su DEM correspondiente; es decir, para un raster de salida de 90 m se usó el DEM SRTM original, para el Raster de 25 m se usó el mismo DEM remuestreado a 25 m y así sucesivamente. Además, como prueba adicional y tratando de ser lo más fieles posibles a los datos originales del DEM SRTM se interpoló un raster de salida de 5 m a partir de los datos de cota del DEM original de 90 m.

Una vez obtenida la nube de puntos de la superficie subglacial para cada resolución, se procedió a interpolar los diferentes rasters mediante el mismo método para que fueran homogéneos. El método utilizado fue "*Natural Neighbour*" ya que este método ofreció mejores resultados en las pruebas iniciales. Con posterioridad a la elección de tamaño de celda se realizó un análisis de diferentes métodos de interpolación para elegir el más adecuado. Una vez obtenida la superficie subglacial interpolada se restó de la superficie topográfica de los DEMs correspondientes obteniéndose de esta manera un raster de espesores de hielo.

Del análisis de este raster de espesores de hielo se pudo observar la existencia de incongruencias como espesores negativos o con valor cero, debido a la discretización de los datos de entrada o zonas con pocos datos no bien resueltas por el algoritmo de interpolación. Para resolver este problema se realizó una segunda interpolación a partir del raster obtenido y eliminando los datos con espesores negativos y con valor cero.

En la Tabla 6.4.1.1-A se muestran los resultados obtenidos a partir de cada resolución de celda.

SRTM	Raster interpolado	Espesor medio del glaciar (m)	Desviación estándar (m)	Volumen (m³)
Píxel 5 m	Píxel 5 m	22,5	25,3	82.217.131
Píxel 90 m	Píxel 5 m	23,9	23,7	87.637.236
Píxel 25 m	Píxel 25 m	18,3	24,4	67.055.486
Píxel 90 m	Píxel 90 m	16,4	21,2	59.914.132

Tabla 6.4.1.1-A. Espesor medio y volumen obtenido en cada prueba realizada.

Para decidir cuál interpolación era la mejor, se procedió a comprobar la fidelidad de cada una de ellas comparado con los datos de radar originales. Para ello se realizó una extracción en cada superficie de una franja de 10 metros a cada lado de las transectas de radar (Figura 6.4.1.1-B) y se calcularon sus espesores medios y desviaciones estándar. En la Tabla 6.4.1.1-B se muestran los resultados obtenidos. El objetivo de emplear esta franja de 10 m es poder disminuir los errores asociados a la interpolación, y poder comparar de mejor manera los valores originales de espesores de radar, ubicados en el centro de la franja, con los valores interpolados de acuerdo a las diferentes resoluciones.

Figura 6.4.1.1-B. Ejemplo extracción de banda de 10 m a lado y lado de las transectas de radar. Ejemplo de tamaño de celda 5 m.

Tabla 6.4.1.1-B. Espesor medio y diferencia con datos de radar obtenido en franja de 10 m a ambos lados de las transectas de radar.

SRTM	Raster Interpolado	Espesor medio de la franja de 10 m (m)	Diferencia con espesor medio datos radar (m)	Diferencia con espesor medio datos (%)	Desviación estándar (m)
Datos radar		41,9			27,2
Píxel 5 m	Píxel 5m	38,5	-3,4	-8,1	27,3
Píxel 90 m	Píxel 5m	37,9	-4,0	-9,6	27,2
Píxel 25 m	Píxel 25m	29,7	-12,2	-29,2	26,8
Píxel 90 m	Píxel 90m	18,2	-23,6	-56,4	22,9

Tal y como se puede comprobar en la Tabla 6.4.1.1-B, la combinación de tamaño de celda SRTM 5 m-raster interpolado 5 m es la que ofrece una mejor correspondencia con los datos originales de radar, por ello se optó por esta resolución para trabajar.

6.4.1.2. Pruebas método de interpolación

Una vez elegido el tamaño de celda más adecuado se procedió a hacer la comparativa con diferentes métodos de interpolación. Estas pruebas se realizaron en base a dos factores: (1) los diferentes métodos de interpolación ofrecidos por el software ArcGIS y (2) la interpolación directa a partir de los datos de espesor medidos o bien a partir de las cotas del fondo subglacial.

De la gama de métodos de interpolación que ofrece el programa ArcGis (*natural neighbour, IDW, Trend, Spline, TIN,...*), para la realización de las pruebas se eligieron solamente 4: TIN, *natural neighbour, IDW* y Kriging. Se descartaron *Trend* y *Spline* porque las pruebas iniciales devolvieron superficies poco adecuadas en glaciares con topografías complejas.

En cuanto al segundo factor (interpolación directa a partir de los datos de espesor

medidos vs. interpolación a partir de las cotas del fondo subglacial), se optó por realizar las pruebas a partir de las cotas de fondo porque el interpolar solamente con los datos de espesor implica establecer unas condiciones de borde (espesor en el perímetro glaciar de cero metros) demasiado estrictas para algunos métodos de interpolación (*natural neighbour*, TIN). Esta condición implica que en zonas con pocos o ningún dato de radar el software solo interpola con espesor cero, por lo que asigna espesores cero a amplios sectores donde se conoce positivamente la existencia de hielo.

Este tipo de pruebas se realizaron en dos glaciares para de esta manera testear la bondad del método en un glaciar con perímetro "sencillo" (Tinguiririca 3, ya mencionado) y otro con perímetro "complejo" (Juncal Norte). Así para cada glaciar se generaron 8 rasters de salida: 4 interpolados directamente a partir de los datos de espesor y 4 interpolados a partir de la cota subglaciar.

Para los rasters interpolados a partir del espesor, la nube de puntos de entrada estaba compuesta por los puntos de radar medidos, con su correspondiente valor de espesor y puntos del perímetro glaciar a los que se asignó un espesor de cero metros. En cambio, para la interpolación mediante cota se interpoló la cota de cada punto (datos de radar y perímetro) a partir del DEM SRTM remuestreado a una resolución de celda de 5 m y se restó el valor de espesor a los puntos de radar para obtener la cota subglaciar correspondiente.

En la Tabla 6.4.1.2-A y B se puede observar los resultados obtenidos para cada método de interpolación en los glaciares Tinguiririca 3 y Juncal Norte.

Tabla 6.4.1.2-A. Espesor medio y volumen obtenido en cada prueba realizada, glaciar Tinguiririca 3.

Tipo de interpolación	Método	Espesor medio glaciar (m)	Desviación estándar (m)	Volumen (m ³)
Espesor	TIN	27,3	26,5	100.125.450
Espesor	NN	27,1	25,8	99.100.025
Espesor	KRIG	23,4	21,7	85.623.008
Espesor	IDW	33,3	25,7	122.025.604
Cota	TIN	24,2	27,3	88.552.794
Cota	NN	24,2	26,4	88.589.416
Cota	KRIG	120,1	103,2	439.834.183
Cota	IDW	36,8	37,4	134.733.522

Tabla 6.4.1.2-B. Espesor medio y volumen obtenido en cada prueba realizada, glaciar Juncal Norte.

Tipo de interpolación	Método	Espesor medio glaciar (m)	Desviación estándar (m)	Volumen (m³)
Espesor	TIN	40,5	40,8	341.859.536
Espesor	NN	40,5	39,9	341.606.307
Espesor	KRIG	31,1	29,8	262.767.589
Espesor	IDW	55,0	41,9	464.591.330
Cota	TIN	32,7	42,3	276.188.742
Cota	NN	30,7	41,9	258.884.740
Cota	KRIG	267,1	168,8	2.254,837.974
Cota	IDW	49,8	54,9	419.938.566

Para establecer la bondad de cada interpolación se procedió a comprobar la fidelidad de cada una de ellas a los datos de radar originales. Para ello se realizó una extracción en cada superficie de una franja de 10 metros a cada lado de las transectas de radar y se calcularon sus espesores medios y desviaciones estándar. En la Tabla 6.4.1.2-C y D se muestran los resultados obtenidos.
Tabla 6.4.1.2-C. Espesor medio y diferencia con datos de radar obtenido en franja de 10 m a ambos lados de las transectas de radar, glaciar Tinguiririca 3.

Tipo de interpolación	Método	Espesor medio glaciar (m)	Dif. con espesor medio datos radar (m)	Diferencia con espesor medio datos (%)	Desviación estándar (m)
Datos i	radar	41,9			27,2
Espesor	TIN	41,3	-0,6	-1,5	27,7
Espesor	NN	41,0	-0,9	-2,1	27,1
Espesor	KRIG	29,7	-12,2	-29,1	27,0
Espesor	Espesor IDW		-0,1	-0,3	26,1
Cota	TIN	40,8	-1,1	-2,7	27,3
Cota NN		41,0	-0,9	-2,1	26,9
Cota	KRIG	115,5	-157,4	-375,9	27,3
Cota	IDW	41,4	-0,5	1,2	27,0

Tabla 6.4.1.2-D. Espesor medio y diferencia con datos de radar obtenido enfranja de 10 m a ambos lados de las transectas de radar, glaciar Juncal Norte.

Tipo de interpolación Método		Espesor medio glaciar (m)	Dif. con espesor medio datos radar (m)	Diferencia con espesor medio datos (%)	Desviación estándar (m)
Datos i	radar	74,1			48,3
Espesor	TIN	71,8	-2,4	-3,2	48,0
Espesor	NN	71,8	-2,3	-3,1	47,8
Espesor	KRIG	28,5	-45,6	-61,6	23,7
Espesor	IDW	73,1	-1,1	-1,4	47,9
Cota	TIN	71,1	-3,0	-4,1	48,0
Cota	NN	70,0	-4,1	-5,5	48,2
Cota	KRIG	281,6	207,5	279,9	172,0
Cota	IDW	71,9	-2,2	-3,0	48,3

De los resultados de las tablas se puede observar que en el caso del glaciar Tinguiririca 3 los métodos de interpolación que mejor reflejan los datos medidos es IDW a partir de espesor con porcentajes de diferencia menores a 1%. A continuación se encuentra un grupo con porcentajes alrededor de 1-3% entre los cuales el mejor es IDW interpolado con cota, TIN con espesor y ambas interpolaciones con NN. En cuanto a Juncal Norte los comportamientos son similares a Tinguiririca 3 pero con márgenes de error algo mayores. En ambos glaciares Kriging da errores elevados por lo que se descartó este algoritmo.

Tal como se ha indicado con anterioridad, varios de los métodos arrojaron resultados **"erróneos" ya que se obtuvieron datos de espesor cero o incluso negativo en** zonas donde se conoce positivamente la existencia de hielo. Esto errores se deben a la discretización de datos, a sectores con escasos o inexistentes datos donde el software interpola solo con ceros o a partir de cotas de roca (sin puntos con espesor) como por ejemplo espacios entre nunataks o pequeños brazos del glaciar. En la figura 6.4.1.2-A se muestran ejemplos de estos errores.

Figura 6.4.1.2-A. Ejemplo de errores de interpolación de "*natural neighbour"* por interpolación solo con valores cero (en marrón). Izquierda: glaciar Tinguiririca 3. Derecha: glaciar Juncal Norte.

Se cuantificó este error midiendo el área con valores negativos o ceros que cada método de interpolación devolvía. Es necesario indicar que los métodos Kriging e IDW permiten modificar la variable radio de búsqueda (distancia donde el algoritmo busca puntos para el cálculo) de tal manera que el resultado no devuelva zonas donde el cálculo se ha realizado solo con ceros o queden áreas sin calcular por falta de datos. En las tablas 6.4.1.2-E y F se muestran los resultados obtenidos en cada glaciar.

Tipo de interpolación	Método	Área con valores "erróneos" (m²)	Área con valores "erróneos" (%)	
Espesor	TIN	308.875	8,4	
Espesor	NN	204.875	5,6	
Espesor	KRIG	32.425	0,9	
Espesor	IDW	0	0,0	
Cota	TIN	610.950	16,7	
Cota	NN	560.350	15,3	
Cota	KRIG	3.427.775	93,6	
Cota	IDW	630.050	17,2	

Tabla 6.4.1.2-E. Áreas con datos negativos o ceros para cada método de interpolación, glaciar Tinguiririca 3.

Tabla 6.4.1.2-F. Áreas con datos negativos o ceros para cada método de interpolación, glaciar Juncal Norte.

Tipo de interpolación	Método	Área con valores "erróneos" (m²)	Área con valores "erróneos" (%)	
Espesor	TIN	1.286.300	15,2	
Espesor	NN	982.200	11,6	
Espesor	KRIG	589.300	7,0	
Espesor	IDW	25	0,0	
Cota	TIN	1.682.225	19,9	
Cota	NN	1.891.225	22,4	
Cota	KRIG	326.600	3,9	
Cota	IDW	1.581.075	18,7	

Del análisis de ambas tablas se observa inmediatamente que en ambos glaciares las interpolaciones realizadas a partir de cotas p**resentan áreas "erróneas" mucho** más amplias que sus correspondientes a partir de espesores. Por ello se optó por descartar dichas interpolaciones. También se puede observar que en Juncal Norte las interpolaciones realizadas a partir del espesor presentan porcentajes de error mayores a las obtenidas para Tinguiririca 3, esto se debe a la mayor complejidad del contorno glaciar, lo que arroja mayor número de zonas donde los métodos de interpolación solo interpolan con espesor cero.

Los bajos porcentajes de error para IDW son debidos a la variación del radio de búsqueda de puntos. En el caso de Tinguiririca 3 se eligió como dato de entrada a la interpolación un radio de búsqueda de 600 m para forzar a que ningún punto interpolase solo con espesores cero, en cambio en Juncal Norte el radio de búsqueda se estableció en 1.000 m. Para ilustrar este fenómeno en la Figura 6.4.1.2-B se muestran ambos glaciares interpolados con método IDW con radio de búsqueda de 600 m. En el caso del Tinguiririca 3 todo el glaciar queda cubierto, no siendo así en Juncal Norte debido al mayor tamaño.

Figura 6.4.1.2-B. Ejemplo de variaciones del radio de búsqueda para evitar la interpolación con valores cero. Izquierda: glaciar Tinguiririca 3 con radio de búsqueda 600 m. Derecha: glaciar Juncal Norte con radio de búsqueda 600 m, en marrón zonas con valor cero.

Eliminado Kriging por poca fidelidad a los datos de entrada y todas las realizadas a partir de cotas por presentar mayores zonas erróneas, solo quedan como métodos válidos TIN, **"natural neighbour"** e IDW realizadas a partir de espesores. Entre estas se descartó TIN porque se trata de una interpolación lineal entre el borde del glaciar y el dato medido, linealidad que no se ajusta a la realidad del fondo subglaciar. Para que esta interpolación fuese aceptable sería necesaria una nube de puntos mucho más densa.

Entre los dos métodos restantes se optó por IDW debido a que presenta una fidelidad mayor a los datos que "*natural neighbour*" para ambos glaciares (si bien escasa, del orden de 1-2%) y sobre todo a que es capaz de asignar valores de espesor en zonas complejas donde "*natural neighbour*" devuelve valores cero. En la figura 6.4.1.2-C se muestra este hecho.

Figura 6.4.1.2-C. Comparativa entre métodos "*natural neighbour"* e IDW en un sector del glaciar Tinguiririca 3 entre nunataks, ambos métodos interpolados a partir de espesores. A la izquierda "*natural neighbour*" asigna espesor cero (color marrón) a las zonas entre nunataks. A la derecha, IDW asigna valores mayores a cero en esas mismas zonas.

6.4.2. Cálculo de volúmenes

A continuación se presentan los resultados gráficos de la interpolación de espesores para los 18 glaciares, mediante el algoritmo IDW con potencia 3 según se describe en 6.4.1 y con una resolución espacial de 5 m. En la interpolación se aplicó un radio de búsqueda variable según las características de cada glaciar, de manera tal que fueran cubiertas las áreas en que no existían datos radar (Tabla 6.4.2-A). En todos los glaciares se han eliminado áreas sin cobertura adecuada de radar, representadas en achurado, que **denominamos "área de exclusión",** donde se ha decidido no interpolar puesto que se pueden cometer errores importantes por subestimación de espesores, ya que la interpolación está controlada en gran medida por el espesor cero de los bordes de los glaciares.

Nombre Glaciar	Radio de busqueda IDW (m)				
Del Potro	1.800				
Tronquitos	700				
Tapado	500				
Juncal Norte	1.000				
Río Blanco	3.500				
Volcán Tupungatito	800				
Marmolejo	1.700				
Tinguiririca 3	500				
Tinguiririca 4	500				
Tinguiririca 1	800				
Sierra Velluda	1.500				
Volcán Callaqui	1.200				
Volcán Llaima	2.200				
Nevado Sollipulli	1.400				
Volcán Villarrica	2.100				
V. Mocho-Choshuenco	1.500				
Volcán Osorno	800				
Monte Tronador	4.800				

Tabla	6.4.2-A	Radio	de	búsqueda	aplicado	en	interpolación	IDW	en	los
difere	ntes glac	iares.								

Figura 6.4.2-A. Glaciar Del Potro. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. El polígono achurado dentro del borde del glaciar corresponde a un área eliminada del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-B. Glaciar Tronquitos. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-C. Glaciar Tapado. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-D. Glaciar Juncal Norte. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-E. Glaciar Río Blanco. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-F. Glaciar Tupungatito. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. El polígono achurado dentro del borde del glaciar corresponde a un área eliminada del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-G. Glaciar Marmolejo. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-H. Glaciar Tinguiririca 3. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-I. Glaciar Tinguiririca 4. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores.

Figura 6.4.2-J. Glaciar Tinguiririca 1. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. El polígono achurado dentro del borde del glaciar corresponde a un área eliminada del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-K. Glaciar Sierra Velluda. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-L. Glaciar Callaqui. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-M. Glaciar Llaima. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-N. Glaciar Sollipulli. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-O. Glaciar Villarrica. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-P. Glaciar Mocho-Choshuenco. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

Figura 6.4.2-Q. Glaciar Osorno. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar. No confundir estos polígonos grises con nunataks en el interior del glaciar que preservan el color de la imagen satelital de fondo.

Figura 6.4.2-R. Monte Tronador. Datos interpolados de espesores. Las líneas negras delgadas representan las líneas de vuelo con datos interpretados de espesores. Los polígonos achurados dentro del borde del glaciar corresponden a áreas eliminadas del cálculo volumétrico puesto que no existen datos de radar.

6.4.3. Resumen de resultados

6.4.3.1. Parámetros de vuelo

Se presenta un resumen de los parámetros de los vuelos obtenidos para los 18 glaciares con información de la distancia total de los perfiles y la altura de vuelo sobre la superficie (Tabla 6.4.3.1-A).

Tabla 6.4.3.1-A. Resumen de las mediciones aéreas efectuadas en los 18 glaciares considerados en el estudio. La distancia (Dist. total) es la suma de las longitudes de todos los perfiles presentados para cada glaciar en la sección 6.2. AGL media (Above Ground Level) es la altura de vuelo promedio de la antena de radar sobre la superficie del glaciar.

N٥	Nombre glaciar	Perfiles	Fecha	Dist. Total (km)	AGL media (m)
1	Tronquitos	Longitudinal, diagonales y transversales	27 y 29 agosto	7,0	68,0
2	Del Potro	Longitudinal, diagonales y transversales	29 agosto	7,9	70,9
3	Tapado	Longitudinal, diagonales y transversales	30 agosto	8,6	84,7
4	Juncal Norte	Longitudinal, diagonales y transversales	20 noviembre	23,4	69,7
5	Río Blanco	Longitudinal, diagonales y transversales	20 noviembre	26,4	78,4
6	Tupungatito	Longitudinal, diagonales y transversales	6 octubre	15,5	68,8
7	Marmolejo	Longitudinal, diagonales y transversales	6 octubre	29,5	75,4
8	Tinguiririca 3	Longitudinal, diagonales y transversales	17 octubre	13,3	58,8
9	Tinguiririca 4	Longitudinal, diagonales y transversales	17 octubre	10,4	57,9
10	Tinguiririca 1	Longitudinal, diagonales y transversales	17 octubre	15,6	62,7
11	Sierra Velluda	Radiales, diagonales y espirales	16 octubre	37,5	78,1
12	Volcán Callaqui	Radiales y diagonales	15 octubre	20,8	62,6
13	Volcán Llaima	Radiales	15 octubre	19,0	64,5
14	Nevado Sollipulli	Radiales	14 octubre	18,1	37,0
15	Volcán Villarrica	Radiales	14 octubre	25,1	101,3
16	Volcán Mocho- Choshuenco	Radiales	12 octubre	21,1	70,16
17	Volcán Osorno	Radiales y espirales	11 octubre	34,9	75,7
18	Monte Tronador	Longitudinal, diagonales y transversales	11 octubre	23,8	70,4
			TOTAL	358,0	69,7

6.4.3.2. Espesores medios y volúmenes

Se presenta a continuación un resumen de los resultados de espesores medios y volúmenes calculados a partir de las interpolaciones presentadas en 6.4.2. Las Tablas 6.4.3.2-A y 6.4.3.2-B indican los resultados del procesamiento final de los datos de radar para los 18 glaciares, la primera tabla expresa los resultados considerando el espesor medio calculado sin el área de exclusión (definidas como las áreas achuradas en las figuras anteriores) y la segunda el espesor medio calculado con el área de exclusión. Para el cálculo del equivalente en agua se asume que todo el glaciar está compuesto de hielo con una densidad de 0,9 g/cm³. En los 18 glaciares se modificaron los márgenes de los glaciares entregados por la DGA incorporando cambios recientes de área evidentes en imágenes satelitales Google Earth y Bing Maps, como asimismo se incluyeron zonas sin hielo (afloramientos rocosos) existentes dentro de los glaciares, que proporcionan importantes condiciones de borde cuyo espesor de hielo es cero.

Tabla 6.4.3.2-A. Resumen de espesores medidos mediante radar y volúmenes calculados en los 18 glaciares, considerando toda el área glaciar, vale decir cálculos sin las áreas de exclusion. H medio y H máx. son los espesores medio y máximo para cada glaciar. Volumen hielo es el volumen de hielo interpolado para cada glaciar, y Volumen eq.a. es el volumen equivalente en agua para cada glaciar, respectivamente, considerando una densidad de 0,9 g/cm³ para el hielo. Las áreas han sido modificadas en este estudio a partir del inventario oficial de la DGA y de recientes imágenes satelitales.

Nº	Nombre	Sup.	H medio	H máx.	Volumen hielo	Volumen eq.a.	
	Glacial	km²	m	m	10 ⁶ m ³	10 ⁶ m³	
1	Del Potro	4,78	61,2	132	293	263	
2	Tronquitos	2,49	37,0	91	92	83	
3	Tapado	2,05	26,1	69	54	48	
4	Juncal Norte	8,44	55,4	206	468	421	
5	Río Blanco	21,11	41,3	185	872	785	
6	Volcán Tupungatito	7,67	117,1	300	898	809	
7	Marmolejo	9,67	39,5	146	382	344	
8	Tinguiririca 3	3,66	33,5 30,5	122	123	110 57 225	
9	Tinguiririca 4	2,08		79	63		
10	Tinguiririca 1 4,34	4,34	57,6	190	250		
11	Sierra Velluda	14,33	35,6	138	510	459	
12	Volcán Callaqui	7,33	22,0	113	161	145	
13	Volcán Llaima	20,57	11,3	57	233	209	
14	4 Nevado Sollipulli	12,13	307,6	775	3.731	3.358	
15	Volcán Villarrica	28,12	43,0	118	1.209	1.088	
16	V. Mocho- Choshuenco	15,22	68,2	262	1.038	934	
17	Volcán Osorno	5,45	16,1	94	88	79	
18	Monte Tronador	Monte 38,55 34,6		191	1.335	1.201	
TOTAL		207,99			11.798	10.619	

Tabla 6.4.3.2-B. Resumen de espesores medidos mediante radar y volúmenes calculados en los 18 glaciares, considerando cálculos con las áreas de exclusión, vale decir un área menor al área total del glaciar ("Sup. Neta"). El H medio y H máx. son los espesores medio y máximo para cada glaciar. Volumen hielo es el volumen de hielo interpolado para cada glaciar, y Volumen eq.a. es el volumen equivalente en agua para cada glaciar, respectivamente, considerando una densidad de 0,9 g/cm³ para el hielo. Las áreas han sido modificadas en este estudio a partir del inventario oficial de la DGA y de recientes imágenes satelitales. Dif. H medio representa el aumento (%) del espesor medio de la superficie neta (eliminando el área de exclusión, Tabla actual) respecto del espesor medio de la superficie total del glaciar (sin eliminar el área de exclusión, Tabla 6.4.3.2-A).

N٥	Nombre	Sup.	Sup. exclusión	Sup. Neta	H medio	H máx.	Volumen hielo	Volumen eq.a.	Dif. H medio
	Glacial	km ²	km	km ²	m	m	10 ⁶ m³	10 ⁶ m³	%
1	Del Potro	4,78	0,50	4,28	66,7	132	319	287	9,0
2	Tronquitos	2,49	0,12	2,37	38,8	91	97	87	4,9
3	Tapado	2,05	0,13	1,92	27,6	69	57	51	5,7
4	Juncal Norte	8,44	0,58	7,86	59,2	206	500	450	6,9
5	Río Blanco	21,11	7,84	13,27	56,4	185	1.190	1.071	36,6
6	Volcán Tupungatito	7,67	0,36	7,31	121,6	300	933	839	3,8
7	Marmolejo	9,67	1,64	8,03	45,5	146	440	396	15,2
8	Tinguiririca 3	3,66	0,09	3,57	34,4	122	126	113	2,7
9	Tinguiririca 4	2,08	0,03	2,05	31	79	64	58	1,6
10	Tinguiririca 1	4,34	0,11	4,23	59	190	256	231	2,4
11	Sierra Velluda	14,33	1,26	13,07	38,8	138	557	501	9,0
12	Volcán Callaqui	7,33	1,68	5,65	27,1	113	198	179	23,2
13	Volcán Llaima	20,57	7,01	13,56	15,9	57	328	295	40,7
14	Nevado Sollipulli	12,13	0,64	11,49	323,9	775	3.929	3.536	5,3
15	Volcán Villarrica	28,12	2,70	25,42	46,6	118	1.311	1.180	8,4
16	V. Mocho- Choshuenco	15,22	3,60	11,62	83,7	262	1.274	1.147	22,7
17	Volcán Osorno	5,45	0,19	5,26	16,7	94	91	82	3,7
18	Monte Tronador	38,55	14,61	23,94	51,2	191	1.974	1.777	48,0

Al comparar los espesores medios de la Tabla 6.4.3.2-B (calculado en base a la superficie neta, restando el área de exclusión) con respecto al espesor medio calculado en base a la Tabla 6.4.3.2-A (calculado en base a la superficie total del glaciar, sin el área de exclusión), se observa que el espesor medio de la superficie neta es en promedio un 14% mayor al espesor de la superficie total del glaciar. Esto es razonable considerando que al no eliminar las áreas de exclusión se subestiman los espesores medio puesto que necesariamente se deben interpolar valores cero correspondientes a los bordes de los glaciares, en circunstancias que el espesor real debe ser normalmente de algunas decenas de metros. En los siguientes 6 glaciares se producen diferencias notables entre los espesores medios calculados con y sin áreas de exclusión: Río Blanco, Marmolejo, Callaqui, Llaima, Mocho-Choshuenco y Tronador, con una diferencia máxima de 48% para el Tronador, y un promedio de 25% para los 6 glaciares. No debe sorprendernos esta discrepancia puesto que las superficies de exclusión son especialmente relevantes en esos 6 glaciares. Estos valores apuntan a que efectivamente se pueden producir errores relevantes en el espesor medio al interpolar a toda el área glaciar, sin eliminar las áreas sin datos de radar, vale decir sin eliminar las áreas de exclusión.

7. <u>PERSONAL</u>

El personal de Geoestudios que participó en las campañas de mediciones incluyó las siguientes personas:

Sr. Gino Casassa Rogazinski, navegante aéreo, operador de radar aéreo

- Dr. Norbert Blindow, asesor en geofísica
- Ing. Bernhard Bömer, asesor en electrónica
- Dr. Carlos Cárdenas, asesor en electrónica, Universidad de Magallanes
- Ing. Rubén Carvallo, asesor en electrónica, Universidad de Magallanes
- Ing. Forestal Sr. José Luis Rodríguez Lagos, navegante aéreo, operador de radar aéreo,
- operador de GPS doble frecuencia, armado de antenas aéreas, procesamiento de datos de radar y GPS.
- Ing. Informático Sra. Ana María Marangunic Vrsalovic
- Geomensor Sr. Cristián Peralta Abasolo
- Geógrafo Sr. Martín Bustamante Domic
- Geólogo Sr. José Becerra Rivera
- Ing. Civil Hidráulica, M.Sc. Srta. Gabriela Collao Barrios
- Ing. Civil Hidráulica Sra. Carolina Amigo Finger
- Ing. (Ej.) Prevención de Riesgos Sra. Claudia Schönffeldt Palma
- Técnico Sr. Andrés Marangunic Vrsalovic
- Técnico Sr. Nelson Cvitanic Bravo
- Técnico Sr. Claudio Iglesias Scepanovic
- Técnico Sr. Carlos Fernández Fernández
- Técnico Sr. Arturo Carrasco Olguín
- Técnico Sr. Héctor González Tapia
- Técnico Sr. Miguel Ledda Verchere.

8. <u>CONCLUSIONES Y RECOMENDACIONES</u>

Se determinó mediante radar aéreo un espesor medio de 63,6 m para los 18 glaciares de estudio, con un espesor medio mínimo de 15,9 m para el volcán Llaima y un máximo de 323,9 m para el volcán Sollipulli. Los volúmenes interpolados de hielo resultan en un valor mínimo de 57 millones de m³ para el glaciar Tapado y un máximo de 3.929 millones de m³ para el volcán Sollipulli.

El método aéreo de radar probó constituir un método adecuado para determinación de los espesores de los glaciares. Para los glaciares fríos, tal como aquellos en cotas altas de las zonas norte y centro, tuvo un buen desempeño el radar de 50 MHz, mientras que en cotas más bajas en las zonas centro y sur, donde se anticipaba hielo temperado, se prefirió utilizar el radar de 25 MHz que proporcionó buenos resultados.

En un glaciar en cada zona glaciológica (norte, centro y sur), se realizaron mediciones de espesor de hielo mediante radar terrestre de modo de validar y calibrar las mediciones con radar aéreo. Este ejercicio, aunque no es estrictamente necesario, es conveniente para acotar los posibles errores y confirmar la interpretación de los registros aéreos.

De modo de optimizar el objetivo de este estudio, cual fue estimar el espesor medio de 18 glaciares mediante aproximadamente 7 perfiles en cada glaciar, se concluye que en los glaciares de valle de las zonas norte y centro son adecuados un perfil longitudinal, tres transversales y tres diagonales. En la zona sur en cambio, donde los glaciares se concentran en volcanes, los perfiles radiales originalmente planificados debieran complementarse con perfiles en espiral, que permite por un lado una mejor cobertura espacial y también proporciona diversos cruces para determinar la consistencia interna de los datos. Hay que poner cuidado en todos los perfiles de efectuar giros lo más suaves posibles dentro del glaciar de modo de evitar balanceos de la antena que modifiquen la iluminación vertical necesaria para mediciones adecuadas.

En la interpolación de los espesores a partir de los datos de radar, es relevante descartar áreas con pobre cobertura de datos, pues de lo contrario se pueden producir significativas subestimaciones de los espesores puesto que necesariamente se deben interpolar sectores donde solamente existen datos de los bordes de los glaciares con espesor cero.
9. <u>BIBLIOGRAFÍA</u>

Blindow, N. 2009. The University of Muenster Airborne Ice Radar (UMAIR) and first results of temperate and polythermal glaciers. Proceedings of the 5th International Workshop on Advanced Ground Penetrating Radar (IWAGPR 2009), Granada, Spain, May 27-29 2009, 28-30, 2009.

Blindow, N., S.K. Suckro, M. Rückamp, M. Braun, M. Schindler, B. Breuer, H. Saurer, J. Simoes and M.A. Lange. 2010. Geometry and thermal regime of the King George Island ice cap, Antarctica, from GPR and GPS. Annals of Glaciology, 51(55), 103-109.

Blindow, N., C. Salat, V. Gundelach, U. Buschmann and W. Kahnt. 2011. Performance and calibration of the helicopter GPR system BGR-P30. Proceedings of the 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR 2011), Aachen, Germany, June 22-24, 2009, 271-275.

Blindow, N., C. Salat and G. Casassa. 2012. Airborne GPR sounding of two deep temperate glaciers in the Northern Patagonia Icefield. Proceedings of the 14th International Conference on Ground Penetrating Radar (GPR 2012), Tongji University, Shanghai, China, June 4-8, 2012.

Bogorodsky, V., Bentley, C., Gudmandsen, P. 1985. Radioglaciology. D. Reidel Publishing Company, 1st Ed., 254 pp.

Casassa, G. y A. Rivera. 1998. Digital radio echo sounding at Tyndall Glacier, Patagonia. Anales Instituto de la Patagonia, Serie Ciencias Naturales. 26, 129-135.

DGA. 2009a. Radio eco-sondaje en la cuenca del río Maipo y mediciones glaciológicas en el glaciar Tyndall, Campo de Hielo Sur. Realizado por Dirección de Programas Antárticos y Subantárticos, Universidad de Magallanes. S.I.T. 204, 95 pp.

Dirección General de Aguas. 2009b. Estrategia Nacional de Glaciares. Diciembre 2009. Realizado por Centro de Estudios Científicos. S.I.T. N°205, 26 pp. Dirección General de Aguas. 2011. Estimación de Volúmenes de Hielo en Glaciares de Chile Central. Informe Final. Realizado por Centro de Estudios Científicos. S.I.T. N°264, 155 pp.

Dirección General de Aguas. 2012. Estimación de Volúmenes de Hielo Mediante Radio Eco Sondaje en Chile Central. Informe Final. Realizado por Centro de Estudios Científicos. S.I.T. Nº 288, 173 pp.

Dirección General de Aguas. 2013. Bases Administrativas y Técnicas de la Prestación de Servicios Personales denominada "Estimación de Volúmenes de Hielo Mediante Sondajes de Radar en Zonas Norte, Central y Sur". Resolución D.G.A. (exenta) N° 1111, 9 abril 2013, 32 pp.

Evans, S. 1965. Dielectric properties of ice and snow - a review. Journal of Glaciology, 5(42), 773-792.

Gades, A.M. 1998. Spatial and temporal variations of basal conditions beneath glaciers and ice sheets inferred from radio echo soundings. (PhD thesis, University of Washington.) Kennett, M., T. Laumann and C. Lund. 1993. Helicopter-borne radio-echo sounding of Svartisen, Norway. Ann. Glaciol., 17, 23–26.

Kovacs, A., A.J. Gow, & R.M. Morey, 1995. The in-situ dielectric constant of polar firn revisited. Cold Regions Science and Technology, 23, 245-256.

Nobes, D.C. 2011. Ground penetrating radar measurements over glaciers. In Encyclopedia of Snow, Ice and Glaciers, Eds. V.P. Sigh, P. Singh and U.K. Haritashya, Springer, Encyclopedia of Earth Sciences Series, Dodrecht, The Netherlands, 490-503.

Plewes, L.A. and B. Hubbard. 2001. A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geogr., 25(2), 203–236.

Rivera, A. and G. Casassa. 2002. Detection of ice thickness using radio-echo sounding on the Southern Patagonia Icefield. In Casassa, G., F. Sepúlveda and R. Sinclair, eds. The Patagonian icefields: a unique natural laboratory for environmental and climate change studies. New York, Kluwer Academic/Plenum Publishers, 101–115. Rivera, A., G. Casassa. G. y C. Acuña. 2001. Mediciones de espesor en glaciares de Chile centro-sur. Revista Investigaciones Geográficas, 35, 67-100. Rivera, A., F. Bown, R. Mella, J. Wendt, G. Casassa, C. Acuña, E. Rignot, J. Clavero, B. Brock. 2006. Ice volumetric changes on active volcanoes in southern Chile. Annals of Glaciology, 43, 111–122.

Sandmeier, K. 2004. Reflexw manual ver. 3.5. Karlsruhe, 377 pp.

Santibañez, P., S. Kohshima, R. Scheihing, J. Jaramillo, T. Shiraiwa, S. Matoba, H. Kanda, P. Labarca & G. Casassa. 2008. Glacier mass balance interpreted from biological analyses of firn cores in the Chilean Lake District. Journal of Glaciology, 54(186), 452-462.

Watts, R.D. and A.W. England. 1976. Radio-echo sounding of temperate glaciers: ice properties and sounder design criteria. J. Glaciol., 17(75), 39–48.

Watts R.D. & W. Isherwood. 1978. Gravity surveys in glacier-covered regions. Geophysics, 43(4), 819-822.

Watts, R.D. and D.L. Wright. 1981. Systems for measuring thickness of temperate and polar ice from the ground or from the air. J. Glaciol., 27(97), 459–469.

Zamora, R, D. Ulloa, G. García, R. Mella, J. Uribe, J. Wendt, A. Rivera, G. Gacitúa and G. Casassa. 2009. Airborne radar sounder for temperate ice: initial results from Patagonia. Journal of Glaciology, 55(191), 507-512.

Informe Final, 19 de mayo de 2014 Geoestudios

ANEXO I

CRONOGRAMA DE ACTIVIDADES

A continuación se adjunta el cronograma final de actividades de la campaña actualizado al 20 de noviembre de 2013, fecha del último vuelo con el cual se completaron los levantamientos programados de todos los glaciares. El resumen de las horas de vuelo se presenta en la Tabla 3-A.

- Miércoles 7 de agosto. 13:30 h. Arriban al aeropuerto de Santiago Norbert Blindow y Bernhard (Bernd) Bömer, vuelo H2502 de Sky Airlines.
- <u>Miércoles 7 al sábado 17 de agosto.</u> Trabajos de hardware y software y armado de antenas en Las Vertientes; adquisición de materiales y herramientas.
- <u>Viernes 9 de agosto.</u> Se une al grupo el Dr. Carlos Cárdenas de la Universidad de Magallanes (UMAG).

Sábado 10 de agosto. Se une al grupo el Sr. Rubén Carvallo de la UMAG.

Lunes 12 de agosto. Reunión de planificación con Ecocopter, Aeródromo Tobalaba.

- <u>Viernes 16 de agosto.</u> Visita a Ecocopter, Aeródromo Tobalaba, para revisión de instalación de monitor y GPS de navegación junto al piloto Sr. Pablo Blanco.
- <u>Sábado 17 de agosto.</u> Finalización del armado de la antena y puesta a punto del hardware de electrónica y software en Las Vertientes. Regreso de Carlos Cárdenas y Rubén Carvallo a Punta Arenas.
- Domingo 18 de agosto. Armado de la antena de 50 MHz en campamento Embalse El Yeso, helipuerto de Aguas Andinas, 33° 40,546'S, 70° 5,297'W. Contacto Sr. Luis Hernández, Aguas Andinas Las Vizcachas, Ihernand@aguasandinas.cl, Tel. (02)2569-3210, Cel. 9870-8629; supervisor Sr. Carlos Hernández en Campamento El Yeso, Tel. (02)2569-2597. Vuelo de prueba con helicóptero Ecureuil AS350 B3 CC-CXX de la empresa Ecocopter sobre el Embalse El Yeso y Laguna Negra, piloto Pablo Blanco. Intento sin éxito de mediciones de prueba sobre el glaciar Echaurren Sur o Echaurren Norte, abandono debido a condiciones de turbulencia. Total 1,8 horas de vuelo desde Aeródromo Tobalaba, 1,2 h de ferry ida y regreso + 0,6 h vuelo de prueba: inicio en Tobalaba 12:18 h, término en Tobalaba 16:36 h.

Lunes 19 de agosto. Preparativos en Las Vertientes.

Martes 20 de agosto. Traslado en 2 camionetas a Los Loros, río Copiapó: Norbert Blindow, Bernd Bömer, Miguel Ledda, Héctor González, José Luis Rodríguez y Gino Casassa. Alojamiento en Cabañas Los Pimientos, Los Loros, Río Copiapó, dueño Sr. Luis Latorre, Cel. 8129-9914 y 7478-6619, 27° 49,968'S, 70° 6,477'W.

- Miércoles 21 de agosto. Evaluación de las condiciones de vuelo, se aborta el vuelo debido a viento en altura, tras consultar diversos pronósticos meteorológicos, incluyendo condiciones actuales en Caserones (http://www.inviernocaserones.cl/pages/pronostico-meteorologico.php) y Pascua Lama (Tel. Meteorología (051)2424276). Noche en Cabañas Los Pimientos, Los Loros.
- <u>Jueves 22 de agosto.</u> Traslado de Norbert + Bernd + José Luis + Gino a Bahía Inglesa, debido a malas condiciones meteorológicas que prohíben vuelo en altura hasta el martes 27. En Copiapó reunión de planificación con el piloto Pablo Blanco (Cel. 9789-4524) en oficina Ecocopter Copiapó, Quebrada del Cinchado 2754. Miguel + Héctor retornan a Santiago en camioneta. Alojamiento en Cabañas Villa Alegre, Cel. 7477-7060, Tel. (052)2315074, Bahía Inglesa.
- <u>Viernes 23 de agosto.</u> Bahía Inglesa, trabajo en procesamiento de datos del vuelo de prueba, software de interpolación de datos GPS, y software de navegación GPS.
- <u>Sábado 24 de agosto.</u> Bahía Inglesa, trabajo en procesamiento de datos del vuelo de prueba, software de interpolación de datos GPS, y software de navegación GPS.
- Domingo 25 de agosto. Bahía Inglesa, trabajo en procesamiento de datos del vuelo de prueba, software de interpolación de datos GPS, y software de navegación GPS.
- Lunes 26 de agosto. Traslado en camioneta a helipuerto Junta de Montosas (28° 11,027'S, 69° 50,043'W), junta del río Pulido con el río Montosas, cuenca del río Copiapó, autorizado por el Sr. Gabriel Godoy, Cel. 8921-5040, dueño del campo, en conocimiento del inquilino Don Víctor. Armado de la antena de 50 MHz en Junta de Montosas. Retorno a Los Loros, alojamiento en Cabañas Los Pimientos. Héctor toma bus de Santiago a Copiapó.
- Martes 27 de agosto. Traslado en camioneta desde Los Loros a Junta de Montosas. Helicóptero Ecureuil AS350 B3 CC-AEM de la empresa Ecocopter despega a las 10:00 de Copiapó con Héctor a bordo y vuela a Junta de Montosas, donde aterriza a las 10:36, piloto Pablo Blanco. No pudo despegar antes por condiciones de nubosidad en Copiapó debido al ingreso de la vaguada costera. Sobrevuelos en helicóptero desde Junta de Montosas a los glaciares Del Potro y Tronquitos, retorno a Junta de Montosas. Problemas de un conector de la señal de la fibra óptica ubicado cerca del gancho del helicóptero permiten solamente medir un perfil longitudinal sobre el glaciar Tronquitos. Total 5 horas de vuelo del helicóptero: inicio en Chamonate Copiapó a las 10:00, término en Chamonate 18:00 h. Retorno del

grupo a Los Loros, alojamiento en Cabañas Los Pimientos.

- Miércoles 28 de agosto. Traslado del grupo en camioneta desde Los Loros a Junta de Montosas. Helicóptero Ecureuil AS350 B3 CC-AEM de la empresa Ecocopter arriba a Junta de Montosas las 9:30 h, piloto Pablo Blanco. No pudo despegar antes por condiciones de nubosidad en Copiapó debido al ingreso de la vaguada costera. Problemas mecánicos del helicóptero (el cíclico no funciona correctamente) impiden sobrevuelos y el helicóptero regresa a Copiapó. Retorno del grupo a Los Loros, alojamiento en Cabañas Los Pimientos.
- Jueves 29 de agosto. Traslado del grupo en camioneta desde Los Loros a Junta de Montosas. Helicóptero Ecureuil AS350 B3 CC-ACY de la empresa Ecocopter arriba a Junta de Montosas las 9:30 h, piloto Pablo Blanco. No pudo despegar antes por condiciones de nubosidad en Copiapó debido al ingreso de la vaguada costera. Sobrevuelo al glaciar Tronquitos con perfiles transversales y diagonales, y al glaciar Del Potro con un perfil longitudinal y perfiles transversales y diagonales. Condiciones críticas de vuelo en altura con vientos de hasta 30 nudos. Desarme de antena en Junta de Montosas. Norbert + Bernd + José Luis + Gino se trasladan en helicóptero al valle del Elqui, helipuerto privado Agrícola Bellavita, Pisco Elqui, 30° 05,756 S, 70° 29,858 W, elevación 3.800 pies, autorizado por Rodrigo Corvetto, Cel. 6142-8099. Total 3,5 h de vuelo. Héctor viaja desde Junta de Montosas al Elgui en camioneta con la antena desarmada en el carro. Alojamiento de todo el grupo en Cabañas El Tesoro de Elqui, Pisco Elqui, info@tesoro-elqui.cl, Tel. (051)2451069, Cel. 7979-0833, 30° 7,368'S, 70° 29,721'W, Christin Betzel. En Pisco Elgui reunión con el grupo de radar terrestre compuesto por Andrés Marangunic, Nelson Cvitanic y Claudio Iglesias, quienes han viajado por tierra desde Santiago, arribando a Pisco Elqui el miércoles 28.
- <u>Viernes 30 de agosto.</u> 05:00 h traslado de Norbert, Bernd, José Luis y Gino en camioneta con la antena de 50 MHz en el carro al helipuerto del Complejo Fronterizo Juntas del Toro, Tenencia de Carabineros, Tel. (051)2651183, 29° 58,541'S, 70° 5,677'W, en conocimiento del Teniente Rodrigo Oyarzún, con armado de la antena de 50 MHz. A las 7:15 h traslado en helicóptero Ecureuil AS350 B3 CC-ACY de la empresa Ecocopter del grupo de radar terrestre (3 personas) desde el helipuerto de Agrícola Bellavita a la cumbre del cerro Tapado, con un aterrizaje a las 7:45 en Juntas del Toro, sin cortar motor, para dejar al mecánico. Piloto Pablo Blanco. Helicóptero deja a 2 personas en un punto intermedio a 4.500 m, desde donde lleva a 1 persona a la vez a la cumbre. Helicóptero regresa a Junta del Toro a las 8:45 h. A las 9:20

despegue del helicóptero con la antena, perfiles diagonales y transversales al glaciar Tapado, no se pudo realizar un perfil longitudinal debido a condiciones de viento y a la pendiente del glaciar. Regreso del helicóptero a las 10:40 h. a Juntas del Toro. Desarme de la antena. Descenso del grupo terrestre en esquís por el glaciar Tapado realizando mediciones de radar, espesor y densidad de nieve. A las 14:50 h el helicóptero evacúa al grupo terrestre desde 4.500 m, arribando a Juntas del Toro a las 15:15 h. Retorno del grupo terrestre a Santiago en helicóptero, no pueden aterrizar en Tobalaba debido a condiciones de nubosidad y deben aterrizar en Valle Nevado. Total 6,3 horas de vuelo el viernes 30 de agosto. Héctor y José Luis regresan en vehículo a Santiago, arribando a las 23:00 h. Norbert + Bernd + Gino pernoctan en Cabañas El Tesoro de Elqui, Pisco Elqui.

- <u>Sábado 31 de agosto</u>. Traslado de Norbert + Bernd + Gino con la antena desarmada en camioneta y carro desde Pisco Elqui a Las Vertientes.
- Domingo 1 de septiembre. Procesamiento de datos de radar y mantención de los equipos en Las Vertientes.
- Lunes 2 de septiembre. Preparativos en Las Vertientes con la antena de 25 MHz.
- Martes 3 de septiembre. Preparativos en Las Vertientes con la antena de 25 MHz.
- <u>Miércoles 4 de septiembre.</u> Vuelo de prueba con la antena de 25 MHz en Parque Geoaventura, Las Vizcachas. Helicóptero Ecureuil AS350 B3, CC-CYV, 0,7 h de vuelo, piloto Pablo Blanco.
- <u>Jueves 5 de septiembre.</u> Vuelo de regreso desde Santiago a Alemania de Norbert & Bernd, Aerolínea TAM JJ8027, 12:50 h.
- <u>Jueves 5 al domingo 22 de septiembre.</u> Preparación del Informe 1. No se realizan sobrevuelos debido a malas condiciones meteorológicas para la zona central y zona sur. Preparación del Informe 1 para la Dirección General de Aguas.
- Lunes 23 de septiembre al sábado 5 de octubre. No se realizan sobrevuelos debido a desfavorables condiciones meteorológicas en la alta cordillera. Procesamiento de datos de radar, mantención y preparación de equipos en Las Vertientes.
- Domingo 6 de octubre. Traslado de la antena de 50 MHz en camioneta y carro a Alfalfal, helipuerto Agua Rica, 33° 30,167'S, 70° 11,333'W, autorizado por AES Gener, Pedro Febre, Jefe de Central Alfalfal, pfebrel@aes.com. Sobrevuelo de los glaciares Tupungatito y Marmolejo, retorno a Alfalfal Agua Rica. Helicóptero Ecureuil AS350 B3, CC-ACY, 4,2 h de vuelo, piloto Pablo Blanco. Desarme de la antena y retorno de la antena de 50 MHz y el grupo en camioneta a Las Vertientes.
- Lunes 7 al miércoles 9 de octubre. No se realizan sobrevuelos debido a desfavorables

condiciones meteorológicas en la alta cordillera. Procesamiento de datos de radar, mantención y preparación de equipos en Las Vertientes.

- <u>Jueves 10 de octubre.</u> Traslado de la antena de 25 MHz en camioneta y carro a Petrohué. Alojamiento en cabañas en Petrohué Lodge, http://www.petrohue.com, Sr. Franz Schirmer, Cel. 9887-6896, helipuerto en la orilla del Lago Todos Los Santos, gerencia@petrohue.cl, 41° 8,315'S, 72° 23,998'W. Traslado del helicóptero desde Tobalaba a Petrohué, 5,0 h de vuelo. Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Alojamiento de la tripulación del helicóptero y grupo Geoestudios en Petrohué Lodge.
- <u>Viernes 11 de octubre.</u> Armado de la antena de 25 MHz en Petrohué. Sobrevuelo del glaciar del Volcán Osorno. Abastecimiento de combustible en helipuerto Petrohué. Sobrevuelo del glaciar del Monte Tronador. Total 3,8 horas de vuelo. Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Mediciones de nieve y mediciones con radar terrestre en el glaciar del volcán Mocho. Alojamiento de la tripulación del helicóptero y grupo Geoestudios en Petrohué Lodge.
- Sábado 12 de octubre. Traslado del helicóptero con antena colgante desde Petrohué a helipuerto Huilo Huilo, 39° 51,382'S, 71° 56,907'W, autorizado por Fundación Huilo Huilo. Sobrevuelo del glaciar del Volcán Mocho-Choshuenco, retorno a helipuerto Huilo Huilo. Traslado del helicóptero y antena colgante a Aeródromo Pucón, losa de estacionamiento, 39° 17,428'S, 71° 55,230'W. Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Total 3,5 h de vuelo. Alojamiento de la tripulación del helicóptero y grupo Geoestudios en Pucón.
- Domingo 13 de octubre. No se realizan sobrevuelos debido a desfavorables condiciones meteorológicas en el volcán Villarrica.
- Lunes 14 de octubre. Sobrevuelo del glaciar Villarrica. Abastecimiento de combustible en Pucón. Traslado de la antena colgante y sobrevuelo del glaciar Sollipulli. Aterrizaje en helipuerto de Cabañas Santa Elvira de Tracura, km 18 del camino de Melipeuco a Icalma, 38° 51,017'S, 71° 30,016'W, http://www.santaelviradetracura.cl/mapa.html, info@santaelviradetracura.cl, Sr. Rodrigo Espinoza, Cel. 9162-6221, Cel. 9259-9917. Abastecimiento de combustible. Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Total 3,5 h de vuelo. Traslado del grupo Geoestudios en camioneta y carro desde Pucón a Santa Elvira de Tracura. Alojamiento de la tripulación y grupo Geoestudios en cabañas Santa Elvira de Tracura.

Martes 15 de octubre. Sobrevuelo glaciar Llaima y aterrizaje en helipuerto de Carabineros

en Melipeuco. Traslado de la antena colgante de 25 MHz y aterrizaje en helipuerto de Tenencia de Carabineros Alto Bío Bío, 37° 52,922'S, 71° 38,165'W, abastecimiento de combustible. Contacto Teniente Fabián Pérez. fabian.perez@carabineros.cl. Sobrevuelo del volcán Callaqui y retorno al helipuerto de Alto Bío Bío. Traslado de la antena de 25 MHz y aterrizaje en Antuco, helipuerto de Carabineros. 37° 19,754'S, 71° 39,636'W, contacto ruben.montecinos@carabineros.cl (Teniente Jefe de Tenencia Antuco). Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Total 5 horas de vuelo. Alojamiento de la tripulación y grupo Geoestudios en Cabañas Puelche, Tel. (043)2621098, Cel. 9006-7430, http://www.volcanantuco.cl/portal/

index.php?option=com_alberghi&task=detail&Itemid=&id=2.

- <u>Miércoles 16 de octubre.</u> Sobrevuelo del glaciar Sierra Velluda y retorno al helipuerto de Antuco. Traslado del helicóptero al Aeródromo de San Fernando. Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Total 3,6 h de vuelo. Traslado en camioneta de la antena de 25 MHz al interior de San Fernando, armado de la antena. Alojamiento en carpa en el margen del río Tinguiririca, al lado del camino que conduce a Termas del Flaco, 34° 48,742'S, 70° 35,069'W, cota 990 m s.n.m.
- <u>Jueves 17 de octubre</u>. Traslado del helicóptero desde San Fernando, depositando a un grupo terrestre (Claudio Iglesias, Carlos Fernández, Arturo Carrasco) en la cumbre del glaciar Tinguiririca 1 para mediciones de nieve. Aterrizaje en lugar del armado de la antena en el margen del río Tinguiririca, abastecimiento de combustible. Sobrevuelo con radar aéreo de los glaciares Tinguiririca 1, Tinguiririca 3 y Tinguiririca 4. Regreso al helipuerto Tinguiririca a dejar la antena. Por la tarde evacuación del grupo terrestre y regreso en helicóptero a Tobalaba. Helicóptero Ecureuil AS350 B3, CC-ACY, piloto Pablo Blanco. Total 5,9 h de vuelo. Desarme de la antena y retorno en camioneta y carro a Las Vertientes.

Viernes 18 de octubre. Mantención y orden de equipos en Las Vertientes.

- <u>Sábado 19 de octubre al martes 19 de noviembre.</u> No se realizan sobrevuelos debido a desfavorables condiciones meteorológicas en el Nevado Juncal y glaciar Río Blanco.
- Miércoles 20 de noviembre. Traslado de la antena de 50 MHz en camioneta y carro desde Las Vertientes a Guardia Vieja, helipuerto de Hostería Guardia Vieja, 32° 54,212'S, 70° 16,112'W, autorizado por su dueño Sr. Hernán Salinas, Cel. 9599-3302, Tel. (034)2494213, Tel. (034)2494268. Armado de la antena en Guardia Vieja. Traslado del helicóptero Ecureuil AS350 B3 CC-AEM, piloto Sr. Pablo Blanco, desde Tobalaba a Guardia Vieja, arribando a las 8:50 h. Abastecimiento de combustible.

Sobrevuelos mediante radar aéreo a los glaciares Río Blanco y Juncal Norte. Retorno a Guardia Vieja para abastecimiento de combustible. Desarme de la antena y traslado en camioneta y carro a Las Vertientes. Regreso del helicóptero a Tobalaba. Total 3,6 h de vuelo. Fin de la campaña aérea.

- Nota: para programar los vuelos se evaluaron los pronósticos meteorológicos a partir de diferentes modelos atmosféricos, incluyendo:
 - ready.arl.noaa.gov/READYcmet.php
 - www.meteochile.cl
 - www.mountain-forecast.com
 - ➢ www.yr.no.

ANEXO II

PROCESAMIENTO DE DATOS DE RADAR

RADAR AÉREO

Se presenta en este Anexo el procesamiento del perfil longitudinal realizado sobre el glaciar Tronquitos (Figs. 5.3-A y 5.3-C), que corresponde a una antena de 50 MHz. Todas las figuras a continuación se refieren a este perfil.

En general se realiza el mismo procedimiento con todos los perfiles de radar en todos los glaciares, salvo en los casos en que se utilizó la antena de 25 MHz. En este caso se debe cambiar los parámetros del rango de frecuencia del filtro de pasabanda (paso #8) y la importación de datos (paso #1), especificando la cantidad de muestras registradas en cada traza (Tabla AII-A) que está dada por el tiempo máximo de registro utilizado en cada glaciar.

Nº	Nombre Glaciar	Frec. Antena (MHz)	Long. Registro (µs)	N ^o Muestras por traza
1	Del Potro	50	5	2560
2	Tronquitos	50	5	2560
3	Tapado	50	5	2560
4	Juncal Norte	50	5	2560
5	Río Blanco	50	5	2560
6	V. Tupungatito	50	5	2560
7	Marmolejo	50	5	2560
8	Tinguiririca 3	25	16	8192
9	Tinguiririca 4	25	16	8192
10	Tinguiririca 1	25	16	8192
11	Sierra Velluda	25	16	8192
12	V. Callaqui	25	16	8192
13	V. Llaima	25	16	8192
14	Nevado Sollipulli	25	16	8192
15	V. Villarrica	25	8	4096
16	V. Mocho Choshuenco	25	8	4096
17	V. Osorno	25	5	2560
18	Monte Tronador	25	8	4096

Tabla AII-A. Antena y longitud de registro por traza utilizados en cada glaciar.

Preparación de los datos GPS

Existe una diferencia de tiempo entre la hora de los datos GPS y la hora registrada por el sistema RADAR, correspondiente a la hora del computador a bordo de la antena, por lo que se debe corregir el tiempo en los datos GPS para que sea igual a la hora registrada en los datos RADAR. Para realizar esta corrección, se debe comparar la altura registrada por el GPS con la altura registrada por el láser en el archivo height_*.txt. Se grafican las alturas sobre el suelo en un lapso de unos 10-20 s desde el despegue y en el aterrizaje, luego se determina la diferencia de tiempo comparando las alturas sobre el suelo, es decir, a una altura específica sobre el suelo se calcula la diferencia de tiempo en la hora registrada por el GPS, y posteriormente se corrige la hora de los datos GPS para que toda la información esté referida a la hora del computador.

Posteriormente se utiliza el programa "DataTransfer" para crear un archivo de coordenadas *.dst (formato GPS Reflex) correspondiente a cada archivo de trazas *.trc. Antes de comenzar se debe modificar el archivo GPS, dándole el siguiente orden a las columnas:

Hora	Latitud	Longitud	Altura	Α	В	С	Fecha
15:20:22.70	-28.18371466	-69.83402531	1719.377	0	0	2	29-08-2013

DataTransfer.exe Input file Reflex data: 270813_184202.trc Input file GPS data: 27AGO2013_TrL_FT.txt Output filename: 270813_184202.dst Select: **"trace number"**; **"distance"**; **LON/LAT"**; **"elevation"** RUN Guardar el archivo 270813_184202.dst en el directorio ASCII junto con el archivo de trazas correpondiente.

Procesamiento del perfil longitudinal del glaciar Tronquitos con Reflexw

1. Importar los datos a Reflexw (Figura AII-A).

DATA IMPORT INPUT FORMAT: Free 32 BITFP OUTPUT FORMAT: new 32 bit floating point Filename specification: original name time increment: 2 ns sample number: 2560 samples per trace (5 μ s) (válido para la zona norte y centro-norte donde se utilizó la antena de 50 MHz; en la zona centro-sur y sur, donde se utilizó la antena de 25 MHz, se debe emplear 4096 (8 μ s) y 8192 (16 μ s). Ver Tabla AII-A). file header: 1024 bytes trace header: 16 bytes conversion sequence: parallel lines update traceheaders: ASCII-file

Filebeadet-co	ordinates	filename specifi	ication	
DistanceDim	en METER 👻	specification:	original par	
data type	const.offset -	ntofiu:	onginarnar	iic •
ProfileDirecti	on X 👻	piens.	-	
ProfileConsta	nt Y 👻	Illename lactor	1	
VALL	n	Time and comn TimeDimension	nent specific	ation
Astal:	0	time increment	2	1 8
Vera	0		2	
YStart:	u	sample number.	2560	
YEnd:	U	file header: 10)24 tra	ace header: 16
ZStart:	0			
ZEnd:	0	ConstantionMar	12.	
number:	0	conversion sequ	uence pa	rallel lines 👻
format specific	ation	max haces/file:	1048576	-
input format:	FREE 32BIT FP 🛛 👻	line distance:	0	meandering
output format	new 32 bit floating pr 👻	Nacent /2D-line:	0	move receivers
scaling:	1	l(ace)hor	0	move shots
ControlOption Control form Tead traceir Fix endcoord Tead coordinate of the traceir	s swap bytes at IBM ICT. IBM 1 nates II read traceheader re	update tracehe use data fol update tracehe ASCII-file utm-conversion no	aders/gps c der aders:	coordinates
		Calculate di	istancies	
		ControlPanel		
		Convert to	Reflex	
		 apply proce CheckExisti check data PrimaruEile 	ssing flow ingFiles for NAN	Exit

Figura AII-A. Cuadro de importación de datos de Reflexw.

El radargrama del perfil longitudinal del glaciar Tronquitos se presenta en la Figura AII-B.

Figura AII-B. Radargrama en Reflew del perfil longitudinal del glaciar Tronquitos.

2. Incorporar coordenadas LAT/LON al perfil de radar (Figura AII-C).

trace header			0	2
coordinates	_	Create(3D))Ensembles	
trace number	1 🕃	🧿 equid	listant nce markers	
distance:	1.247	Common Const	nent markers r.change markers	
shot x-pos:	-69.747736021	create	nr traces 0	
shot y-pos:	-28.558985403	Update		
shot z-pos:	4973.021			
rec. x-pos.:	-69.747736021			
rec. y-pos.;	-28.558985403			
rec z-pos:	4973.021			
CMP x-pos.:	-69.747736021			
CMP y-pos.:	-28.558985403	type	-	
Ensemble-nr.:	0	ASCII-file	-	
field record nr.:	0	update		
time delau:	0	project y	to xz-plane	
time delay.				

Figura AII-C. Cuadro de "trace header" de Reflexw ilustrando las coordenadas lat/lon.

Abrir el archivo GPS correspondiente (Figs. AlI-D y AlI-E):

Open				
Joj 📕 « tronquitos_L	ASCII	+ +y	Search ASCh	2
Organize = New folder			95 ·	
DGA Garmin Geoestudios CHN DGA Nivel 2 DGA Nivel 3 Datos RADAR 180813 270813 290813 290813 300813 Rader 20130827	Name 270613_184653.dst		Date modified 28-36-2013 22:16	Type DST File
File name:	1	•	shot geometry files (*.DST] • Cancel

Figura AII-D. Cuadro de Reflexw que ilustra el directorio de archivos de radar.

coordinates		Create(3D)Ensembles
trace number	1 🕃	equidistant distance markers comment markers
distance:	0	Constr.change markers
shot x-pos:	-69.730572082	create nr. traces 0
shot y-pos:	-28.528124972	Update
shot z-pos:	5569.091	
rec. x-pos.;	-69.730572082	
rec. y-pos.:	-28.528124972	
rec z-pos:	5569.091	
CMP x-pos.:	-69.730572082	
CMP y-pos.;	-28.528124972	type
Ensemble-nr.:	0	ASCII-file
field record nr.:	Ŭ	update
(component) time delay:	0	project y to xz-plane
TimeCollect:	٥	project z to xy-plane
	0.00	CastalDaval

Figura AII-E. Cuadro de Reflew con el encabezado ("header") de las trazas.

Observar cómo han cambiado los valores en el cuadro "coordinates" después de incorporar el archivo con las coordenadas DGPS.

3. Convertir coordenadas LAT/LON a UTM (Figs. AII-F y AII-G).

TraceHeader Menu Type: UTM-conversion Update

you w	ant to perform a UI	M-conversion
		OK Cancel
shot z-pos:	5526.834	UtmZone automatic
rec. x-pos.:	-69.728704675	zone - O distinct zone
rec, y-pos.;	-28.530846095	e dearee
rec z-pos:	5526.834	latitude
CMP x-pos.:	-69.728704675	x-coord
CMP y-pos.:	-28.530846095	type
Ensemble-nr.:	0	UTM-conversion
field record nr.:	0	update
(component) time delay:	0	project y to xz-plane
Theorem	0	project z to xy-plane
I ImeCollect:		

Figura AII-F. Cuadro de Reflexw donde se decide convertir las coordenadas a proyección UTM.

coordinates		Create(3D)Ensembles
trace number	1	equidistant distance markers
distance:	0	constr.change markers
shot x-pos:	428520.502765	create nr traces 0
shot y-pos:	6844074.61151	Update
shot z-pos:	5569.091	UtmZone a automatic
rec. x-pos.:	428520.502765	utm19s distinct zone
rec. y-pos.:	6844074.61151	🎐 dearee
rec z-pos:	5569.091	latitude
CMP x-pos.:	428520.502765	x-coord
CMP y-pos.:	6844074.61151	type
Ensemble-nr.:	0	UTM-conversion
field record nr.:	0	update
(component) time delay:	0	project y to xz-plane
TimeCollect:	0	project z to xy-plane
	0:0:0	ControlPanel
SaveOnAscii		

Figura AII-G. Cuadro de Reflexw para conversión de las coordenadas a proyección UTM.

Observar cómo han cambiado los valores en el cuadro coordinates después de convertir las coordenadas a UTM.

Para comprobar que se han incorporado y transformado las coordenadas correctamente en el perfil, se puede activar un gráfico con las coordenadas UTM norte, este; mediante el menú View, profile line (trace header coord.) (Figs. AII-H y AII-I).

Figura AII-H. Cuadro de Reflexw donde se elige visualizar las coordenadas con el encabezado ("header") de trazas.

Figura AII-I. Gráfico de Reflexw que muestra las coordenadas UTM del perfil.

Hasta este punto aún no se ha procesado el archivo importado a Reflexw.

4. Concatenar archivos de 6000 trazas para cubrir la extensión total del perfil longitudinal (Figuras AII-J y AII-K).

PROCESSING EDIT TRACES INSERT PROFILE (add at end) Processing label 0

EditTraces/TraceRanges	load	save reset		
interpolate	01	ditTrace 🧿 A	Attach at end) use coordinate
en replace		1.trace nr.	2.trace nr.	
🗇 reverse polarity	1		0	
🗇 duplicate	2		0	
💮 move 💮 swap 2 timeblocks	3		0	
insert profile	4		0	
🔿 mix profile	5		n	
combine files f.CMP	6		n	
merge files	7		0	*
insert zero traces	1.01	Remove 🧕 In	sert Chang	je i
🗇 remove zero traces	origin	ActualizeProfile nal spectrum	179.64 M 0.00000	инг
Load 270813_184653,DAT	N	m		nr. 1852 🕃
	Cont Proce	rolPanel essingLabel	0 🖀	
	S	equenceProc.	Start	Close

Figura AII-J. Cuadro de Reflexw para concatenar archivos de trazas.

Figura AII-K. Radargrama de Reflexw con archivos concatenados.

5. Definir las trazas equidistantes entre sí (Figuras AII-L y AII-M).

PROCESSING TRACE INTERPOLATION/RESORTING MAKE EQUIDISTANT TRACES (trace increment 1 m) Processing label 1

TraceInterpolationSp	ecification	m	nake equidist.	
narkerinterpol			no interpolation	
🗇 traceincr-resamp	ling			
💿 make equidist tra	ices	-	use tracedelays	
fix profile length				
Split file				
ThipProfile				
XHIPHTofile				
resort-tracehead	er			
resort-group				
To-ro section	-			
VEL- 20 El-	File			
Shift-3DFile	ác.			
Di create obiensen	IDIE2			
GroupBox1				
trace incr.	1	1		
start distance	0			
	10500.44	-	ControlPanel	
end distance	13500.41			
end distance				
end distance ain toi steeking	0	-		

Figura AII-L. Cuadro de Reflexw para convertir a trazas equidistantes.

Figura AII-M. Radargrama de Reflexw con trazas equidistantes.

 Seleccionar la porción del perfil con mediciones sobre el glaciar (Figs. AlI-N y AlI-O).

PROCESSING EDIT TRACES/TRACERANGES REMOVE RANGE (front range 6300 m; back range 3800 m) Processing label 2

Edit traces/trac	eranges			
EditTraces/TraceF	langes			
C remove				
remove range				
interpolate				
C) extract				
C replace				
🔄 set to zero				
 reverse polarity 				
) duplicate				
move				
swap 2 timebloo	sks			
insert profile				
mix profile				
combine files f.t	MP.			
merge files				
merge in timedir				
insert zero trace	s			
 femove zero (ra 	ces			
GroupBox1		-		
front range	6300	÷		
back range	3800	 ControlDonal 		
upd.coord.(0-yes)	0	ProcessingLab	el 2 🕾	
		-		
	0	•		-
apply on example	e trace char	ge(% 🔲 Sequencel	Proc. Start	Close
apply on original	data 20			-

Figura AII-N. Cuadro de Reflexw donde se elige cortar el perfil con las mediciones capturadas sobre el glaciar.

Figura AII-O. Radargrama del perfil correspondiente a la sección del glaciar.

7. Filtrar los datos.

Aplicamos el primer filtro a los datos. Este filtro es utilizado para la eliminación de una posible parte de baja frecuencia (dewow). Para este propósito se debe establecer una ventana de 60ns para realizar el cálculo sobre cada traza (Figs. AII-P y AII-Q).

PROCESSING 1D FILTER SUBSTRACT MEAN (DEWOW) Timewindow: 60 ns Processing label 3

1D-Filter			-	
filter specificatio meanfilter bandpassfre bandpassbu filter/timede notchfilter/fi deconvoluti subtract-me subtract-DC crosscorrelat autocorrelat resampling walsh bandj shaping extract wav	n equency itterworth pendent equ. on on/shap. an(dewow) -shift tion pass elet	distance range I all traces 1. trace I I I Iast trace 3401 I	trace number:	1852 ered 61.012 MHZ -0.00192
Filter parameter			nicered speetrum	
timewindow ns	60	3		
	0			
(tail)Ime	0	ProcessingLab	el 3 🕃	
end time	0	SequencePr	roc. Start	Close
Apply on exan	nple trace			

Figura AII-P. Cuadro de Reflexw donde se aplica el filtro DEWOW a los datos.

Figura AII-Q. Radargrama de Reflexw donde se ha aplicado el filtro DEWOW.

8. Filtrar los datos.

En este caso se utiliza un filtro pasabanda de 50 MHz. El ruido puede ser suprimido con el filtro de pasabanda cuando es diferente de la señal en su contenido de frecuencia (Figs. AII-R y AII-S).

PROCESSING

1D FILTER

Bandpassfrequency: type: hi-lo butter 2nd order Filter parameter: lower: 20 MHz upper: 80 MHz (antena de 50 MHz) lower: 5 MHz upper: 45 MHz (antena de 25 MHz)

Processing label 4

filter specification	1	distance range	trace number	1512
meanfilter medianfilter bandpassfrequency bandpassbutterworth filter/timedependent notchtilter/frequ. deconvolution deconvolution/shap. subtract-mean(dewow) subtract-DC-shift crosscorrelation autocorrelation		V all traces 1. trace 1 V last trace 1512 V type cos-taper cos**2-taper butterworth high/low butter.	original fi	Itered reference trace
walsh bandp shaping extract wave	ass slet	order 2 🕃		230.88 MHZ 0.04968
Filter parameter		_	tiltered spectrum	4 8 4 8
	0.	{	Ax	
ower cutoff	20	3		
upper cutoff	80	ProcessingLabel	4 🕃	

Figura AII-R. Cuadro de Reflex W donde se aplica el filtro pasabanda.

Figura AII-S. Radargrama de Reflexw con el filtro pasabanda aplicado.

9. Definición del tiempo cero (Figs. AlI-T y AlI-U).

Las antenas están separadas 3,5 m y la señal viaja a una velocidad de 30 cm/ns, entonces delta t = 11,7 ns. El tiempo determinado para el cambio de fase es de 144,6 ns que debe descontarse para calcular el tiempo cero.

PROCESSING STATIC CORRECTION/MUTING MOVE STARTTIME manual input move time: 11.7 ns - 144.6 ns = -132.9 ns Processing label 5

Figura AII-T. Cuadro de Reflexw donde se descuenta el tiempo cero.

Figura AII-U. Radargrama de Reflexw corregido al tiempo cero.

10. Remover las bandas horizontales producto del "ringing" de la antena (Figs. All-V y All-W).

PROCESSING 2D-FILTER SUBTRACTING AVERAGE average traces: 255 Processing label 6

Reflexw - 20) filter processing		_ 0 ×
2D-Filter specific running ave subtracting background compress stack traces subtract trac compress 31 expand 3D- average xy- median xy-fil dilation xy-fil constrain bo	cation rage average I removal D-file file filter ter ter ter	trace number:	1852 🕃 105.88 MHZ 0.00198
Filter parameter average traces start time end time end time [] Apply on exam	255 • • • • • • • • • • • • • • • • • •	ProcessingLabel 6 🕃 SequenceProc. Start	+ + + +

Figura AII-V. Cuadro de Reflexw para remoción de las bandas horizontales.

Figura AII-W. Radargrama de Reflexw con una buena parte de las bandas horizontales removidas.

11. A continuación se preparara el modelo de velocidades.

Primero se debe interpretar la superficie del terreno con la función pick (Figura AII-X), la superficie corresponde al primer reflector negro (pico mínimo). Se guarda esta interpretación y se le asigna el valor de la velocidad de la onda en el aire (0,3 m/ns).

Figura AII-X. Radargrama de Reflexw con la interpretación de la superficie mediante la función pick.

Luego se identifica la muestra final (tiempo máximo del radargrama) de cada traza con la función pick y se guarda asignandole un valor de velocidad de transmisión de la onda en el hielo (0,168 m/ns) (Figura AII-Y).

Figura AII-Y. Radargrama de Reflexw con la interpretación de la muestra final de cada traza mediante la función pick.

12. Crear el modelo de velocidades.

Con interpretación guardada anteriormente se realiza el modelo de velocidades.

ANALYSIS Layer-Show CREATE INPUT layer pick velocity Elegimos los dos archivos guardados en el paso anterior Open Start Una vez finalizado se exporta el modelo de velocidades como un archivo raster.

EXPORT

Generate Reflexw rasterfile (Figura AII-Z).

13. Migrar los datos. (Figs. AII-AA y AII-AB).

PROCESSING

MIGRATION TIME-DEPTH CONVERSION DIFFRACTION 2D VELOCITY 2D-velocity model: rasterfile layer (filter parameter summation width: 255) Processing label 8

Reflexw - mi	gration		
migration/time-de diffraction sta Kirchhoff mic fk migration (topography r diffraction 2D FD-migration timedepth co semblance prestack mig 3D-diffraction 3D-Kirchh. rr 3D-Kirchh. 2 3D-Kirchh. 2 3D-kirchh. 2 3D-semblance CMP-analysis hyperb.adapt.	epth specificatio ack ration Stolt) nigration -veloc -veloc mversion ration n stack nigration on D-vel ce rasterfile me or rasterfile me	n trace number: data subdivision whole profile ine parts original spectrum er	1852 🕃 11.765 MHZ -0.00024
Filter parameter summation width	255	2	
start time	0	ProcessingLabel 8 🕃	
end time	4986	SequenceProc. Start	Close
Apply on exam	ple trace		

Figura AII-AA. Cuadro de Reflexw para migración de datos.

Figura AII-AB. Radargrama de Reflexw con los datos migrados.

14. Llevar la superficie de hielo a nivel 0 m. (Figs. All-AC y All-AD).

PROCESSING STATIC CORRECTION/MUTING STATIC CORRECTION MOVE TO NEGATIVE TIMES LOAD PICK DATA Se debe elegir la superficie interpretada anteriormente con la función pick. OPEN Processing label 9

Static corrections/muting static correction dynamic correction move starttime muting	load	save reset	lo Ioa	ad pick data d trace delays
 surgical muting time out 	T	dist.[METER]	time [ns]	
Correct max. phase	t	6300	548	
corr.max.phase/wrap	2	6301	546	Ť
 correct picked phase correct for 2 layers 	3	6302	544	
	4	6303	542,5009766	
🕕 correct 3Dtopography	5	6304	542,5009766	
💮 suppress multiples	6	6305	542 5009766	
	7	conc	E40 E000700	*
	otiair	Remove 🧿 Inse actualizeProfile nal spectrum	ert Change 28.443 MH 0.00086	IZ .
CorrectionGroupBox	- Age	4		1050
move to positive times	-	M		nr. 1852
move to negative times move to negative times/shift use automatic filename	ControlPanel ProcessingLabel g			
U update tracedelays			0.4	

Figura AII-AC. Cuadro de Reflexw para trasladar superficie de hielo al nivel 0 m.

Figura AII-AD. Radargrama de Reflexw con los datos en nivel 0 m.

15. Remover el tiempo excesivo del fondo del perfil.

Esto depende del espesor máximo detectado. En este caso elegimos un tiempo máximo (two-way travel time) de 1500 ns (Figs. AII-AE y AII-AF).

PROCESSING STATIC CORRECTION/MUTING TIME CUT Processing label 7

Figura AII-AE. Cuadro de Reflexw para cortar el exceso de tiempo de cada traza.

Figura AII-AF. Radargrama de Reflexw con el nuevo tiempo máximo determinado.

16. Función de ganancia (Figs AII-AG y AII-AH).

PROCESSING GAIN FUNCTION LINEAR GAIN: 0.05 [1/pulse width] EXPONENT: 0.05 [db/m] Max gain: 2000 Processing Label 10

Gain (*) AGC-Gain	trace number: 1852
💮 energy decay	original filtered reference trace
💭 remove header gain	
• gain function	
div. compensation	
🔘 manual gain (y)	
scaled windowdain(x)	
x-distance decav(db)	
C compensate stripes	
🔘 normalize profiles	
O normalize 3D-file	
distance range	133.93 MHZ
V all traces	original spectrum -0.00015
1. trace 1 🗟	
last trace 3401 🕃	MI PM
GroupBox1	filtered spectrum
start time [ns] 0 🛛 🗧	
linear gain[1/pulsev 0.05	- WW
evponent (dh/m)	
exponent (up int 0.05	TrocessingLaber 10 🗃
max.gain 2000 🕌	
There is a surger to have abone	1019

Figura AII-AG. Cuadro de Reflexw para aplicar la función de ganancia.

Figura AII-AH. Radargrama de Reflexw de datos con ganancia.

Con esto se completa el procesamiento de los datos de radar del perfil longitudinal del glaciar Tronquitos, posteriormente se realiza la interpretación del espesor de hielo en el perfil.

RADAR TERRESTRE

1. Importar los datos a Reflexw.

DATA IMPORT INPUT FORMAT: Free 32 BITFP OUTPUT FORMAT: new 32 bit floating point Filename specification: original name time increment: 12.5 ns sample number: 256 file header: 0 bytes trace header: 0 bytes conversion sequence: no update traceheaders: no

2. Georeferenciación de las trazas.

File Edit TraceHeader TraceHeader Menu Type CVS-GPS Update

3. Unión de archivos correspondientes a cada perfil.

PROCESSING EDIT TRACES INSERT PROFILE (add at end)

4. Corrección del tiempo cero.

PROCESSING STATIC CORRECTION/MUTING MOVE STARTTIME manual input move time: 80ns - 349 ns = -269ns (ejemplo)

- 5. Remuestreo de datos.
 - PROCESSING 1D-FILTER Resampling timeincr: 2.5 ns
- 6. Interpolación equidistante.

PROCESSING TRACE INTERPOLATION/RESORTING Make equidistant traces (trace increment 1 m)

7. Corrección dinámica.

PROCESSING Static Corrections/muting Dynamic correction S/R-distance (m): 24 V (m/ns): 0.168

8. Filtro pasa banda.

PROCESSING 1D-FILTER Bandpassfrequency High/low butter: 2 Lower cutoff: 6 Upper cutoff: 14

9. Compensación de pérdidas de divergencias geométricas.

PROCESSING GAIN Div. compensation Scaling value: 0.002

- 10. Migración utilizando modelo de velocidad constante.
 - PROCESSING MIGRATION/TIME DEPTH CONVERSION Difraction stack Adadt width- max angle()° ->time: 34 Summation width: 55 Velocity m/ns: 0.168

Ahora se puede proceder a interpretar los espesores y vectorizar.

ANEXO III

ANEXOS DIGITALES

Descripción de archivos

1. <u>Datos RADAR</u>

Son los datos registrados por el sistema antena RADAR. El sistema registra en forma coordinada tres tipos de archivo; datos de RADAR, datos de GPS frecuencia simple montado en la antena y datos de altura sobre el suelo determinada por un dispositivo Laser montado en la antena. La denominación de los archivos corresponde a la fecha y hora de adquisición de los datos.

El sistema RADAR terrestre registra datos Radar y GPS en forma simultánea en dos tipos de archivos denominados de acuerdo a la fecha y hora de adquisición.

*.trc: Datos de radar en bruto. Formato binario.

gps_nmea*.txt: Datos de GPS frecuencia simple. Formato texto.

height_*.txt: Datos de altura sobre el suelo. Formato texto.

Data*.bin: Datos de radar terrestre en bruto. Formato binario.

Data*.csv: Datos de GPS registrados en forma simultánea y sincronizada con el RADAR terrestre. Formato texto.

2. Datos RADAR procesados

Son los archivos procesados con el programa ReflexW.

Cada Subdirectorio recibe un nombre genérico de acuerdo a la fecha del levantamiento de RADAR.

Cruces radar*.xlsx: Comparación del espesor de los cruces en las líneas de vuelo realizadas. Formato Excel.

- *.DAT: Archivo de parámetros de ReflexW.
- *.REP: Archivo de parámetros de ReflexW.

El programa de procesamiento de datos de RADAR genera automáticamente 5 carpetas en cada subdirectorio, los archivos mantienen el nombre original de acuerdo a la fecha y hora de adquisición de los datos.

- a. ASCII
 - *.dst: Datos de posición en coordenadas geográficas de cada traza o punto registrado por el RADAR. Formato texto.
 - *.trc: Datos de RADAR, datos sin procesar. Formato binario.
 - *.pck: Datos de salida de interpretación de radargramas, *_br1.pck (espesores de hielo) y *_p1l3.pck (retorno de la superfice del terreno). Formato texto.
 - *.mod: Datos del modelo de velocidades. Formato texto.

Data*.bin: Datos de radar terrestre en bruto. Formato binario.

- Data*.csv: Datos de GPS registrados en forma simultánea y sincronizada con el RADAR. Formato texto.
- b. LINEDATA
 - *_br1.pck: Datos interpretados de espesores de hielo. Formato binario.
 - *_p1l1.pck: Datos interpretados de retorno de la superficie del terreno para el modelo de velocidades. Formato binario.
 - *_p1l2.pck: Datos del último registro de cada traza para el modelo de velocidades. Formato binario.
 - *_p1l3.pck: Datos interpretados de la superficie del terreno. Formato binario.
 - *.COD: Datos del modelo de velocidades. Formato binario.
 - *.LAY: Datos del modelo de velocidades. Formato binario.
- c. MODEL
- d. PROCDATA
 - *.*T: Archivo procesado de trazas. La extensión *T corresponde a un número incremental que va desde 00 hasta 10 de acuerdo a los pasos que se van realizando hasta completar el procesamiento de los datos RADAR. Formato ReflexW.
 - *.*R: Header del archivo de trazas correspondiente. Formato ReflexW.
- e. ROHDATA
 - *.DAT: Datos de RADAR sin procesar importados a formato ReflexW. Formato ReflexW.
 - *.PAR: Header del archivo de trazas correspondiente. Formato ReflexW.
 - *_P1.DAT: Datos del modelo de velocidades en formato raster. Formato ReflexW.
 - *_P1.PAR: Header del archivo de trazas correspondiente correspondiente al modelo de velocidades. Formato ReflexW.

3. <u>GPS</u>

Son los archivos brutos y datos procesados de GPS diferencial. La denominación de los archivos y subdirectorios corresponde a la fecha de adquisición de los datos.

- *.csv: Archivo de salida de datos procesados DGPS con Trimble Business Center. Formato texto.
- *.T02: Archivos de datos brutos registrados por unidades GPS móvil y GPS base. Formato Trimble.
- *.kmz: Línea de vuelo realizada durante el levantamiento de RADAR. Formato Google Earth.
- *.xlsx: Datos procesados DGPS en formato Excel.
- *_1s.*: Datos procesados DGPS reducidos a 1 segundo, para mejorar la visualización y despliegue en pantalla. Formato texto, Excel y Google Earth.
- *FT.txt: Datos procesados DGPS preparados para incorporarlos a los datos RADAR con DataTransfer. Formato texto.
- DeltaTGPS-PC.xlsx: Estimación de la diferencia de tiempo del reloj incorporado en el sistema de adquisición de datos RADAR y la hora registrada por los dispositivos GPS. Formato Excel.
- *.vce: Archivos de proyecto procesamiento de datos DGPS con software Trimble Business Center. Formato Trimble.
- DataTransfer.rar: Archivo ejecutable y librerías para asignar una coordenada GPS 3D a cada traza de radar aéreo.

4. <u>Geodatabase</u>

Base de datos geográfica que contiene la información preparada y analizada con el software ArcGIS, compatible con la versión 9.3. Contiene capas de polígonos de áreas glaciares, líneas de vuelo, puntos con espesores de hielo, puntos de inicio y fin de cada perfil presentado y datos raster con los resultados de las interpolaciones de espesores.

*_glaciar: Polígono contorno de glaciar.

*_idw_p3_d*_20m: Datos raster con interpolación de espesores de hielo. Datos raster con interpolación de espesores de hielo. El método de interpolación ocupado corresponde a IDW "Inverse distance weighting", donde "p" corresponde a la potencia utilizada (3), "d" al radio de búsqueda y 20 m se refiere a la distancia de los puntos del borde de glaciar.

*_idw_p3_d*_20m_REC: Datos raster con interpolación de espesores de hielo con recorte de áreas glaciares sin datos de radar.

*_idw_p3_d*_buffer: Datos raster con interpolación de espesores de hielo con recorte de buffer de 500 de línea fronteriza.

*_rec: Poligono con el contorno del glaciar indicando las áreas de espesores interpolados donde existen suficientes datos de radar, eliminando las áreas glaciares sin datos de radar.

*_area_ex: Referido al área de exclusión. Área no considerada debido a la cobertura no adecuada de los datos radar.

*_radar: Datos de espesores de hielo de radar aéreo.

*_radar_terrestre: Datos de espesores de hielo de radar terrestre.

- *_dens: Datos de densidad de nieve medidos en terreno.
- *_if: Datos de inicio y fin de perfiles de radar.
- *_vuelo: Línea de vuelo realizada en cada glaciar.
- *_limite_inter: Límite internacional.
- *_limite_buffer_500: Límite internacional con *buffer* de 500 metros.

5. <u>Perfiles Radargramas</u>

Contiene las salidas en formato raster de ReflexW (Radargramas) preparadas para los perfiles de RADAR (Radiales, Espirales, Longitudinales y Transversales) en cada uno de los glaciares incluidos en el proyecto RES.

La denominación de las carpetas corresponde al nombre del glaciar investigado y el nombre de cada figura preserva el nombre del archivo registrado en levantamiento con RADAR aéreo.

- *R*.jpg: Radargramas de los perfiles radiales, enumerados de acuerdo a las líneas de vuelo planificadas.
- *T*.jpg: Radargramas de los perfiles transversales, enumerados de acuerdo a las líneas de vuelo planificadas.
- *L*.jpg: Radargramas de los perfiles longitudinales, enumerados de acuerdo a las líneas de vuelo planificadas.
- *E*.jpg: Radargramas de los perfiles espirales, enumerados de acuerdo a las líneas de vuelo planificadas.
- Perfiles*.txt: Datos de las trazas y coordenadas de inicio y fin de cada perfil presentado. Formato texto.

6. Mapas y gráficos informe

Contiene las salidas con mapas y gráficos preparados para el informe final del proyecto RES. La denominación de las figuras corresponde a las indicadas en el texto del informe.

Fig*.jpg: Figuras con los mapas generados para el informe final.

Fig*.tif: Figuras correspondientes a los gráficos de los perfiles y radargramas preparados para el informe final.

Estructura de carpetas

DATOS DE RADAR AÉREOS Y TERRESTRES EN BRUTO

1. Datos RADAR

061013: archivos brutos radar, láser, GPS NMEA (Gl. Marmolejo y Gl. Tupungatito) 111013: archivos brutos radar, láser, GPS NMEA (Gl. Osorno y Gl. Tronador) 121013: archivos brutos radar, láser, GPS NMEA (Gl. Mocho Choshuenco) 141013S: archivos brutos radar, láser, GPS NMEA (Gl. Sollipulli) 141013VR: archivos brutos radar, láser, GPS NMEA (Gl. Villarrica) 151013C: archivos brutos radar, láser, GPS NMEA (Gl. Callaqui) 151013LI: archivos brutos radar, láser, GPS NMEA (Gl. LLaima) 161013: archivos brutos radar, láser, GPS NMEA (Gl. Sierra Velluda) 171013: archivos brutos radar, láser, GPS NMEA (Gl. Sierra Velluda) 171013: archivos brutos radar, láser, GPS NMEA (Gl. Juncal Norte y Gl. Río Blanco) 270813: archivos brutos radar, láser, GPS NMEA (Gl. Tronquitos) 290813: archivos brutos radar, láser, GPS NMEA (Gl. Tronquitos) 300813: archivos brutos radar, láser, GPS NMEA (Gl. Tronquitos y Gl. Del Potro) 300813: archivos brutos radar, láser, GPS NMEA (Gl. Tapado) Mocho: archivos brutos radar terrestre Tapado: archivos brutos radar terrestre

DATOS DE RADAR AÉREOS Y TERRESTRES PROCESADOS EN REFLEXW.

2. Datos RADAR procesados
Radar20130827 (Gl. Tronquitos)
Radar20130829 (Gl. Tronquitos y Gl. Del Potro)
Del Potro

Tronquitos Radar20130830 (Gl. Tapado) Radar20131006 (GI. Marmolejo y GI. Tupungatito) Marmolejo Tupungatito Radar20131011 (Gl. Osorno y Gl. Tronador) Osorno Tronador Radar20131012 (Gl. Mocho Choshuenco) Radar20131014 (GI. Sollipulli y GI. Villarrica) Sollipulli Villarrica Radar20131015 (Gl. Callaqui y Gl. Llaima) Callaqui Llaima Radar20131016 (Gl. Sierra Velluda) Radar20131017 (Gls. Tinguiririca 1, 3 y 4) Ting_1 Ting_3 Ting_4 Radar20131120 (Gl. Juncal Norte y Gl. Río Blanco) Juncal Rio Blanco Mocho Tapado

DATOS GPS DOBLE FRECUENCIA EN BRUTO Y PROCESADOS.

3. GPS aéreo

06Oct2013: archivos datos brutos y procesados (Gl. Marmolejo y Gl. Tupungatito) 11Oct2013: archivos datos brutos y procesados (Gl. Osorno y Gl. Tronador) 12Oct2013: archivos datos brutos y procesados (Gl. Mocho Choshuenco) 14Oct2013Sollip: archivos datos brutos y procesados (Gl. Sollipulli) 14Oct2013Vrica: archivos datos brutos y procesados (Gl. Villarrica) 15Oct2013Callaqui: archivos datos brutos y procesados (Gl. Callaqui) 15OCT2013Llaima: archivos datos brutos y procesados (Gl. LLaima)
16OCT2013: archivos datos brutos y procesados (Gl. Sierra Velluda)
17OCT2013: archivos datos brutos y procesados (Gls. Tinguiririca 1, 3 y 4)
18AGO2013: archivos datos brutos y procesados (Vuelo de prueba Emb. El Yeso)
20NOV2013: archivos datos brutos y procesados (Gl. Juncal Norte y Gl. Río Blanco)
27AGO2013: archivos datos brutos y procesados (Gl. Tronquitos)
29AGO2013: archivos datos brutos y procesados (Gl. Tronquitos y Gl. Del Potro)
30AGO2013: archivos datos brutos y procesados (Gl. Tapado)
14 archivos *vce (proyecto software Trimble Business Center)

DATOS ANALIZADOS Y PROCESADOS CON ArcGIS

4. Geodatabase

DGA_RES_V3_93.gdb Glaciares.

> Callagui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos Tupungatito Villarrica

Interpolaciones.

Callaqui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos Tupungatito Villarrica

Iterpolaciones recortadas.

Callaqui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos

Tupungatito

Villarrica

Interpolaciones recortadas con buffer de 500 m.

Del Potro Juncal N Marmolejo Ting_3 Ting_4 Tronador Tupungatito

Polígonos de recorte.

- Callaqui
- Del Potro
- Juncal N
- Llaima
- Marmolejo
- Mocho Choshuenco
- Osorno
- Rio Blanco
- Sierra Velluda
- Sollipulli
- Tapado
- Ting_1
- Ting_3
- Ting_4
- Tronador
- Tronquitos
- Tupungatito
- Villarrica

Areas de exclusión.

- Callaqui
- Del Potro

Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos Tupungatito Villarrica

Datos radar.

Callaqui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos Tupungatito

Villarrica

Datos radar terrestre.

Mocho Choshuenco Tapado Tupungatito Villarrica

Densidades de nieve.

Mocho Choshuenco Ting_1 Villarrica

Inicio y final de perfiles radar.

- Callaqui
- Del Potro

Juncal N

- Llaima
- Marmolejo
- Mocho Choshuenco
- Osorno
- Rio Blanco

Sierra Velluda

Sollipulli

- Tapado
- Ting_1
- Ting_3
- Ting_4
- Tronador
- Tronquitos
- Tupungatito
- Villarrica

Vuelos.

Callaqui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos Tupungatito Villarrica

Límite internacional.

Del Potro Juncal N Marmolejo Ting_3 Ting_4 Tronador Tupungatito

Limite internacional con buffer 500m.

Del Potro Juncal N Marmolejo Ting_3 Ting_4

Tronador

Tupungatito

SALIDA GRÁFICA DE PERFILES Y RADARGRAMAS

5. Perfiles Radargramas Perfiles Callaqui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco Sierra Velluda Sollipulli Tapado Ting_1 Ting_3 Ting_4 Tronador Tronquitos Tupungatito Villarrica Radargramas Callaqui Del Potro Juncal N Llaima Marmolejo Mocho Choshuenco Osorno Rio Blanco

FIGURAS PRESENTADAS EN EL INFORME FINAL

6. Mapas y gráficos informe