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I. INTRODUCTION

In any field of endeavour which transgresses the boundary between
fundamental and applied disciplines there tend to be two alternative
approaches: the user’s approach, “What do I wish to do, and how can
it best be done?”” and the more fundamental “What can most efficiently
be done, and what can it be used for?”” The approaches are more
different than is commonly realized, and both are necessary. These
reflections are prompted by the appearance of the first major text-book
devoted to numerical taxonomy, that due to Sokal and Sneath (1964).
This will provide an admirable introduction for those botanists wishing
to enter this rapidly developing field; and it is no denigration of this
important work to suggest that the authors are less rigorous in their
examination of the methods than they are in their use and interpreta-
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tion, for it is with these latter aspects that they are primarily concerned.
The user’s interests in plant ecology are similarly met by Greig-Smith
(1964) and, in a more limited context, by an article which to some
extent complements our own (Lambert and Dale, 1964). Excellent
bibliographies have been provided for taxonomy by Sokal and Sneath
(1964) and for ecology by Goodall (1962) and Greig-Smith (1964).

Our intention is different. The newcomer to this field is faced with a
formidable diversity of methods, all apparently fulfilling closely similar
functions. It is nevertheless our contention that the number of
fundamentally distinct methods is very small, and that criteria can
be erected which will clarify the distinctions between them, and be-
tween their numerous variants. This is the aim of this communication.
We shall not be concerned with the problem of allocation to an existing
classification, which is the province of discriminant analysis.

Although all the methods we shall discuss are in principle applicable
to botanical problems, few have yet been so applied ; our references will
therefore of necessity be drawn from a wide variety of disciplines.
Symbols used will be conventional; but in the 2 x 2 contingency table
arising from the possession (J,K) or lack (j,k) of two attributes J and
K, two conventions now exist for the number of individuals in each
class: the alternatives are set out below:
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Scheme (i) is older, and has long been used in elementary statistical
texts; scheme (i2) is used by Sokal and Sneath. The latter is more
informative, but is clumsy in algebraic expressions and in our experience
is easily misread. When such a table is at issue, we shall therefore
adhere to the (a,b,c,d) convention.

S ——
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II. THE NATURE AND PROPERTIES OF CLASSIFICATIONS
A. THE BASIC AXIOMS

Most general discussions on classification are concerned to define,
and to distinguish between. existing types of classification; such, for
example, are the discussions in Lawrence (1951), Beckner (1959),
Gilmour (1951) and Sokal and Sneath (1964). It is important for our
purposes, however, to establish the minimum requirements which all
classifications must meet, and we restate the problem as follows. A
population consists of elements, each of which can be individually
described by reference to a predetermined list of “relevant charac-
teristics”’. This population is subdivided into sets of elements. what
requirements must be fulfilled by these sets for the sub-division to rank
as a classification? We submit that the following axioms will suffice,

(1) Within every many-membered set there must be, for every member
of the set, at least one other member with which it shares at least one
relevant characteristic.

(2) Membership of the set may not itself be a relevant characteristic.
(3) Every member of any one set must differ in at least one relevant
characteristic from every member of every other set.

Axiom (1) introduces a concept of “likeness” and ensures that an
element cannot be classified if nothing is known about it. Axiom (2)
has two important consequences. First, division into groups defined
solely as possessing a stated number of members (such as dividing a
population into groups of ten, or dividing it equally into eight parts)
is excluded; secondly, all classifications must be open-ended—there
may be no known members to add to a set, but it must not be impossible
by definition to add more. Axiom (3} not only ensures that identicals
cannot be distributed between different sets, but makes provision for
the single-membered set.

Although these axioms will suffice to define a classification, they are
not in general sufficient to define one which is useful. We therefore need
to discover what additional constraints must be imposed to enable our
classification to meet specific external requirements, and it is from this
peint of view that we now proceed to examine some of the basic
problems in numerical taxonomy.

B. MONOTHETIC AND POLYTHETIC CLASSIFICATIONS

These terms were introduced by Sneath (1962) to replace Beckner’s
(1959) terms “monotypic” and “polytypic” (without changing Beckner’s
definitions), since these terms have other meanings. The sets in a mono-



38 W. T. WILLIAMS AND M. B. DALE

thetic classification are completely defined by the presence or absence
of specific characteristics. Since such classifications are always
generated in practice by suceessive sub-division, 1t follows that there
must always be at least one set all of whose members share at least one
relevant characteristic. It is quite possible to construct a population,
classifiable by reference to the axioms, from which no such set can be
extracted; in such a case monothetic classification is impossible.
Monothetic classifications may nevertheless be useful. They have
proved valuable in ecology, where the concept of “indicator species”
has long been familiar; they may well be needed in eriminology, in
which a decision may have to be taken quickly and based on as few
attributes as possible. They are normally unacceptable in taxonomy ;
in medical taxonomy, for instance, one does not wish a man to be
treated for the wrong disease because he has one aberrant symptom.
The oceasional criticism that monothetic systems produce misclassifi-
cation is, however, invalid, since the criticism automatically assumes
that a polythetic system is desired, and the argument is circular. The
real objection to monothetic classifications is that they assume a
property of the population which it may not in fact possess. Polythetic
classifications imply no properties beyond those involved in the basic
axioms, and are therefore always possible.

C. MAXIMIZATION

1. Principles of maximizalion

The basic axioms will serve to define a large number of alternative
classifieations, and a further constraint is needed to select from among
these. The constraint universally required by users is that, in a sense
yet to be defined, the members of any one set are to be as alike as
possible and as unlike the members of other sets as possible. Differences
within sets are to be minimized, differences between sets are to be
maximized. Formal work in this field, uwsually locsely known as
“maximization’’, has been largely confined to discriminant situations,
particularly in the ficld of pattern recognition (vide, e.g. Sebestyen,
1962); but the diverse methods of numerical taxonomy are simply
variant methods of maximization.

The methods fall into two fundamentally distinet groups.

i. Self-structuring methods
(a) A function of the relevant characteristics is defined between pairs

of elements.
(b) An element may be either a member of a population or an entire
set if a set, then the set may be defined by one of its members, by all



FUNDAMENTAL PROBLEMS IN NUMERICAL TAXOoNOMY 39

of its members, or by an element constructed from all of its members.
(c) Sets are to be constructed so that the function is minimum (or
maximum) within them, maximum (or minimum) between them, or
both.

1. Derived-struciuring methods
(a) A function is defined between pairs of relevant characteristics over
a given set of members.
(6) A characteristic, or a group of characteristics, is found for which
the function, or a derivative of the function, is maximal.
(¢) Sets of memboers are defined in relation to the characteristic(s) so
selected.

For certain purposes it is desirable that the analysis can be “inverted”,
in the sense that the elements and characteristics change places. For
this to be possible the data must fulfil certain conditions which we
explore later (Section IV A). The apparent diversity of methods in the
literature largely concerns self-structuring methods, and in these the
diversity is largely one of the function selected. Monothetic methods
necessarily employ derived-structuring.

2. Imternal and external classifications

It is assumed in the foregoing paragraph that the members as defined
by their relevant characteristics form a self-sufficient set within which
maximization is to be effected; such systems, which comprise almost
the whole of existing literature in numerical taxonomy, we shall call
“internal” classifications. It may nevertheless be desired to impose a
restraint in the form of an external element or set of elements (self-
strueturing) or an external characteristic or set of characteristics
(derived-structuring). In such cases the maximization is entirely
between the reference unit on the one hand and the internal sets on
the other, the internal sets needing only to satisfy the basic classificatory
axioms. The process of maximization is, however, itself different from
the all-internal case. The primary maximization is of the range of the
selected function, in that the internal sets are to be as like or unlike
as possible to the reference set.

The main use of these “external” classifications is likely to be
predictive; if the population is heterogeneous in the sense we shall
define in Section IV C, they will be more powerful than the classical
regressions taken over the whole population. Their possible application
to problems in plant ecology is also under investigation. The only
example known to us in the literature is the derived-structure “‘predic-
tive attribute analysis” of Macnaughton-Smith (1963), with whom we
are currently collaborating in the development of more general systems.
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3. Simultaneous alternative classifications: clumps

Suppose the system be restricted by the requirements (i) that
maximization shall extract only one sub-set from the population, and
(27) that this sub-set shall be subject to a specified constraint; the
constraint normally imposed is that the subset must contain a specified
element or group of elements which will act as its nucleus. Such a sub-
set is normally termed a “clump’ and the remainder of the population
is without interest. Let this process be successivly repeated on the entire
population by specifying a new constraint on each occasion ; the ultimate
result is a set of clumps. This set is sometimes loosely termed an
“overlapping classification”, but such an extension of the term “classi-
fication’ is not to be recommended; the clumps need not exhaust the
population, and any one element can, and usually does, occur in more
than one clump. Systems of this type are particularly associated with
the work of Needham (vide, e.g. Needham, 1962; Needham and Jones,
1964) on linguistic data arising from problems in documentation and
information retrieval; but they have also found some application in
anthropology and medicine (Bonner, 1964). They have been developed
to meet circumstances in which simplicity and speed of computation are
more important than power, and they may well require re-examination
before they can satisfy the more rigorous demands of plant taxonomy
and ecology.

A system of clumps can similarly be generated by the use of a chang-
ing external criterion as constraint. The groups delimited by the “deme™
terminology (Gilmour and Heslop-Harrison, 1954) of plant taxonomy
together form a system of precisely this nature, but it seems never to
have been the subject of numerical study. We shall not be further
concerned with clump systems in this article.

4. Weighting

Sokal and Sneath (1964) accept the Adansonian postulate that
“every character is of equal weight”. We need not so restrict ourselves,
and we shall first distinguish between a priori and a posterior:
importance.

i. Importance a priori

Classifications in, for example, medical or criminological contexts
may be used as guides to action; in such cases particular characteristics
may be of overriding importance. It might be regarded as undesirable
to send epileptics to prison, no matter what their other characteristics
suggested. Such cases do not disturh the systems we are considering,
since they do not alter the classifications, but only the use that is
made of them. It has, however, frequently been suggested (vide, e.g.
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Proctor and Kendrick, 1963) that characteristics should be assigned a
differential importance from prior knowledge of the field; as we have
already pointed out (Williams et al., 1964) this destroys the objectivity
which is the single most valuable feature of numerical taxonomy, and
we cannot recommend it.

1. Importance a posteriori

Derived-structuring methods maximize some function of the charac-
teristics. After maximization, therefore, each characteristic will be
associated with a numerical value which reflects its contribution to the
overall maximization, and which may therefore be regarded as a
measure of its importance. The application of this concept presents
different problems in different systems, and the situation may best be
explored by consideration of firstly, monothetic derived-structure,
and secondly, polythetic self-structure.

(a) Monothetic derived-structure. 1fa population issuch that it contains
many shared characteristics and so can be defined as a set of final
classes, a very large number of alternative monothetic classifications
is possible. The characteristics used may be selected solely for external
convenience, or even indiscriminately, and there is no internal maximi-
zation. Such are the “special classifications’ (into, e.g., food- or fibre-
plants) and the dichotomous keys in floras. These, which are in fact
perfectly good external classifications, are commonly termed“artificial”.
It is therefore tempting to equate “artificial” with “absence of internal
maximization’; but we defer to the views of Sneath (in fitl.) to the
effect that the terms “natural’” and “artificial” have been so variously
used that to provide them with new statistical definitions would confuse
rather than clarify the situation.

In contrast to these classifications, the method of Association
Analysis, whose properties are discussed in Section V D 2, is a mono-
thetic method whose defining characteristics have been obtained by a
process of internal maximization. The characteristies now differ in «
posteriors importance, and this has by some workers been regarded as
“weighting’’.

(b) Polythetic self-structure. Here again it is theoretically possible to
effect classification without maximization. but since most real-life
populations already themselves satisfy our Axiom (1) for a classification,
the solution is usually trivial. A single maximization is therefore
necessary in practice. All the “similarity” methods discussed in Sokal
and Sneath (1964) are of this type: they use the least maximization
which is in practice essential. However, the first step in such an analysis
might be a derived-structure maximization, so that the characteristics
were as a first step provided with “importance” measures; a second
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maximization, using these weighted characteristics, would be necessary
to complete the classification. The only such doubly-maximized methods
known to us are those in whose development we have ourselves colla-
borated (Macnaughton-Smith ef al., 1964; Williams ef al., 1964).

5. Uninlentional weighting: “‘nuisance correlations”

The selection of attributes is not itself the concern of numerical
‘taxonomy. Nevertheless, methods which employ derived-structure
functions are prone to difliculties arising from so-called “nuisance
correlations’—groups of attributes linked for reasons unconnected
with the purpose of the analysis. This problem does not arise in those
ecological studies in which the attributes are plant species, since these
are necessarily different things. The questionnaires of sociological
studies, however, normally contain much redundant information; this
is deliberate, since a question which may be avoided in one form may
be answered readily in another. Some of the attributes are therefore
logically linked, and these linked groups may dominate the subsequent
analysis. It must be remembered that questionnaires have not normally
been designed with modern numerical methods in mind, and the
increasing use of these methods will doubtless in time influence the
design of questionnaires; but meanwhile the problem exists. The
nature of the problem, however, has not always been clearly under-
stood. The objection to these links is simply that they can be known to
be links without recourse to analysis; if they could not be so known they
would be of interest. It does not follow that they are in every case easily
recognized, and a preliminary numerical analysis may serve to establish
them. This is possible if the system is such that elements and character-
istics can change places, so that the characteristies can be grouped into
sets; if such a set inescapably suggests the hypothesis that the members
are linked for reasons—such as intrinsic redundancy in a questionnaire
—in which the investigator is not interested, the group can be replaced
by one or more of its members or by a new attribute constructed from
all of them. Despite statements to the contrary in the literature, we
submit that the objection to nuisance correlations does not lie in their
logically necessary links; the sole eriterion is the interest or otherwise
of the user.

D. HIERARCHICAL AND NON-HIERARCHICAL CLASSIFICATIONS

Hierarchical classifications are of very real advantage to the taxo-
nomist, since they enable him to compare taxa at any desired level.
This has probably contributed to the fact that the vast majority of
existing numerical methods are hierarchical in nature. However, it
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may also generate a requirement that each level in division is associated
with some measure which shall fall as the hierarchy descends. It is not
always realized that this places an additional constraint on the choice
of maximizing function; some functions (notably Euclidean distances
and information statistics) possess this property, whereas others (most
of the derived-structure coefficients and the “statistical distance’
coefficients) do not.

The term “reticulate classification’ seems to include two quite
different concepts. The first is the unmaximized external classification
with an embarrassing choice of alternatives, such as arises in classifying
books; this need not concern us. Truly reticulate classifications arise
out of an interest in inter-set relationships after division into sets has
been completed. If only the inter-set functions are required, a completely
non-hierarchical method could be used; but, as shall later point out,
the choice of such methods is extremely restricted. In most cases,
therefore, both the hierarchy and the inter-set functions are of interest,
and the problem is to generate either from the other.

We shall later demonstrate that maximization may, or may not, be
uniform over the entire mathematical model in use. If it is uniform, as
with unweighted Euclidean distances or information statistics, no
difficulty arises: inter-set functions and hierarchical divisions are
everywhere compatible. In those methods with which we ourselves
have been associated, the maximization is deliberately non-uniform
over the model; in these cases, which are hierarchical, no compatible
inter-set function has yet-been defined (vide Sections 11T D (2) (it)). 1t
is not permissible to define a completely new function, since the original
hierarchical maximization may then fail; this is the cause of the “‘re-
combination of sets’ difficulty which Goodall (19531) experienced in
his pioneer studies in divisive methods.

E. PROBABILISTIC AND NON-PROBABILISTIC CLASSIFICATIONS

This particular dichotomy has generated more confusion—and
probably more rancour—than any other. It underlines the commonly-
expressed doubts as to whether these methods can. or cannot, be
classed as statisties, and so has caused CGreig-Smith (1964) to use the
term ‘‘quantitative” and Sokal and Sneath (1964) and ourselves to
fall back on “numerieal”. It underlies, too, the misgivings that authors
frequently express concerning the “significance™ of their results. The
difliculty has been exacerbated by the fact that modern statistics is
almost entirely concerned with estimates of probability, so that if
well-known statistical parameters-—y? or the correlation coeflicient, for
example—are used for maximizing, it is assumed that these are
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estimates which should be associated with measures of probability.
In fact, the methods of numerical taxonomy are not, or need not be,
probabilistic systems at all, but hypothesis-generating systems. We
shall outline the two alternative approaches.

1. The non-probabilistic approuch

From this point of view, the methods of numerical taxonomy may be
regarded as stemming from a branch of statistics of respectable
antiquity—that concerned with finding mathematical formulations
which will serve as a concise and economical description of an otherwise
intractably cumbersome mass of data. Though superficially so
dissimilar, their logical relatives are to be found among such projects
as the fitting of Pearson curves to actuarial data (Elderton, 1938);
the search for a flexible growth-curve (Richards, 1959; Nelder, 1961);
and the application of contagious Poisson distributions to distributions
of plants in the field (Archibald, 1948). The fitting of regression lines is
itself a member of the same family, extended by the probabilistic
coneept of the significance of the parameters which the fitting requires.

Now, these concise mathematical descriptions can with perfect
validity be used to generate hypothescs concerning the nature of the
data, but only it two conditions are rigidly satisfied. First, as always,
the hypotheses must be capable of being tested; secondly, any test
must depend on new observations, and cannot again use the data
from which the hypothesis was generated. Generation of the hypothesis
may not be used as its own evidence; we forbear to cite examples of
this practice, contenting ourselves by remarking that they can be found
in biological literature.

The precise statistical context of these methods can most clearly be
demonstrated by comparing a vegetation survey in ecology with an
agronomic experiment in, say, mineral nutrition. In the agronomie
context the hypothesis is set from previous experience, and this deter-
mines the details of an experiment, which issues in a quantity of data;
statistical methods are applied to these data in order to test the
hypothesis—usually in the form of the probability of obtaining a given
deviation from a null hypothesis by chance alone. In the ecological
context, although experience may have informed its collection, the
data is the starting-point; functions are selected and appropriately
maximized in order to reduce the data to simpler form; this simpler
form is used to genecrate a hypothesis—often in the form of “there is a
change of some sort in this region’; and the hypothesis is tested by new,
direct observations in the ficld. Examples of this type of hypothesis-
validation may be found in the work on Association Analysis (Williains
and Lambert, 1960).
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Nor is validation difficult in applied taxonomy. In medicine, for
example, the individuals classified may be disease-producing organisms,
or symptoms; in criminology they are normally delinquents. In these
cases the hypothesis takes the form of a suggestion for treatment. It
may be remarked in passing that the power of the mathematical
methods used is all-important in these fields, for although falsification
of a hypothesis might gratify a dispassionate experimenter, it is apt to
be disastrous if a human individual is coneerned.

The problem is more difficult in “classical’” taxonomy. Here it is
tempting to enunciate a phylogenetic hypothesis, normally based on
inter-set functions, but fossil records are such that hypotheses of this
type are rarely testable (vide, e.g. Sneath and Sokal, 1962). The basic
requirement of taxonomy sensu siricto is stability, both of the member-
ship of sets and of the pattern of characteristics that their members
display within them. In the first case (the membership of scts), addition
of new characteristics followed by re-maximization should not change
the membership of the sets. In the second (the pattern of characteristics),
let a new element be discovered whose characteristics are imperfectly
known; if from the known characteristics it can be allocated un-
equivocally to an existing set, the pattern of its remaining characteris-
tics, when these are examined, should conform to the pattern for the
sef.

On this approach, therefore, the methods of numerical taxonomy are
hypothesis-generating systems; and a hypothesis-generating system is
neither valid nor invalid. Probability enters only, if indeed it enters at
all, in the testing of the hypotheses that are generated. This approach
exposes a possible danger, which we do not believe taxonometric
writing has always avoided. This is that computer classifications might
be regarded as in some sense absolute-—as “‘objective” and therefore
“petter’’. They are not objective, since they depend on the user’s
personal choice of maximizing function; and they are only better if
they can be shown to fulfil a stated requirement more efficiently.

2. The probabilistic approach.

It is, as we shall show, easy to conceive of probabilistic classifications
in theory; but we are here concerned to defend the thesis that such
classifications are usually both impracticable and unprofitable. First,
it should be noted that a probabilistic classification requires a null
hypothesis; this will normally take the form of stating that the pair-
functions available for maximization in a given population or set could
have been generated by a random process. The null hypothesis cannot,
in fact, be independent of the function selected for maximization.
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1. Difficulties tnherent in null hypotheses

Since the null hypothesis depends on the maximizing function, it
will be convenient to select two well-known cases for consideration.

(a) Multivariate normal populations. In this case the null hypothesis
would state that the observed variation in characteristics could have
been generated by a set of independent normal variates, usually the
characteristics themselves. The function available for test would
probably be the correlation matrix. Now, Bartlett’s (1950) test for the
roots is not available if the matrix is singular, and experience suggests
that it is sensitive to departures from normality. To demand that all
the coefficients be individually significant is normally regarded as too
stringent; and Goodall (1953a) has in effect suggested that the coeffi-
cients be themselves treated as normal deviates, so that the proportion
of them which exceeds the individual significance level be regarded as
a test of significance of the whole matrix. There is, in fact, no simple,
unequivocal and robust test available.

(b) Qualitative populations. The function used (though others are
available) is often related to the Euclidean distance between elements
(or set centroids) plotted in an n-dimensional space where the jth
co-ordinate for an element is 1 if it possesses the jth attribute and 0
if it lacks it. The problem now is to state a null hypothesis at all. Use
of the binomial expansion would imply that possession of all charac-
teristies was equally likely; and the solution obtained by Rohlf (1962)
for even n makes assumptions as to the distribution of the frequencies.
If we assume, however, that the hypothesis should not involve the
frequencies, an obvious solution would be to retain the frequency totals
and to construct from them the entirely dissociated class-frequencies;
that is, the numbers of individuals that would be required in all
possible sub-classes if, without change in the total numbers possessing
each attribute, all pairs of attributes were to have zero association. It
is straightforward, though tedious, so to caleulate the probabilities
(for 0, 1, 4/2) in the two-characteristic case; but the resulting algebraic
expressions are extremely cumbersome, and lend little hope of exten-
sion. In any ease, construction of the general null population may
present formidable difficulties. 1f we write (4) for the number of
individuals possessing attribute 4, (AB) for the number possessing
both 4 and B, and so on, then in the completely dissociated population

(ABC....) (4) (B) (©)
~ N T~ N NN

Unfortunately, for more than two characteristics, this relationship 1s

necessary but not sufficient (vide, c.g. Yule and Kendall, 1950), and

cannot therefore be used as a generating function.
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It has been suggested to us (Macnaughton-Smith, in litf.) that
information statistics might provide a solution of the qualitative
problem, in view of their remarkable additive properties and their
relationship to 2. Let a group of n individuals be specified by the
possession or lack of p attributes, and let the number possessing the
jth attribute be a;; we have made preliminary observations, using
ecological data, on the behaviour of the statistic:

I = pnlog n— il [a; log a;+(n —a;) log (n—ay)].
=

Ecological data not uncommonly contain groups of identical or near-
identical individuals, and these groups may vary greatly in size; the
data will have the properties of a stratified, rather than of a random,
sample. Unfortunately, we find that the statistic above is sensitive to
this particular form of non-randomness, and is therefore unduly sensi-
tive to set size—sets tend to be fused if they contain comparable
numbers of members. This is incompatible with our second classificatory
axiom, since it implies that a function of the set may determine the
allocation of one of its members. This difficulty may be removed by
normalizing for group size, though, in some forms of analysis, at the
expense of replacing it by the generation of an “ambiguity” problem
related to that arising from unweighted Euaclidean distances (Section
V D 3 (2)). Nevertheless, these statistics have many desirable properties
and would repay further investigation.

(¢) Goodall’s coefficient. Very recently Goodall (1964) has proposed a
probabilistic similarity index. For every pair of individuals, the prob-
ability that the two are as similar as in fact they are is calculated for
each attribute separately, and the attribute-probabilities then com-
bined. The method is cumbersome for qualitative data, but it is the
only method known to us which is in principle applicable to mixed
data i.e. data in which the attributes are so unlike that any common
scaling would be unrealistic. No example of its use has yet been
published.

1. Application of probabilistic elassificalions

Suppose an appropriate criterion of significance, and therefore an
appropriate null hypothesis, to be available; and suppose a population
to have been divided Ly maximization into two sets whose distinetion
fails to reach significance. It still does not follow that the division
should not be effected. For the population may be so intractably large
that the best possible sub-division, though non-significant, may be more
useful than none at all. However, although the overall characteristic-
pattern may not define a significant difference, sub-sets of characteris-



48 W. T. WILLIAMS AND M. B. DALE

tics may exhibit stability (this phenomenon may oceur if the population
exhibits noda, which are briefly discussed in Section IV C 4). In either
case, it is the usefulness of the division which will be of importance;
the division will therefore in any case be subjected by the user to a
second, pragmatic, test which will override the first, probabilistic, test.
We are therefore not convinced that any useful purpose is served by
the probabilistic test, guite apart from its inherent difficulties.

1. Tue Cuowce or MarnemaTicarn MopgL
A. INTRODUCTION : METRICS

The ultimate test of a numerical method is whether the user finds
it useful. However, all methods are of some use to the user; and if he is
to bear the sole responsibility of deciding between them, he will be
faced with an immense amount of empirical work. still with no assurance
that the method may not fail under extreme conditions—as, we believe,
some existing “‘similarity’” methods have already failed. The literature
contains many despondent remarks on the paucity of available informa-
tion relating to comparison of methods. This is particularly true of the
pair-functions themselves, often loosely classed as “similarity coeffi-
cients”’. The best-known have been reviewed by Goodman and Kruskal
(1954, 1959), Dagnelie (1960) and Sokal and Sneath (1964); but it is
doubtful whether even these extensive collections are complete. The
problems would be relatively unimportant if all such functions were
jointly monotonie, in the sense that, if element-pairs are so ordered
that one function forms a monotonic series (i.e. a series which either
increases or decreases over the whole of its length). the remainder will
also be monotonie. To take only three well-known functions,
2a/(2a+b--c), (@+4d)/(a+b-+c-+d), and the correlation coefficient, it is
easily shown that no one of these is jointly monotonic with either of the
others. A choice is therefore necessary; and the testing difficulty can be
overcome, at least in part, if the methods and functions are required to
fulfil appropriate mathematical conditions.

We consider it essential that any measure used for maximization
should define a model, and, if possible, a model in Euclidean space. The
advantages of such systems are threefold. First, many simple, robust
and powerful methods are available in Euclidean systems that are not
available outside them. Sccondly. as mentioned in Section 1T D, they
have hierarchical advantages. Thirdly, and perhaps most important, our
daily experience gives us an intuitive perception of Euclidean systems,
and thereby enables us to grasp their properties and to predict these
properties in extreme cases. If the funetion is such that it is not known
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to be associaged with any particular probabilistic or spatial model
(models which are neither probabilistic nor spatial are possible, but we
know of no published work on them) we propose that it must, as a
minimum requirement, be a metric; it will then necessarily define a
space whose properties can be explored. We deal in this section with
the general problem of metries, and it will be convenient first to state
the conventional definitions. The subject is fully discussed in geometrical
texts; the formulation we use is substantially that of Kelley (1955).

Definition. A numerical function d(x.y) of pairs of points of a set B
is said to be a metric for E if it satisfies these conditions:

(1) dz.y) = d(y,x)>=0 (symmetry)

(2) d(z,2)<d(x,y)+d(y.2) (triangle inequality)

(3) if d(z.y) = 0 then» = y (distinguishability of non-identicals)
(4) d(z,x) = 0 (indistinguishability of identicals).

A system in which (3) is not everywhere true we shall call semi-metric
(“pseudometric” of some writers); a system in which (2) is not every-
where true we shall call quasi-metric.

In the context of numerical taxonomy. metrie properties may fail
for two reasons: the characteristics may be intrinsically metric but the
pair-function selected is not; or only a pair-function exists, and this is
not metric. We deal with these cases in order.

B. METRIC PROPERTIES OF PAIR-FUNCTIONS

It would be unprofitable to examine the properties of all the many
funetions in the literature, and we shall largely confine our observations
to the three most familiar: (a-+d) /(e b +c-+d); 2a/(2a-b+c¢); and the
correlation coeflicient.

1. (a+d)/(a+b+c+d)

This is the coeflicient normally used by Sneath. Using the model
mentioned in Section II E 2(Z)b, and following Sokal and Sneath
in writing 4 for the Euclidean distance between the two points, the
coefficient is equal to (1—A42/N). It is based on a Euclidean metric
and satisfies the requirements we have suggested.

2. 2a/(2a+b+-c)

This coeflicient is probably among the oldest in the literature; it
specifies the ratio between the number of characteristics common to
two elements and the arithmetic mean of the numbers possessed by
each. It is monotonic with the coefficient @ /(e¢-b--¢), used by Sneath
for the purpose of excluding double-negative matches; the intention

E
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here, in the context of our model, is to prevent points being grouped
solely because they are near the origin. Enumeration of the 3-charac-
teristic case for either coefficient will immediately demonstrate that the
coefficients are quasi-metric; they are also necessarily semi-metrie, and
thus do not satisfy our requirements on either count. It is of interest
to note that Sokal and Sneath (1964) no longer recommend the exclusion
of double negatives.

The earlier coefficient can be used to generate a different model. Tf,
in the ordinary 2 x2 table, we have (2a-+b-fc¢)s N, there must be
|a—d| double-positive or double-negative matches; there may be more
but there cannot be less. If the coeflicient is written in the form:

Az
T 2a-tbtc

it may be regarded as derived from a distance whose dimensions are
scaled to remove all logically-necessary matches. The dimensions of the
model now change from place to place, so that the model is non-
Euclidean; it could be topologically embedded in a Kuclidean space of
not more than 2N dimensions, but we are not ourselves competent to
explore the utility of this approach.

3. The correlation coefficient

Several alternative models have been suggested for this function,
only one of which fulfils our requirements. First, it should be noted
that of the four requirements for a metrie, simple unsigned derivatives
of this coeflicient (such as (1—7)) fail to satisfy requirements (2) and (3),
and cannet therefore be handled in this way (its semi-metric properties
are of value if “shape” coefficients are required—wide Rohlf and Sokal,
1963). A model commonly used in factor analysis, however (vide,
e.g. Cattell, 1952), supposes the points to be rigidly attached to their
co-ordinate axes by extensible perpendiculars. If the axes are now
rotated about the origin until all correlations are zero. the final angles
between them will be the inverse cosines of the original coeflicients.
These angles between pairs of lines now serve to define a Euclidean
space with oblique axes; providing this model is in use, our requirements
are therefore satisfied.

4. Asymmetric functions

Goodall (1953b), in the course of an examination into the phyto-
sociological concept of “fidelity”, has suggested that asymmetric
functions would be of value in this context. Several such functions are
in fact on record in the literature, although only Goodall appears to
have appreciated their nature and possible application. So far as we are
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aware, no practicable strategy for the maximization of asymmetric
functions has ever been suggested or even sought; until this is done,
further investigation of their properties will remain unprofitable.

C. INTRINSICALLY NON-METRIC SYSTEMS

In the previous section it has been assumed that all characteristies
are, or can be regarded as being, measurable; failure of metricity is
due only to the calculation of a measure which is not a metric. We are
here concerned with two problems of greater fundamental difficulty;
first, the case in which individual characteristics, though they exist,
cannot be provided with a simple measure; and secondly, the case in
which characteristics do not exist, though a pair-function between
elements does.

1. Individual characteristics

This situation arises when all that can be measured in respect of a
given characteristic is some comparison between two elements—
commonly in the form of a difference or a ratio. 1t is then necessary to
operate on these comparisons in such a way as to generate a metric
which will uniquely order the elements along that characteristic
considered as a dimension. This problem, usually known as “scaling”,
is of great importance in psychometric work, and has given rise to an
extensive literature; the recent communication by Phillips (1963) will
serve as an introduction to the field. We know of no botanical work of
this type; but since comparative measures are not unknown in taxo-
nomic descriptions, the methods may yet prove applicable, and botanists
should be aware of their existence.

2. Isolated patr-functions

Consider a sociological study in which has been recorded, for the
members of each pair of individuals in a group, the number of times
they met each other in a given period; all that is available for analysis
is a pair-function. Functions of this type are often semi-metric (some
pairs of individuals never meet) and are almost always quasi-metric.
The problem is to generate a Euclidean systemn of hypothetical charac-
teristics such that the distances between elements shall be related to the
original pair-functions. A solution is provided by the “proximity
analysis’’ of Shepard (1962a,b). This generates a system of co-ordinates,
of the lowest order which will permit a unique solution, such that the
Euclidean distances between the elements are monotonic with the
original pair-functions. The solution is iterative, and a computer
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program exists. Again. we know of no published botanical applica-
tions, but the method might coneeivably be of interest in competition
studies where the records took the form f the number of times pairs of
species were in contact.

D. NON-KEUCLIDEAN SYSTEMS
1. Introduction

A Euelidean space is necessarily metrie, but the converse i= ot true.
It will be convenient to begin with a conventional definition :

A Euclidean space of order « is the set of all n-tuples (ey o000 0L ry)
where all z; are real numbers and where the distance between two points

n
is given by [dleg)]? - X(e, )% 1t can be shown that such
f==]
distances are metries.

There are three obvious ways in which Euclidean properties may be
lost. Firstly, n itself may not be constant, so that the dimensions vary
locally ; this is the situation for the coeflicient discussed in Section HIT B
2 above. Secondly, the n-tuples may be constrained in some way, e.¢. to
the surface ofasphere; we know of noapplication in numerieal taxonomy.
Thirdly, the distance function may fail; in the cases we shall consider,
the distance-functicn holds within sets, but fails between sonwe or all
of them. The space defined is thus lecally Euclidean, and hence (it
varyving continuously) Riemannian; and no difficulty arises unless
inter-set functions are required. We shall discuss briefly three methods
in which this type of problem arises.

2. Framples

(1) Attewnpts to use “statistical distance’

The group of statistics of which the Mahalanobis /)2 is the best-
known is essentially probabilistic in concept; it relates inter-set
distance to a common within-set function, and involves the postulation
of a common dispersion matrix for the two sets. If the sets are mani-
festly unlike, this is an unrealistic assumption; and if such a matrix is
artificially constructed, it may well be singular. It is not uncommon
(ef. Harberd, 1962) to postulate that the common dispersion matrix is

n identity matrix, and to regard the Iuclidean distance so calculated
as a derivative of the Mahalanohis statistic; we ourselves believe this
to represent an unrealistic model. and consider that, as suggested by
Kendall (1957), a Riemannian metric is needed.
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1t. Weighled polythetic subdivision

This method (Macnaughton-Smith ef al., 1964) employs a Euclidean
model with axes scaled by a posteriori importance measures. As in the
previous case, the scaling depends on the dispersion (or correlation)
matrix, but it is the individual axes which are affected. New scales are
calculated before each sub-division; as a result, any two sets derived
by sub-division of a single set share the same metric, but this is not
true of set-pairs in general. The final model resembles a Riemannian
system in being locally Euclidean; but the space is now divided into
blocks with the local metric changing abruptly at the boundaries, and
may best be described as a “disjoint metric space”. Although models
of this general type have received some attention from topologists, we
have been unable to trace any work on the metrization of such a space.
The difficulty is exacerbated by the fact that the space remains unde-
fined between sets.

tit. Associalion Analysis
Sinee this is a pure derived-structure method, no measure of inter-set
distance arises naturally from the maximization. Again, however, the
axes vary in a posteriori importance from set to set, and a Euclidean
metric would be unrealistic.

E. CONCLUSIONS

We may now conveniently classify the acceptable coefficients under
three headings:

1. Information statistics

These can be maximized over the whole model; as a result. they
automatically provide inter-set functions and progressively-falling
hierarchy measures. Their relationship with »*® permits them to be
used in a probabilistic context. If our misgivings (Section 11 E 2(i)h)
as to their dependence on set-size prove to be unfounded, or can be
overcome, they will be very attractive; but more work is needed.

2. Buclidean distances

These, too, can be maximized over the whole model, and provide
inter-set functions and hierarchical measures with the desired proper-
ties. They seem likely to be probabilistically intractable, but we have
given reasons (Section IT E 2(i7)) for regarding this as relatively un-
important. Compared with the doubly-maximized coeflicients they
appear to lack power, especially in populations defined by small
numbers of characteristics.
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3. Riemannian and disjoint-space funciions

It is our opinion that these provide the most realistic models and the
most powerful methods for classification ; but work on inter-set functions
is badly needed. For the biologist (including the present authors) the
mathematics required for such work is out of reach; but the difficulties
are not entirely mathematical. In the probabilistic case, since the
dispersion matrices are known to be different. what is the null hypo-
thesis which is to be tested? In methods using sub-division with chang-
ing weights, what properties is an inter-set function required to possess?
Before the geometers can be expected to collaborate, the users must
be prepared to consider these questions.

IV. TeE Basic EvcrLipean MobiL
A. DUALITY: THE R/Q PROBLEM

We have already given reasons for our preference of a Euclidean
model; this is not incompatible with essentially Riemannian or dis-
joint models, since the region of space undergoing maximization is
always locally Euclidean. We therefore now consider the problems that
arise in setting up such a model. We begin with » elements (which we
shall henceforth call individuals) specitied by p characteristics (which
we shall henceforth call attributes, a term we use in an extended sense
to include variables and variates). Provided all attributes can be given
values, either inherently or by the methods of generation outlined in
Section 1IL C, the system is symmetrical; the data-matrix can be
transposed so that the individuals and attributes exchange status.
Two models immediately present themselves: a set of % points in a
p-space, or a set of p points in an n-space.

This duality has given rise to the symbols R and . Unfortunately,
two mutally incompatible traditions as to the definition of these
symbols exist side-by-side in the literature; and this confusion—to
which we have ourselves contributed—must now be resolved. The early
workers in factor analysis commonly refer to a model in which the
individuals are points imagined as in a space specified by co-ordinate
axes representing attributes: this is our # points in a p-space that we
shall for the moment call an attribute-space. The arithmetical opera-
tions were carried out on a matrix of correlations (or occasionally co-
variances) between attributes. Such a method was called an F-method.
Later, the entire process was transposed for certain purposes; the
model is now p points in an n-space that we shall for the moment call
an individual-space, and the arithmetical operations were carried out
on a matrix of correlations between individuals. This was a ¢-method.
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This now is the problem: do R and ¢ refer to the model or the matrix?
In the early work there was no obvious ambiguity; but consider a
matrix of Euclidean distances between individuals. Since it is a matrix
between individuals, it is @; but since it is based on a model in the
attribute-space, it is R.

Sokal and Sneath (1964) define the symbols unequivocally by the
matrix, and the individual-distance matrix is, for them, ¢; but in all
publications from our laboratory we have defined the symbols by the
model, and the individual-distance matrix has been, for us. 1. We have
now decided that the Sokal-Sneath definition should prevail, for two
reasons. First, the widespread cireulation that their book will deservedly
attain will ensure that many taxonomists previously unfamiliar with
the symbols will first meet them in the Sokal-Sneath sense; and to
attempt to assert a rival definition would cause unjustifiable confusion.
Secondly, there is some historical precedent. Most early work obtained
approximate solutions for principal axes by the “centroid” method.
Although this operates arithmetically on an attribute-correlation
maftrix, it is based on a model in the individual-space; but it has always
been known as R, though by the Southampton definition it would be
Q. We suggest, then, that R and @ refer to the matrix; but it will still
be convenient to have symbols for the model, and we suggest the
symbols A (for a model in the attribute-space) and I (for a model in
the individual-space).

It seems likely that the indecision frequently expressed concerning
the relative merits of R and @-methods stems partly from inadequate
understanding of the models implied, and we believe that the introdue-
tion of the new symbols will clarify the situation. A matrix of inter-
individual distances and an inter-individual correlation matrix are
both €; but the former implies relationships between points in an
A-space, the latter between angles in an I-space. An attribute-correla-
tion matrix is 12, and an individual-distance matrix is @; but both are
A-space models, the first concerned with angles and the second with
points. In fact, two @-methods may require models which differ from
each other more fundamentally than do some R/Q pairs.

B. ADJUSTMENTS TO THE MODEL

Virtually all numerical methods involve difficulties concerned with
the dimensions of physical quantities. Only in truly qualitative data do
these difficulties not arise; whatever the nature of the quantities which
have been dichotomized, addition of either rows or columns of the data-
matrix is interpretable in terms either of the number of individuals
possessing an attribute or of the number of attributes possessed by an



56 W. T. WILLIAMS AND M. B. DALE

individual. If the data is quantitative and not all in the same units,
addition of attributes across a single individual is not technically
possible. This difficulty arises immediately in Euclidean distances or
principal components in the A-space, and in correlation coeflicients
(“between persons’’) in the [-space. It is discernible. too, in the tendency
to regard principal components as “taking out” a proportion of a
variance constructed by the illegitimate addition of separate variances.
It is the invariable, and inevitable, convention in numerical taxonomy
to regard all attributes as dimensionless, and hence available for
arithmetical manipulation; but the highly autoeratic nature of this
convention must be clearly realized.

Methods which involve the addition of different attributes are not,
in general, invariant under changes in seale of the co-ordinate axes.
The initial scaling of axes is thus irrevoeable, and will in a sense
determine the results of the analvsis. Buclidean distances are very
sensitive to the scales of the axes, but independent of the position of
the origin; principal components arve very sensitive to both. In the case
of Euclidean distances we have, we believe (Macnaughton-Smith
et al., 1964; Williams ef al., 1964), turned this sensitivity to scale to
advantage, though at the expense of ending the analysis with a disjoint-
space model. There tend to be two schools of thought concerning
principal components, those who leave the variances unchanged and
those who standardize them all to unity; one advantage of such
standardization is that it renders the variates genuinely dimensionless.
It would be equally permissible to standardize the variates by
“importance” measures as in the case of our scaled distances; this
might conceivably inerease the power of the method, but it has never
been tried. In factor analysis it is usual to rescale the factors to unit
variance after their extraction. The position of the origin is a far more
intractable problem, sinece in highly heterogeneous data there is no
obvious “best’” place for its location. Tt is traditional to take the
decision appropriate to the multivariate normal distribution and locate
the origin at the common mean; we curselves have no hetter solution
to offer.

¢, HETEROGENBITY
1. Introduction

If material is presented for elassification, it must be suspected of
being heterogencous in some way. In the context of our model, this
heterogeneity may take two forms. In the first. all attributes may be
meaningful for, and measurable on, all individuals; but attributes,
either singly or in linked groups. may be markedly polymodal. In the
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A-space model, the points form discrete galaxies (we discuss the
possibility of non-galactic heterogeneity below). In the second, the
attributes may, again either singly or in groups, become zero. If only
the zero or non-zero nature is at stake (qualitative data) there is no
difficulty; the difliculty arises when measurable attributes are some-
times zero. For the concept of “zero” embraces two quite distinct
concepts—that which happens to be zero and that which must be zero:
the number of hairs on the third pair of legs may be zero in an insect,
but it must be zero in man. In many cases the pattern of zeros and non-
zeros is itself of primary importance.

2. The data-classes

Since data may be homogeneous, or heterogeneous in either or both
of two ways, we find it convenient to distinguish four classes of data.

Class 1. Co-ordinates measurable on all axes; no sub-populations every-
where zero on sub-sets of axes; distributions substantially unimodal
on all axes.

Class 2. Co-ordinates measurable on all axes; no sub-populations every-
where zero on sub-sets of axes; polymodal on at least some axes, the
points forming galaxies in the A-space.

Class 3. Qualitative data, the co-ordinates taking only the values 0 or 1;
sub-populations exist which are everywhere zero on sub-sets of axes.

Class 4. Co-ordinates measurable on all axes; sub-populations exist
which are everywhere zero on sub-sets of axes; distributions on the
non-zero axes may be polymodal.

Class 1, of course, approaches the multivariate normal distribution,
and is of no interest in classificatory problems. Class 2 data is the raw
material of taxonomy, so long as the individuals are known to be
closely similar. Since random sampling of individuals of widely dis-
parate nature would be pointless for taxonomic purposes, this require-
ment is normally fulfilled. Class 3 is the familiar “presence-or-absence™
data of the ecologist ; perhaps because of the modesty of its mathematical
demands, it has been extensively studied by “biological’” biometricians.
Moreover, owing to the relative ease with which such data can be
analysed, it is frequently generated from Class 4 data by dichotomizing
the variates. It has, however, been pointed out to us by Macnaughton-
Smith (in litf.) that this raises a new difficulty. In ecology the 1/0
situation is truly asymmetrical, in that only the presences carry useful
information, but this is not true in sociology; if 1 is taken to represent
drunkenness, 0 represents sobriety, and both are meaningful. It
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remains only to say that Class 4 data are normal in sociology, and in
ecology if a measured attribute (such as percentage cover) is used.

3. Transposition of data-classes

The data-classes are not necessarily invariant under transposition.
Classes 1 and 2 may become inter-converted under A /I transposition;
so may Classes 3 and 4, with certain limitations. The nature of the
data may thus appear to change markedly when transposed. We believe
that this is one cause of the prevailing uncertainty regarding R/Q
differences: an R/Q difference is inherently likely to be greater if it also
involves an A4 /I difference.

4. Noda

The term “nodum’ was apparently introduced by Poore (1955) in
the context of phytosociology; its numerical implications have so far
been examined only in the case of monothetic classifications of Class 3
data (Williams and Lambert, 1961a; Lambert and Williams, 1962).
This conecept is, however, most easily illustrated in Class 2. Consider
points in a 3-space, disposed within two elliptical cylinders whose long
axes are parallel to the Z-axis. The projection on the (X,Y)-plane will
show two sharply-defined galaxies; projections on the other two planes
will show no strikingly galactic structure, and may not even separate
the two eylinders. A nodum, in our definition, is an enumeration both
of a set of points and of the set of axes in which the points constitute a
galaxy or “cluster”. In Class 3 data, a nodum consists of an enumera-
tion of a set of individuals and of a set of attributes for which they are
substantially all non-zero.

Noda may be regarded as foci around which the population is vary-
ing; they are potentially of great value as a basis for shedding peripheral
information. Unfortunately, no general method of extracting them is
vet known. We now incline to the view that the solution provided by
Williams and Lambert (1961a) is open to objections; it is in any case
applicable only to monothetic situations. One of us (Dale, 1964) has
carried out a preliminary investigation into the characterization and
combinatorial properties of noda, but the problem is as yet far from
solution.

The difficulty is more fundamental than may appear at first sight.
The existing method involves setting up the two models (» points in
p-space and p points in n-space) and collating the results; but the
concept of a nodum as “central” information intrinsically requires
that the individuals and attributes be manipulated simultaneously.
This is impossible so long as either is regarded as a set of points in a
space defined by co-ordinate axes of the other. Despite our advocacy

[4
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of a Euclidean model, and despite its incontestable power, the search
for nodal techniques may yet force us to abandon spatial models and
seek methods of maximizing some function of a data-matrix which
shall be symmetrical as regards rows and columns.

5. Nom-galactic heterogeneity

In Class 2 data, the points need not cluster into galaxies; they might,
for example, be dispersed along intertwined filaments, or on the surfaces
of concentric spheres. We are not aware that any such data have been
reported (except, of course, in ecological situations where pattern on
the ground is at issue); but if it were to be suspected a particular
strategy of analysis is indicated (vide Section V D [(224) below).

V. STRATEGY OF ANALYSIS
A. SIMPLIFICATION METHODS

By “simplification” we intend some means of reducing the dimensions
of the original Euclidean model, so that the data can be displayed in a
small number of dimensions with the minimum loss of information.
The process may fulfil any of three quite distinet functions, though
these are seldom clearly distinguished in the literature.

1. Subjective classification of complex data

A taxonomist may legitimately not wish to invoke objective numerical
methods, preferring for some specific purpose to utilize his own know-
ledge and experience to delimit taxonomically intractable material.
The data may nevertheless be specified by too many attributes for the
taxonomist to handle confidently; the requirement is to find trans-
formations of the original attributes which can be graphed in two or
three dimensions. Principal component analysis is commonly used for
this purpose, but is intrinsically liable to produce a dilemima. If the
dispersion matrix is used, the data is in no way distorted; but if any
of the attributes have appreciably higher variance than the remainder,
these attributes will dominate the analysis, so providing information
which could have been more simply obtained by univariate inspection.
1f, on the other hand, the correlation matrix is used—as it normally is—
the data being classified is not the original data. The Hotelling solution
commonly given in text-books involves two successive standardizations
to unit variance—first of the attributes, then of the components—
and so still further distorts the original data.

Factor analysis has occasionally been used for the same purpose, but
the elements being so classified are further removed again from those
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specified by the original data. However, the case reported by Pettett
(1960), of a population of Viola spp. which showed marked discontinuity
on the first factor but not on the first component, is potentially of great
interest, and would merit further investigation.

Relatively crude approximations to such methods exist in the
literature ; the method of Curtis (1959), for example, can be regarded as
an approximation to a component analysis with the origin outside the
population, at the point of intersection of the tangent-planes per-
pendicular to the axes of the hyper-ellipsoid. The coeflicient used is the
guantitative counterpart of 2a /(2¢--b-+c¢) and is thus non-metric. Such
methods were unavoidable while computing facilities were limited ; now
that fast programmes exist for the caleulation of large dispersion or
correlation matrices, and for the extraction of their roots and vectors,
there is little point even in such approximations as the centroid solution.

2. Preliminary evaluation of data

A non-probablistic approach in practice necessarily assumes that
there is heterogeneity to be found: but it may well be desired to explore
the general configuration of this heterogeneity, whether or no it is
everywhere sharply-defined. and whether or no it is galactic. Unless the
data is exceptionally complex, the first two or three principal com-
ponents will normally provide the information required.

3. Generation of “underlying fuctor™ hypotheses

It may be desired to erect hypotheses more far-reaching than those
[Seetion 11 12 /] which are purely classificatory; such hypotheses
normally take the form of postulating the existence of a simall number
of underlying “factors’ which would be sufficient to generate the inter-
relationships within the entire numerical system under study. It is
natural to explore the simplest possible hypotheses—i.e. those that
can be contained in the smallest number of postulated factors—with
due regard to Kendall's (1957) warning that “this seems to assume on
Nature’s part a much more indulgent behaviour than we have any
right to expect”. If classical methods are in use—as distinet from those
maximum likelihood methods (Lawley and Maxwell, 1963) which do
not require rotation—the appropriate solution is iterated communa-
lities, double standardization and rotation to simple structure. Rotation
normally aims at providing the simplest possible relationship between
old and new axes; but it may instead be required to seck the simplest
possible relationship between individuals and new axes—the solutions
are not necessarily identical. In cases of extreme heterogeneity, Dale
(1964) has shown that there may be no factor-analytic solution: there
may be no real values of the communalities which will substantially
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reduce the order of the matrix, and the centroid iteration of communa-
lities may fail to converge.

These methods are currently out of favour, probably as a result of
the incautious claims which have in the past been made for them.
They do not “reveal” or “‘demonstrate’” any structure in the data, and
we deprecate the tendency to ““identify’ the factors which are extracted.
If they are regarded purely as hypothesis-generating systems their use
is unexceptionable, and they are potentially of great power.

B. PARTITION

Attributes may be such that not only are they present or absent
(and the pattern of presences or absences important) but they may
also, if present, be measurable. Such situations are more common than
is usually realized. In particular, the data of plant ecology are of this
type if a measure such as percentage cover is in use. They arise in pure
taxonomy if, for given types of specimens (such as herbarium specimens),
some attributes cannot be observed; and they arise in sociology if
parts of a questionnaire are not answered. Essentially, the data is of
Class 4, and the primary need is to ascertain whether the major hetero-
geneity is qualitative or quantitative. We have suggested elsewhere
(Williams and Dale, 1962) a method by which this may be effected, but
the computation is heavy and no computer programme exists at present.
The method consists essentially of a partition into qualitative and
quantitative elements; it can be extended without difficulty to the
threefold system (known/unknown): (if known, present /fabsent): (if
known and present, then measured). We incline to the opinion that
Class 4 data should normally be partitioned—i.e. separated into Class 2
and Class 3 elements-—before numerical analysis; but the methods of
subsequent analysis will require modification from their normal forms,
and no investigation of this kind has yet been attempted.

C. NON-HIERARCHICAL METHODS

The most familiar non-hierarchical method is that which uses
canonical variates (Rao, 1952) for the comparison of groups of indivi-
duals. Recent examples are mainly zoological, though the method has
been used successfully on Populus, Betula and Ulmus spp. by J.M.R.
Jeffers (personal communieation)and his collaborators. Like all methods
related to the Mahalanobis D?statistic, itis notapplicable to individuals
or to groups not known a priori to be sufficiently similar to share a
common within-group dispersion matrix, and its detailed consideration
is therefore outside the scope of this article.
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Component analysis and factor analysis are non-hierarchical, but
are normally made the basis of subjective classification: completely
objective non-hierarchical methods, such as the “multi-dimensional
group analysis’ under development by R. Jancey (personal communica-
tion), seem to be extremely rare. We have already pointed out (Section
IT D) that hierarchical classifications are commonly regarded as desir-
able by the users, and it is presumably for this reason that they dominate
the literature. Despite their intrinsic theoretical interest, we incline to
the view that non-hierarchical methods are of limited value in numerical
taxonomy. An exception should perhaps be made for the method
associated with Tanimoto: but this, though non-hierarchical, is closely
related to certain hierarchical systems, and it will be more convenient
to defer its consideration to the section which follows.

D. HIERARCHICAL METHODS

1. General considerations
1. Pairs

Hierarchical methods are completely dominated by the concept of
all possible pairs of points or of axes. There is no difficulty in conceiving
methods based on all possible triangles or tetrahedra of points, or all
possible solid angles. We know of no work of this type. It would involve
far more computation than do the pair-systems, and until it is certain
that all possible power has been extracted from such systems, it is
doubtful whether more complex methods are worth pursuing.

1. Direction
The analysis may either begin with the entire population and pro-
gressively break it down (divisive methods), or begin with the
individuals and progressively fuse them (agglomerative methods).
The relative advantages and disadvantages are best discussed in
connexion with specific systems: it is only necessary here to point out
that, il a hierarchical classification is required, monothetic methods
cannot (except in a trivial sense) be agglomerative ; after the first groups
have been formed there may be no attribute by which they can be
fused.
iit. Sorting
The problem here may be reduced to that of defining a distance
between a point and a set of points, and is particularly relevant to the
agglomerative methods. Three methods are in use. In the first, the
distance is defined as that between the point and the nearest member
of the set (“nearest-neighbour’ sorting). Since this uses only a small
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part of the available information concerning the set, the method is
normally regarded as lacking in power. It is, however, computationally
very economical, requiring the calculation of {n(n—1) distances, and
it is the only form of sorting which will elucidate non-galactic hetero-
geneity. In the second method, the distance is defined as the average
of all the distances between the point and the individual members of
the set. It requires the caleulation of (n—1)? distances or averages of
distances, but demands complex sorting procedures to use the calcula-
tions economically. It is nevertheless the only method which has
regard to set density. Lastly, the set may be represented by the co-
ordinates of its centroid. This also requires (n—1)* calculations, but
the computational strategy is very simple; it is our opinion that the
simplicity and elegance of strategy that this method allows conclusively
justifies its use.

2. Monothetic sub-divisive: ‘association analysis”

For detailed accounts of the use of the method, see Williams and
Lance (1958), Williams and Lambert (1959, 1960, 1961b). It uses
derived-structure maximization; y%; is calculated between every pair
of attributes j and £ (in terms of the number of individuals possessing

or lacking them singly or jointly) and the sum k;;sz-""’ is formed of all
the 2 which involve a particular attribute j. Sub-division is on the

attribute for which , = 2. is maximum. Since for the 2 < 2ease x2 = Nr2
k #J L jk ]

the parameter may be regarded as .’sijrsz; in this form the method is

possibly applicable to quantitatively-specified data (vide Dale, 1964,
for a method of sub-division on a quantitative variable) but no work
of this type has yet been undertaken. The original investigations in

fact used ) 7;;| as sub-division-parameter; but private communications

z |
#)
from H.Stein (using a multiple-regression model) and from P. Macnaugh-
ton-Smith (using an information-theory model) have independently
demonstrated that Xr? is the efficient parameter if the greatest reduc-
tion of residual variance is required. Lawley (in litt.) has pointed out
that, as originally suggested, X|r| may be regarded as a crude approxi-
mation to a factor analysis (using averoid communalities), and thus
may perhaps be treated as a monothetic approximation to an essentially
polythetic system. Kmpirical trials on ecological data have suggested
that Z|r| has in fact cervain advantages: in particular it is less sensitive
to the presence of “‘outlying’’ individuals, whose innate similarities it
may preserve. The more efficient r? tends to split off outlying indivi-
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duals as single-membered sets, thus fragmenting the analysis. Further
comparative tests on different types of data are desirable. The method
has now been used in a variety of contexts and appears robust in that
it is not unduly sensitive to occasional errors in transcription of data.
1t is, however, extremely sensitive to “nuisance correlations’ as defined
in Section TI C 4; because of the large contributions that such correla-
tions can make to Zr2, they are intrinsically liable to dominate the
analysis,

The largest individual z2; has been used as a measure of “rank™ for
each successive sub-division, and Williams and Lambert (1960) give
reasons for not using more sophisticated parameters. The measure is
nevertheless unsatisfactory, since it does not necessarily fall with the
hierarchy; this is particularly troublesome at the lower levels of sub-

5
k4"
measure, and we propose to subject this possibility to empirical test.

division. We have some reason to believe that e would be a better

3. Polythetic agglomerative: “similarity’ analyses

Most of the published accounts of such methods use parameters
which we consider unsatisfactory for reasons given in Section 11T B,
often combined with inevitable but relatively inefficient hand-sorting;
these methods need no eritical examination. We shall also exclude
information statistics and the Goodall probablistic coeflicient, since
no fully developed methods are yet in use. With these provisos, there
are currently only three genuinely distinet methods, associated re-
spectively with Sneath, with Tanimoto and with ourselves. We consider
these in turn.

i. Sneath: unweighted methods

References: Sneath (1957); Sneath and Cowan (1958); Sokal and
Sneath (1964). The earlier work used the quasimetric coefficient
a/(a-+b-+-c), though in his more recent writing Sneath, like ourselves,
inclines towards the fully metric (¢ |-d)/(a- b c+d); the earlier work
also used nearest-neighbour sorting as a computational convenience,
though here also Sneath concedes the greater power of group-sorting
techniques when computational facilities are available. The important
feature of his methods is the striet adherence to the Adansonian
postulate that, unless there is some special reason for so doing, all
attributes are equal and should not be weighted. A difficulty immedi-
ately arises if only few attributes are available or if many of the
attributes are lacked or possessed by nearly all the individuals: the
intrinsic information content per individual is so low that it is impossible
to specify the “best’” fusion at any stage. Sneath has always made it
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clear that his methods are not applicable to such data, and stresses
that the number of attributes used should not be less than about 40.
Despite the undoubted successes that his methods have achieved with
suitable data, we believe that this limitation is a severe and undesirable
restriction on the wide application of the method.

It is clear that this restriction can be overcome if further information
can be imported into the system at the individual level, which will
necessarily involve some form of weighting. On the assumption that a
priori importance measures are undesirable, the only remaining source
of information is contained in such @ posteriori measures as can be
obtained from the population as a whole. The remaining two methods
offer different solutions to this problem.

1. Tanimoto: weighted individuals

Tanimoto (1958); Rogers and Tanimoto (1960). This method in fact
uses a quasimetric coefficient, but this is not important in the present
context. The coefficients are summed for all individuals, thus providing
an a posteriori importance measure for each individual; the individuals
with the highest values are used as “apices” for beginning the aggomera-
tive process. Unfortunately, the existing sorting process is non-hier-
archical and involves decisions on the part of the operator, and, as
Sokal and Sneath (1964) point out, the increasing tendency to separate
operator from computer renders ‘‘steered’” programmes undesirable.
Despite the early successes of the method, its sorting strategy requires
revision; if its concept of information-importing can be combined with
the use of a fully-metric coefficient and a mechanical (and preferably
hierarchical) sorting system, the method, already of great intrinsic
interest, might be a widely applicable strategy of considerable power.

i1t Williams et al.: weighted attributes

Williams, Dale and Macnaughton-Smith (1964). This method uses
Euclidean distances in an A-space with axes permanently scaled by

the a posteriori importance measure of Association Analysis, i.e. f\‘ijx R

Its successful classification of a 6-attribute population demonstrates
that it is free from the attribute limitations of Sneath’s unweighted
method. Its chief demerit is the use of invariant weights: the analysis
is necessarily dominated by what may loosely be regarded as “first-
factor’ relationships.

4. Polythetic divisive
Several authors (vide, e.g., Rescigno and Maccaccaro, 1960; Cochran
F
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and Hopkins, 1961; Macnaughton-Smith etal., 1964) have considered the
general problem of finding what is in some sense the best of all possible
alternative sub-divisions; but the only practical method known to us
is that of Edwards (1963). This calculates between /within partitions
of Euclidean distances for all possible sub-divisions into two groups.
Since there are 21—1 such sub-divisions, the method is necessarily
limited to a small number of individuals; and since the distances are
unweighted, some difficulties due to ambiguity may be expected at
low levels of division.

If the number of individuals is to be increased to realistic proportions,
some form of “directed search’ is inevitable. The Macnaughton-Smith
et al. ““dissimilarity analysis’ finds, in accordance with a stated criterion,
the individnal least representative of the population as a whole; this
individual is then used as the basis for a sub-population, and the remain-
ing individuals allocated sequentially to this sub-population or to the
remainder of the population. The “objectively-weighted Euclidean
distance’™ of Section V D 3(iit) above has been used as criterion in the
preliminary trials. The method has two advantages. First, the computa-
tion required, though still considerable, is considerably less than is
required for an “‘all possible sub-divisions” method. Secondly, the
weights for the axes can be recalculated for each successive sub-division,
thus removing the “first-factor’” dependence of the corresponding
agglomerative method. The present criterion has the disadvantage of
defining a disjoint-space model.

5. General conclusions

If & monothetic classification is desired, association analysis is clearly
indicated; if a monothetic classification is acceptable, and if p € n
(as is often the case), the computation required is less than for other
methods, and association analysis is again indicated. If a polythetic
classification is essential, a sub-divisive method which will provide the
major discontinuities at the beginning of analysis is obviously pre-
ferable; we can only say that “dissimilarity analysis™ shows consider-
able promise, though further development and experience is necessary
before it can be unreservedly recommended.

It is in the agglomerative field that we find ourselves most at variance
with current practice. We believe that the completely unweighted
methods lack power, and are only suitable where very sharply defined
heterogeneities exist; we suspect that the “cloudy clusters” stigma-
tized in a recent Aslib discussion (1962, p. 258) as “a criticism not of
the method, but of the material’” may yet be found to be due to using a
method of insufficient power. Furthermore, we consider that weights
caleulated internally from the data contravene only the letter, and not
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the spirit, of the Adansonian postulates: Adanson could hardly have
foreseen the possibility of internal weighting.

It will not have escaped notice that we incline towards the use of
methods in whose developments we have ourselves been concerned.
This is inevitable, since had we not been dissatisfied with existing
methods we should not have been led to devise our own. It does not
follow-that we are right: when all the programmes are freely available,
the users will decide.
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